
1

Seeking Stability by being Lazy and Shallow
Lazy and shallow instantiation is user friendly

GERT-JAN BOTTU∗, KU Leuven, Belgium

RICHARD A. EISENBERG, Tweag I/O, France

Designing a language feature often requires a choice between several, similarly expressive possibilities. Given

that user studies are generally impractical, we propose using stability as a way of making such decisions.

Stability is a measure of whether the meaning of a program alters under small, seemingly innocuous changes

in the code.

Directly motivated by a need to pin down a feature in GHC/Haskell, we apply this notion of stability to

analyse four approaches to the instantiation of polymorphic types, concluding that the most stable approach

is lazy (instantiate a polytype only when absolutely necessary) and shallow (instantiate only top-level type

variables, not variables that appear after explicit arguments).

CCS Concepts: • Software and its engineering→ General programming languages; • Social and pro-
fessional topics→ History of programming languages.

ACM Reference Format:
Gert-Jan Bottu and Richard A. Eisenberg. 2021. Seeking Stability by being Lazy and Shallow: Lazy and shallow

instantiation is user friendly. Proc. ACM Program. Lang. 1, ICFP, Article 1 (August 2021), 52 pages.

1 INTRODUCTION
Programmers naturally wish to get the greatest possible utility from their work. They thus embrace

polymorphism: the idea that one function can work with potentially many types. A simple example

is const :: ∀ a b. a → b → a, which returns its first argument, ignoring its second. The question

then becomes: what concrete types should const work with at a given call site? For example, if we

say const True ’x’, then a compiler needs to figure out that a should become Bool and b should
become Char . The process of taking a type variable and substituting in a concrete type is called

instantiation. Choosing a correct instantiation is important; for const , the choice of a ↦→ Bool means

that the return type of const True ’x’ is Bool. A context expecting a different type would lead to a

type error.

In the above example, the choices for a and b in the type of const were inferred. Many languages

also give programmers the opportunity to specify the instantiation for these arguments. For example,

we might say (in today’s Haskell) const @Bool @Char True ’x’ (choosing the instantiations

for both a and b) or const @Bool True ’x’ (still allowing inference for b). However, once we

start allowing user-directed instantiation, many thorny design issues arise. For example, will

let f = const in f @Bool True ’x’ be accepted?

This paper considers both implicit and explicit instantiation, and how design decisions around

instantiation can affect the ease of programming in a language. Every language that supports

polymorphism must make decisions around instantiation. It is our opinion that many designers

∗
This work was partially completed while Bottu was an intern at Tweag I/O.

Bottu worked on all aspects of the paper, including designing the typing rules, writing all of the proofs, and composing

the text. Eisenberg organized and guided the project, critiqued the typing rules, provided GHC/Haskell expertise, and

substantially contributed to writing.

Authors’ addresses: Gert-Jan Bottu, Computer Science Department, KU Leuven, Belgium, gertjan.bottu@kuleuven.be;

Richard A. Eisenberg, Tweag I/O, Paris, France, rae@richarde.dev.

2021. 2475-1421/2021/8-ART1 $15.00

https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

https://doi.org/

1:2 Gert-Jan Bottu and Richard A. Eisenberg

grapple with these issues; this paper aims to unpack these issues and lay out a framework in which

one can assess what design choices are best for a language.

Our concerns are rooted in design questions for Haskell, as embodied by the Glasgow Haskell

Compiler (GHC). Specifically, as Haskell increasingly has features in support of type-level pro-

gramming, how should its instantiation behave? Should instantiating a type like Int → ∀ a. a→ a
yield Int → 𝛼 → 𝛼 (where 𝛼 is a unification variable), or should instantiation stop at the regular

argument of type Int? This is a question of the depth of instantiation. Suppose f :: Int → ∀ a. a→ a.
Should f 5 have type ∀ a. a→ a or 𝛼 → 𝛼? This is a question of the eagerness of instantiation. As
we explore in Section 5.3, these questions have real impact on users of the language.

Unlike much type-system research, our goal is not simply to make a type-safe language. Type-safe

instantiation is well understood [e.g., Damas and Milner 1982; Reynolds 1974]. Instead, we wish

to examine the usability of a design around instantiation. Unfortunately, proper scientific studies

around usability are essentially intractable, as we would need pools of comparable experts in several

designs executing a common task. Instead of usability, then, we draw a fresh focus to a property

we name stability.
Intuitively, a language is stable if small changes to the input of the language implementation

do not cause large changes to the output (i.e., the compiled executable or the behaviour of an

interpreter). Yet we do not mean exactly that: changing an index in a program from 0 to 1 might

reasonably drastically change a program’s behaviour. Instead, we identify a set of program changes

that programmers might expect to have no effect; we call these program similarities. A language

is stable if changing one program into a similar one produces no change in behaviour. We say a

language respects a similarity if similar programs indeed have the same behaviour. For example,

we generally expect that a + b in a program text has the same meaning as b + a; we would thus

say that a + b is similar to b + a. Yet a language with implicit type conversions might not always

respect this similarity, perhaps leading the two expressions to have different types.

This paper proceeds by explaining stability, our metric for understanding and evaluating language

design. The concept of stability and our general approach of analysis with respect to stability is

language- and feature-agnostic. We then identify how mixing implicit with explicit instantiation

can lead to instability in several languages (Haskell, Agda, and Idris); accordingly, choosing a design

around instantiation is a key design step in any language mixing implicit and explicit instantiation.

Having laid out our approach (stability) and our problem (how to design instantiation), we then

explore how to apply this approach to the concrete setting of the problem in Haskell, concluding

that shallow, lazy instantiation leads to the most stable design. This result came as something of a

surprise: as recently as GHC 8.10, Haskell used a deep, eager strategy. GHC 9.0 updated this to use

shallow and eager. We advocate here to take a further step to be shallow and lazy.

Our contributions are as follows:

• The introduction of stability properties for functional programming languages, and their in-

teraction with type instantiation design choices, along with examples of how these properties

affect programmer experience. (Sections 2–5)

• A family of type systems, based on the bidirectional type-checking algorithm implemented in

GHC [Eisenberg et al. 2016; Peyton Jones et al. 2007; Serrano et al. 2020] but with the ability

to visibly instantiate type variables. It is parameterised over the type instantiation flavour.

(Sections 6–7)

• An analysis of how different choices of instantiation flavour either respect or do not respect

the similarities we identify. We conclude that lazy, shallow instantiation is the most stable.

(Section 8)

• An application of our results to the concrete use case of GHC/Haskell (Section 9)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

Seeking Stability 1:3

We use Haskell both as a lingua franca throughout this paper, and also as inspiration for the main

technical development in this paper. Stability issues are necessarily language-specific, as authors in

different languages will naturally have different expectations as to what programs are considered

similar. However, our general approach—examining a language though the lens of stability—is
portable across languages, and our work serves as a template for how one might perform this

analysis in a different setting.

The appendices mentioned in the text are included as anonymised supplementary material.

2 STABILITY
We have described stability as a measure of how small transformations—call them similarities—in
user-written code might drastically change the behaviour of a program. This section lays out the

specific similarities we will consider with respect to our instantiation flavours. There are naturally

many transformations one might think of applying to a source program. We have chosen ones

that relate best to instantiation; others (e.g. does a function behave differently in curried form as

opposed to uncurried form?) do not distinguish among our flavours and are thus less interesting in

our concrete context. We include examples demonstrating each of these—and how instantiation

causes trouble—in Section 5. After presenting our formal model of Haskell instantiation, we check

our instantiation flavours against these similarities in Section 8.

Before listing the similarities, we must extract out one salient detail buried in the definition of

stability: what we mean by the behaviour of a program. We will analyse two different notions of

behaviour, both the static semantics of a program (that is, whether the program is accepted and

what types are assigned to its variables) and its dynamic semantics (that is, what the program does

at runtime, assuming it is still well typed). We write, for example,
𝑆+𝐷⇐=⇒ to denote a similarity that

we expect to respect both static and dynamic semantics, whereas
𝐷⇐⇒ is one that we expect only to

respect dynamic semantics, but may change static semantics.

A key concern for us is around let-inlining and -extraction. That is, if we bind an expression to a

new variable and use that variable instead of the original expression, does our program change

meaning? Or if we inline a definition, does our program change meaning? These notions are

captured in Similarity 1:
1

Similarity 1.

let x = e1 in e2
𝑆+𝐷⇐=⇒ [e1/x] e2

The second similarity annotates a let binding with the inferred type 𝜎 of the bound expression e1.
We expect this similarity to be one-directional, as dropping a type annotation may indeed change

the static semantics of a program, as we hope programmers expect.

Similarity 2.

f 𝜋 i = ei
i 𝑆+𝐷
====⇒ f : 𝜎 ; f 𝜋 i = ei

i
, where 𝜎 is the inferred type of f

Changing a type signature should not affect dynamic semantics—except in the case of type

classes (or other feature that interrupts parametricity). Because our paper elides type classes, we

can state this similarity quite generally; more fleshed-out settings would require a caveat around

the lack of type-class constraints.

Similarity 3.

f : 𝜎1; f 𝜋 i = ei
i 𝐷⇐⇒ f : 𝜎2; f 𝜋 i = ei

i

1
A language with a strict let construct will observe a runtime difference between a let binding and its expansion, but this

similarity would still hold with respect to type-checking.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

1:4 Gert-Jan Bottu and Richard A. Eisenberg

The fourth similarity represents changing variable patterns (written to the left of the = in a

function definition) into _-binders (written on the right of the =), and vice versa. Here, we assume

the patterns 𝜋 contain only (expression and type) variables. The operator wrap is unsurprising,

and just wraps the patterns around the expression in lambda binders. Its definition can be found in

Appendix C.

Similarity 4.

let x 𝜋 = e1 in e2
𝑆+𝐷⇐=⇒ let x = e′

1
in e2, where wrap (𝜋 ; e1 ∼ e′

1
)

Our language model includes the ability to define a function by specifying multiple equations.

We would want the addition of new equations in a function definition not to affect types. While

normally new equations for a function would vary the patterns compared to existing equations, we

simply repeat the existing equation twice; after all, the particular choice of (well-typed) pattern

should not affect static semantics at all.

Similarity 5.

f 𝜋 = e 𝑆⇐⇒ f 𝜋 = e, f 𝜋 = e

And lastly, we want [-expansion not to affect types. (This change can reasonably affect runtime

behaviour, so we would never want to assert that [-expansion maintains dynamic semantics.)

Similarity 6.

e 𝑆⇐⇒ _x .e x, where e has a function type

We now fix the definition of stability we will work toward in this paper:

Definition (Stability). A language is considered stable when all of the program similarities
above are respected.

We note here that the idea of judging a language by its robustness in the face of small transfor-

mations is not new; see, for example, Le Botlan and Rémy [2009] or Schrijvers et al. [2019], who

also consider a similar property. However, we believe ours is the first work to focus on it as the

primary criterion of evaluation.

Our goal in this paper is not to eliminate instability, which would likely be too limiting, leaving

us potentially with either the Hindley-Milner implicit type system or a System F explicit one. Both

are unsatisfactory. Instead, our goal is to make the consideration of stability a key guiding principle

in language design. The rest of this paper uses the lens of stability to examine design choices

around ordered explicit type instantiation. We hope that this treatment serves as an exemplar for

other language design tasks and provides a way to translate vague notions of an “intuitive” design

into concrete language properties that can be proved or disproved. Furthermore, we believe that

instantiation is an interesting subject of study, as any language with polymorphism must consider

these issues, making them less esoteric than they might first appear.

3 MIXING IMPLICIT AND EXPLICIT FEATURES IS UNSTABLE
The concept of stability is important in languages that have a mix of implicit and explicit features—a

very common combination, appearing in Coq, Agda, Idris, modern Haskell, C++, Java, C#, Scala, F#,

and Rust, among others. This section walks through how a mixing of implicit and explicit features

in Haskell
2
, Idris

3
, and Agda

4
causes instability. We use these languages to show how the issues we

2
Our work is tested with GHC 8.10.1, and we use “Haskell” to refer to the language accepted by GHC.

3
We work with Idris 2, as available from https://github.com/idris-lang/Idris2, at commit

a7d5a9a7fdfbc3e7ee8995a07b90e6a454209cd8.
4
We work with Agda 2.6.0.1.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

https://github.com/idris-lang/Idris2

Seeking Stability 1:5

describe are likely going to arise in any language mixing implicit and explicit features—and how

stability is a worthwhile metric in examining these features—not to critique these languages in

particular. This section considers the instantiation features in these languages; see Appendix A for

discussion of other sources of instability in these languages.

All three of our example languages feature explicit instantiation of implicit arguments, allowing

the programmer to manually instantiate a polymorphic type, for example. Explicit instantiation

broadly comes in two flavours: ordered or named parameters.

3.1 Haskell
Haskell supports ordered instantiation [Eisenberg et al. 2016]: Given const :: ∀ a b. a→ b→ a, we
can write const @Int @Bool, which instantiates the type variables, giving us an expression of type

Int → Bool → Int . If a user wants to visibly instantiate a later type parameter (say, b) without
choosing an earlier one, they can write@ to skip a parameter. The expression const @ @Bool
has type 𝛼 → Bool → 𝛼 , for any type 𝛼 . Ordered parameters have two advantages: they are concise

and do not leak the choice of variable names from the library to its client.

Haskell’s treatment of instantiation is unstable even without reference to other features described

below, because Haskell type signatures do not need to explicitly quantify their variables. For

example, we can declare const with const :: a → b → a, with no ∀ a b, and we can still write

const @Int @Bool to instantiate the function. The policy is to quantify the variables according to

their left-to-right occurrence in the type (ignoring duplicate occurrences). This means, though, that

if we define type b⇐ a = a→ b (the lexeme← is reserved) and then write const :: (b→ a) ⇐ a,
we now require all clients of const to also reverse the order of their type instantiations. As a

conscientious library author, we could choose to explicitly include ∀ a b to keep the old variable

ordering, but it would be easy to think that the use of a type synonym in a type signature is a

purely internal matter and that no special care need be taken.

3.2 Idris
Idris, on the other hand, supports named parameters. If we define const : {a, b :Type } → a→ b→ a
(this syntax is the Idris equivalent of the Haskell type ∀ a b. a → b → a), then we can write

const {b = Bool } to instantiate only the second type parameter or const {a = Int } {b = Bool } to
instantiate both. Order does not matter; const {b = Bool } {a = Int } works as well as the previous
example. Named parameters may be easier to read than ordered parameters and are robust to the

addition of new type variables.

Idris’s approach suffers from an instability inherent with named parameters. Unlike Haskell,

the order of quantified variables does not matter. Yet now, the choice of names of the parameters

naturally does matter. Thus const : c → d → c (taking advantage of the possibility of omitting

explicit quantification in Idris) has a different interface than const : a→ b → a, despite the fact
that the type variables scope over only the type signature they appear in.

3.3 Agda
Agda accepts both ordered and named parameters. After defining const : {a b : Set } → a →
b → a, we can write expressions like const { Int } (instantiating only a), const {b = Bool }, or
const { } {Bool }. Despite using named parameters, order does matter: we cannot instantiate

earlier parameters after later ones. Naming is useful for skipping parameters that the user does

not wish to instantiate. Because Agda requires explicit quantification of variables used in types

(except as allowed for in implicit generalisation, below), the ordering of variables must be fixed by

the programmer. However, like Idris, Agda suffers from the fact that the choice of name of these

local variables leaks to clients.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

1:6 Gert-Jan Bottu and Richard A. Eisenberg

3.4 Conclusion
We see here how Haskell, Idris, and Agda all have a mix of explicit and implicit features around type

instantiation. This mix raises the potential for language instability: they make it possible for small,

apparently insignificant changes to code to affect the semantics of programs. All three languages

examined here have taken steps to mitigate this instability, but none have eliminated it entirely.

4 PROVENANCE IN HASKELL
Because we use Haskell as our main object of study, we briefly introduce Haskell’s concept of

variable provenance. This feature is directly motivated by the desire for stability, though we are the

first to describe it that way. It was originally introduced by Eisenberg et al. [2016] and is frequently

called specificity in the context of GHC; however, we find here that provenance is a more meaningful

moniker. The key idea is that quantified type variables are either written by the user (these are

called specified) or invented by the compiler (these are called inferred). A specified variable is

available for explicit instantiation using, e.g., @Int; an inferred variable may not be explicitly

instantiated.

Following GHC, we use braces to denote inferred variables. Thus, if we have the Haskell program

id1 :: a→ a
id1 x = x

id2 x = x

then we would write that id1 :: ∀ a. a → a (with a specified a) and id2 :: ∀ {a}. a → a (with an

inferred a). Accordingly, id1 @Int is a function of type Int → Int , while id2 @Int is a type error.

5 TYPE INSTANTIATION
We now turn to our main feature of study: implicit instantiation. We lay out several alternative

ways of designing this feature, observe that each can cause instability, and then (in Section 6)

develop typing rules (based on the current behaviour of GHC/Haskell, with key inspiration from

Eisenberg et al. [2016]; Peyton Jones et al. [2007]; Serrano et al. [2020]) so that we can prove how

our choices of instantiation technique either respect or do not respect the similarities.

Our key question: Given a polymorphic function f , how and when should we instantiate it to

concrete types?

We introduce several different flavours of instantiation algorithm, differing in two orthogonal

axes: when types are instantiated, and the depth to which binders are instantiated. We also showcase

several examples where these choices make a real difference.

5.1 Deep vs. Shallow Instantiation
The depth of instantiation determines which type variables get instantiated. Concretely, shallow

instantiation affects only the type variables bound before any explicit arguments. Deep instantiation,

on the other hand, also instantiates all variables bound after an arbitrary number of explicit

arguments. For example, consider a function f :: ∀ a. a→ (∀ b. b→ b) → ∀ c. c → c. A shallow

instantiation of f ’s type instantiates only a, whereas deep instantiation would also instantiate c,
which occurs after two explicit arguments, one of type a and one of type ∀ b. b → b. Note that
neither instantiation flavour touches the b variable, as doing so would actually make the function

type more general, thus breaking type safety.

Versions of GHC up to 8.10 perform deep instantiation, as originally introduced by Peyton Jones

et al. [2007], but GHC 9.0 changes this design, as proposed by Peyton Jones [2019] and inspired by

Serrano et al. [2020]. In this paper, we study this change through the lens of stability.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

Seeking Stability 1:7

5.2 Eager vs. Lazy Instantiation
The eagerness of instantiation determines the location in the code where instantiation happens.

Eager instantiation immediately instantiates a polymorphic type variable as soon as it is mentioned.

In contrast, lazy instantiation holds off instantiation as long as possible until instantiation is

necessary in order to, say, allow a variable to be applied to an argument.

For example, consider this function:

pair :: ∀ a. a→ ∀ b. b→ (a, b)
Note that pair first quantifies over the type a, followed by a value of type a, and only then quantifies

over the type b.
Now, consider this definition of myPairX :

myPairX x = pair x

What type do we expect to infer for myPairX? With eager instantiation, the type of a polymorphic

expression is instantiated as soon as it occurs. Thus, pair x will have a type 𝛽 → (𝛼, 𝛽), assuming

we have guessed x :: 𝛼 . (We use Greek letters to denote unification variables.) With neither 𝛼 nor 𝛽

constrained, we will generalise both (ignoring provenance for now), and infer ∀ a b. a→ b→ (a, b)
for myPairX . Crucially, this type is different than the type of pair .

Now, let us now replay this process with lazy instantiation. The variable pair has type ∀ a. a→
∀ b. b→ (a, b). In order to apply pair of that type to x , we must instantiate the first quantified type

variable a to a fresh unification variable 𝛼 , yielding the type 𝛼 → ∀ b. b→ (𝛼, b). This is indeed a

function type, so we can consume the argument x , yielding pair x :: ∀ b. b→ (𝛼, b). We have now

type-checked the expression pair x , and thus we take the parameter x into account and generalise

this type to produce the inferred type myPairX :: ∀ a. a→ ∀ b. b→ (a, b). This is the same as the

type given for pair .
As we have seen, thus, the choice of eager or lazy instantiation can change the inferred types of

definitions. In a language that allows visible instantiation of type variables, the difference between

these types is user-visible. With eager instantiation, myPairX @Bool @Char True ’x’ is accepted,

whereas with lazy instantiation, only myPairX @Bool True @Char ’x’ is correct.

5.3 Thorny Examples
Relating the general ideas of instantiation depth and eagerness to the concrete Haskell implemen-

tation, with its notion of provenance, we present a number of examples showing how instantiation

can become muddled. While these examples are described in terms of types inferred for definitions

that have no top-level signature, many of the examples can be adapted to situations that do not

depend on the lack of a signature. Each example is annotated with the similarity it illustrates.

Example 1:myId (Similarity 1). The Haskell standard library defines id ::∀ a. a→ a as the identity
function. Suppose we made a synonym of this, with the following:

myId = id

Note that there is no type signature. Even in this simple example, our choice of instantiation

eagerness changes the type we infer:

myId eager lazy

deep or shallow ∀ {a}. a→ a ∀ a. a→ a
Under eager instantiation, the mention of id is immediately instantiated, and thus we must re-

generalise in order to get a polymorphic type for myId . Generalising always produces inferred

variables, and so the inferred type for myId starts with ∀ {a}, meaning that myId cannot be a

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

1:8 Gert-Jan Bottu and Richard A. Eisenberg

drop-in replacement for id , which might be used with explicit type instantiation. On the other

hand, lazy instantiation faithfully replicates the type of id and uses it as the type of myId .

Example 2: myPair (Similarity 1). This problem gets even worse if the original function has a

non-prenex type, like our pair , above. Our definition is now:

myPair = pair

With this example, both design axes around instantiation matter:

myPair eager lazy

deep ∀ {a} {b }. a→ b→ (a, b) ∀ a. a→ ∀ b. b→ (a, b)
shallow ∀ {a}. a→ ∀ b. b→ (a, b) ∀ a. a→ ∀ b. b→ (a, b)

All we want is to define a simple synonym, and yet reasoning about the types requires us to consider

both depth and eagerness of instantiation.

Example 3: myPairX (Similarity 1). The myPairX example above acquires a new entanglement

once we account for provenance. We define myPairX with this:

myPairX x = pair x

We infer these types:

myPairX eager lazy

deep or shallow ∀ {a} {b }. a→ b→ (a, b) ∀ {a}. a→ ∀ b. b→ (a, b)
Unsurprisingly, the generalised variables end up as inferred, instead of specified.

Example 4: infer (Similarity 2). Though not yet implemented, we consider a version of Haskell

that includes the ability to abstract over type variables, the subject of an approved proposal for

GHC [Eisenberg 2018]. With this addition, we can imagine writing infer :

infer = _ @a (x :: a) → x

We would infer these types:

infer eager lazy

deep or shallow ∀ {a}. a→ a ∀ a. a→ a
Note that the eager variant will infer a type containing an inferred quantified variable {a}. this is
because the expression _ @a (x :: a) → x is instantly instantiated; it is then let-generalised to get

the type in the table above.

If we change our program to include these types as annotations, the eager type, with its inferred

variable, will be rejected. The problem is that we cannot check an abstraction _ @a→ . . . against

an expected type ∀ {a}. . . .: the whole point of having an inferred provenance is to prevent such

behaviour, as an inferred variable should not correspond to either abstractions or applications in

the term.

Example 5: swizzle (Similarity 3). Suppose we have this function defined
5
:

undef :: ∀ a. Int → a→ a
undef = undefined

Now, we write a synonym but with a slightly different type:

swizzle :: Int → ∀ a. a→ a
swizzle = undefined

5
This example is inspired by Peyton Jones [2019].

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

Seeking Stability 1:9

Shockingly, undef and swizzle have different runtime behaviour: forcing undef diverges (unsurpris-
ingly), but forcing swizzle has no effect. The reason is that the definition of swizzle is not as simple

as it looks. In the System-F-based core language used within GHC, we have swizzle = _(n :: Int) →
Λ(a :: Type) → undef @a n. Accordingly, swizzle is a function, which is already a value.

Under shallow instantiation, swizzlewould simply be rejected, as its type is different than undef ’s.
The only way swizzle can be accepted is if it is deeply skolemised (see Function Application in

Section 6), a necessary consequence of deep instantiation.

swizzle eager or lazy

deep converges

shallow rejected

Example 6: infer2, again (Similarity 4). Returning to the infer example, we might imagine moving

the abstraction to the left of the =, yielding:

infer2 @a (x :: a) = x

Under all instantiation schemes, infer2 will be assigned the type ∀ a. a→ a. Accordingly, under
eager instantiation, the choice of whether to bind the variables before the = or afterwards matters.

Example 7: boolId1 and boolId2 (Similarity 5). Consider these two definitions:

boolId1 (:: Bool) = id

boolId2 False = id
boolId2 True = id

Both of these functions ignore their input and return the polymorphic identity function. (The

strictness of the functions differs, but that need not concern us here.) Let us look at their types:

eager lazy

boolId1 deep or shallow ∀ {a}. Bool → a→ a Bool → ∀ a. a→ a
boolId2 deep or shallow ∀ {a}. Bool → a→ a ∀ {a}. Bool → a→ a

The lazy case for boolId1 is the odd one out: we see that the definition of boolId1 has type ∀ a. a→ a,
do not instantiate it, and then prepend the Bool parameter. In the eager case, we see that both

definitions instantiate id and then re-generalise.

However, the most interesting case is the treatment of boolId2 under lazy instantiation. The

reason the type of boolId2 here differs from that of boolId1 is that the pattern-match forces the

instantiation of id . As each branch of a multiple-branch pattern-match must result in the same type,

we have to seek the most general type that is still less general than each branch’s type. Pattern

matching thus performs an instantiation step (regardless of eagerness), in order to find this common

type.

In the scenario of boolId2, however, this causes trouble: the match instantiates id , and then the

type of boolId2 is re-generalised. This causes boolId2 to have a different inferred type than boolId1.
Here, once again, we witness an instability: we do not expect the form of [-expansion we see here

to change the type of a definition.

Example 8: eta (Similarity 6). Consider these two definitions, where id :: ∀ a. a→ a:

noEta = id
eta = _x → id x

The two right-hand sides should have identical meaning, as eta is simply the [-expansion of noEta.
Yet, under lazy instantiation, these two will have different types:

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

1:10 Gert-Jan Bottu and Richard A. Eisenberg

𝛿 ::= S | D Depth
𝜖 ::= E | L Eagerness

𝜏 ::= a | 𝜏1 → 𝜏2 | T 𝜏 Monotype
𝜌 ::= 𝜏 | 𝜎1 → 𝜙𝛿

2
Instantiated type

𝜎 ::= 𝜌 | ∀ a.𝜎 | 𝜎1 → 𝜎2 Type scheme
𝜙𝛿

::= 𝜌 (𝛿 = D) Instantiated result
| 𝜎 (𝛿 = S)

[𝜖 ::= 𝜌 (𝜖 = E) Synthesised type
| 𝜎 (𝜖 = L)

𝜓 ::= 𝜏 Arg. descriptor

e ::= x | _x .e | e1 e2 | K | e : 𝜎 Expression
| let decl in e

decl ::= x : 𝜎 ; x 𝜋 i = ei
i
| x 𝜋 i = ei

i
Declaration

𝜋 ::= x | K 𝜋 Pattern

Σ ::= · | Σ, T a | Σ,K : a;𝜎 ; T Static context
Γ,Δ ::= Σ | Γ, x : 𝜎 | Γ, a Context

Fig. 1. Implicit Polymorphic _-Calculus (IPLC) Syntax

eager lazy

noEta deep or shallow ∀ {a}. a→ a ∀ a. a→ a
eta deep or shallow ∀ {a}. a→ a ∀ {a}. a→ a

The problem is that the [-expansion instantiates the occurrence of id in eta, despite the lazy

instantiation strategy. Under eager instantiation, the instantiation happens regardless.

5.4 Conclusion
The examples in this section show that the choice of instantiation scheme matters—and that no

individual choice is clearly the best. To summarise, each of our possible schemes runs into trouble

with some example; this table lists the numbers of the examples that witness a problem:

eager lazy

deep 1, 2, 3, 4, 5, 6 5, 7, 8

shallow 1, 2, 3, 4, 6 7, 8

At this point, the best choice is unclear. Indeed, these examples are essentially where we started

our exploration of this issue—with failures in each quadrant of this table, how should we design

instantiation in GHC? To understand this better, we present in the next two sections a formalisation

of GHC’s type-checking algorithm, parameterised over the choice of depth and eagerness. Section 8

then presents properties derived from the similarities of Section 2 and checks which variants of our

type system uphold which properties. The conclusion becomes clear: lazy, shallow instantiation

respects the most similarities.

Let us dive into the details to see how this all works.

6 THE IMPLICIT POLYMORPHIC _-CALCULUS
In order to assess our design choices against the transformations we desire to ensure stability,

this section and the next develop detailed calculi to model our language. We start with a simpler

calculus in this section: a polymorphic, stratified _-calculus with implicit polymorphism (only).

We call it the Implicit Polymorphic _-calculus, or IPLC. By “implicit”, we mean that terms cannot

explicitly instantiate or bind types. However, type signatures are allowed in the calculus, and the

bidirectional type system [Pierce and Turner 2000] permits higher-rank [Odersky and Läufer 1996]

functions. Some other features, such as local let declarations defining functions with multiple

equations, are added to bring this closer to our real-world application of Haskell.

We have built this system to support flexibility in both of our axes of instantiation scheme design.

That is, the calculus is parameterised over choices of instantiation depth and eagerness. In this way,

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

Seeking Stability 1:11

our calculus is essentially a family of type systems: choose your design, and you can instantiate

our rules accordingly.

The syntax for IPLC is shown in Figure 1. We define two meta parameters 𝛿 and 𝜖 denoting the

depth and eagerness of instantiation respectively. In the remainder of this paper, grammar and

relations which are affected by one of these parameters will be annotated as such. A good example

of this are types 𝜙𝛿
and [𝜖 , as explained below.

Keeping all the moving pieces straight can be challenging. We thus offer some mnemonics to help

the reader: In the remainder of the paper, aspects pertaining to eager instantiation are highlighted in
emerald, while lazy features are highlighted in lavender. Similarly, instantiation under the shallow
scheme is drawn using a striped line, as in Γ ⊢ 𝜎 inst S

99999K 𝜌 .

Types. Our presentation of the IPLC contains several different type categories, which we explain

here. These categories are introduced to support the different instantiation schemes discussed in

this paper, altering the behaviour of the typing rules accordingly. Monotypes 𝜏 represent simple

ground types without any polymorphism. They are entirely standard, incorporating type variables

a, functions 𝜏1 → 𝜏2 and saturated type constructors T 𝜏6. On the other side of the spectrum are

type schemes 𝜎 , which can be fully polymorphic, with forall binders on the top-level, and nested

on both sides of the function arrow.

So far, none of these definitions depend on the instantiation flavour. This changes with instan-

tiated types 𝜌 . These types cannot have any top-level polymorphism, as their quantified type

variables have already been instantiated. However, depending on whether instantiation happens

shallowly or deeply, they may or may not feature nested foralls on the right of function arrows. This

dependency on the depth 𝛿 of type instantiation is denoted using an instantiated result type 𝜙𝛿
on

the right of the function arrow. This type becomes a full type scheme 𝜎 under shallow instantiation

(S)—thus allowing foralls on the right of the function arrow—and becomes an instantiated type 𝜌

under deep instantiation (D)—thus disallowing foralls on the right of the function arrow. No matter

the instantiation flavour, function arguments within an instantiated type 𝜌 can still be polymorphic,

as instantiating a function does not affect polymorphism to the left of an arrow. We also have

synthesised types [𝜖 to denote the output of the type synthesis judgement Γ ⊢ e ⇒ [𝜖 , which

infers a type from an expression. This type depends on the eagerness 𝜖 of type instantiation: under

lazy instantiation (L) inference can produce full type schemes 𝜎 , but under eager instantiation (E)
synthesised types [𝜖 must be instantiated types 𝜌 : any top-level quantified variable would have

been instantiated away.

Finally, an argument descriptor 𝜓 represents a type synthesised from analysing a function

argument pattern. While this might not seem very useful in the IPLC (as they are just monotypes),

argument descriptors will be extended beyond regular types in the next section. Descriptors are

assembled into type schemes 𝜎 with the type (𝜓 ;𝜎0 ∼ 𝜎) judgement, in Figure 5.

Expressions. Expressions e are standard, except for let-expressions, which are modelled on the

syntax of Haskell. These contain a single (non recursive) declaration decl, which may optionally

have a type signature x : 𝜎 , followed by the definition x 𝜋 i = ei
i
. The patterns 𝜋 on the left of the

equals sign can each be either a simple variable x or a saturated data constructor K 𝜋 .

Contexts. Typing contexts Γ are entirely standard, storing both the term variables x with their

types and the type variables a in scope; these type variables may not appear in the term (remember:

this is an entirely implicit calculus), but they may be in scope in types. The type constructors

6
We work only with saturated type constructors, as we wish to avoid complications arising from a kind system. Such

concerns would be orthogonal to our main object of study: instantiation.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

1:12 Gert-Jan Bottu and Richard A. Eisenberg

Γ ⊢ e⇒ [𝜖 (Term Type Synthesis)

Tm-InfVar

x : 𝜎 ∈ Γ
Γ ⊢ 𝜎 inst 𝛿−−−−→[𝜖

Γ ⊢ x ⇒ [𝜖

Tm-InfCon

K : a;𝜎 ; T ∈ Γ
Γ ⊢ ∀ a.𝜎 → T a inst 𝛿−−−−→[𝜖

Γ ⊢ K ⇒ [𝜖

Tm-InfAbs

Γ, x : 𝜏 ⊢ e⇒ [𝜖

Γ ⊢ _x .e⇒ 𝜏 → [𝜖

Tm-InfApp

Γ ⊢ e1 ⇒ [𝜖

Γ ⊢ [𝜖 inst 𝛿−−−−→𝜎1 → 𝜙𝛿
2

Γ ⊢ e2 ⇐ 𝜎1

Γ ⊢ 𝜙𝛿
2

inst S
99999K [𝜖

2

Γ ⊢ e1 e2 ⇒ [𝜖
2

Tm-InfLet

Γ ⊢ decl ⇒ Γ′

Γ′ ⊢ e⇒ [𝜖

Γ ⊢ let decl in e⇒ [𝜖

Tm-InfAnn

Γ ⊢ e⇐ 𝜎

Γ ⊢ 𝜎 inst 𝛿−−−−→[𝜖

Γ ⊢ e : 𝜎 ⇒ [𝜖

Γ ⊢ e⇐ 𝜎 (Term Type Checking)

Tm-CheckAbs

Γ ⊢ 𝜎 skol 𝛿−−−−→𝜎1 → 𝜙𝛿
2
; Γ′

Γ′, x : 𝜎1 ⊢ e⇐ 𝜙𝛿
2

Γ ⊢ _x .e⇐ 𝜎

Tm-CheckLet

Γ ⊢ decl ⇒ Γ′

Γ′ ⊢ e⇐ 𝜎

Γ ⊢ let decl in e⇐ 𝜎

Tm-CheckInf

Γ ⊢ 𝜎 skol 𝛿−−−−→ 𝜌 ; Γ′

Γ′ ⊢ e⇒ [𝜖

Γ′ ⊢ [𝜖 inst 𝛿−−−−→ 𝜌

𝑒 ≠ _, let

Γ ⊢ e⇐ 𝜎

Fig. 2. Term Typing for Implicit Polymorphic _-Calculus

and data constructors are stored in a static context Σ, which forms the basis of typing contexts Γ.
This static context contains the data type definitions by storing both type constructors T a and

data constructors K : a;𝜎 ; T . Data constructor types contain the list of quantified variables a, the
argument types 𝜎 , and the resulting type T ; when K : a;𝜎 ; T , then the use of K in an expression

would have type ∀ a.𝜎 → T a, abusing syntax slightly to write a list of types 𝜎 to the left of an

arrow.

6.1 Typing rules
Figures 2, 3, 4 and 5 show the typing rules for our the IPLC. In order to support both type synthesis

and checking, we use a bidirectional type system. We review the high-level role of the judgements

and then examine details.

Type Synthesis. Synthesis for expressions is performed by the Γ ⊢ e⇒ [𝜖 relation: “Under typing

context Γ, the expression e is assigned the type [𝜖”. As mentioned previously, the shape of the output

type [𝜖 is parameterised over the eagerness of type instantiation 𝜖 . Under lazy instantiation, type

synthesis produces a type scheme 𝜎 ; under eager instantiation, the output will be an instantiated

type 𝜌 . Similar to expressions, pattern synthesis is performed by the Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ relation:

“Under typing context Γ, patterns 𝜋 are assigned the argument descriptors𝜓 , producing the context

extension Δ”. Declaration synthesis is performed by the Γ ⊢ decl ⇒ Γ′ relation: “The declaration
decl extends the typing context Γ into Γ′”.

Type Checking. Checking for expressions is performed by the Γ ⊢ e⇐ 𝜎 relation: “Under typing

context Γ, the expression e is checked to have the type 𝜎”. The type serves as an input here: an

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

Seeking Stability 1:13

Γ ⊢ decl ⇒ Γ′ (Declaration Checking)

Decl-NoAnnSingle

Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ
Γ,Δ ⊢ e⇒ [𝜖

type (𝜓 ;[𝜖 ∼ 𝜎)
a = fv (𝜎) \ dom (Γ)

Γ ⊢ x 𝜋 = e⇒ Γ, x : ∀ a.𝜎

Decl-NoAnnMulti

i > 1 Γ ⊢𝑃 𝜋 i ⇒ 𝜓 ;Δ
i

Γ,Δ ⊢ ei ⇒ [𝜖i
i

Γ′i ⊢ [𝜖i
inst 𝛿−−−−→ 𝜌

i

type (𝜓 ; 𝜌 ∼ 𝜎)
a = fv (𝜎) \ dom (Γ)

𝜎 ′ = ∀ a.𝜎

Γ ⊢ x 𝜋 i = ei
i
⇒ Γ, x : 𝜎 ′

Decl-Ann

Γ ⊢𝑃 𝜋 i ⇐ 𝜎 ⇒ 𝜎 ′i ;Δ
i

Γ,Δ ⊢ ei ⇐ 𝜎 ′i
i

Γ ⊢ x : 𝜎 ; x 𝜋 i = ei
i
⇒ Γ, x : 𝜎

Fig. 3. Declaration Checking for Implicit Polymorphic _-Calculus

Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ (Pattern Synthesis)

Pat-InfEmpty

Γ ⊢𝑃 · ⇒ ·; ·

Pat-InfVar

Γ, x : 𝜏1 ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ

Γ ⊢𝑃 x, 𝜋 ⇒ 𝜏1,𝜓 ; x : 𝜏1,Δ

Pat-InfCon

K : a0;𝜎0; T ∈ Γ
Γ ⊢𝑃 𝜋 ⇐ [𝜏0/a0] (𝜎0 → T a0) ⇒ T 𝜏 ;Δ1

Γ,Δ1 ⊢𝑃 𝜋 ′⇒ 𝜓 ;Δ2

Γ ⊢𝑃 (K 𝜋), 𝜋 ′⇒ T 𝜏,𝜓 ;Δ1,Δ2

Γ ⊢𝑃 𝜋 ⇐ 𝜎 ⇒ 𝜎 ′;Δ (Pattern Checking)

Pat-CheckEmpty

Γ ⊢𝑃 · ⇐ 𝜎 ⇒ 𝜎 ; ·

Pat-CheckVar

Γ, x : 𝜎1 ⊢𝑃 𝜋 ⇐ 𝜎2 ⇒ 𝜎 ′;Δ

Γ ⊢𝑃 x, 𝜋 ⇐ 𝜎1 → 𝜎2 ⇒ 𝜎 ′; x : 𝜎1,Δ

Pat-CheckCon

K : a0;𝜎0; T ∈ Γ
Γ ⊢ 𝜎1 inst 𝛿−−−−→ 𝜌1

Γ ⊢𝑃 𝜋 ⇐ [𝜏0/a0] (𝜎0 → T a0) ⇒ 𝜌1;Δ1

Γ,Δ1 ⊢𝑃 𝜋 ′⇐ 𝜎2 ⇒ 𝜎 ′
2
;Δ2

Γ ⊢𝑃 (K 𝜋), 𝜋 ′⇐ 𝜎1 → 𝜎2 ⇒ 𝜎 ′
2
;Δ1,Δ2

Pat-CheckForall

Γ, a ⊢𝑃 𝜋 ⇐ 𝜎 ⇒ 𝜎 ′;Δ
𝜋 ≠ ·

Γ ⊢𝑃 𝜋 ⇐ ∀ a.𝜎 ⇒ 𝜎 ′; a,Δ

Fig. 4. Pattern Typing for Implicit Polymorphic _-Calculus

algorithmic interpretation of this relation would simply return a pass/fail result. Similarly, pattern

checking is performed by the Γ ⊢𝑃 𝜋 ⇐ 𝜎 ⇒ 𝜎 ′;Δ relation: “Under typing context Γ, patterns 𝜋
match element-wise against 𝜎 , producing the residual type 𝜎 ′ and the context extension Δ”.

Type Instantiation. The behaviour of both the instantiation Γ ⊢ 𝜎 inst 𝛿−−−−→ 𝜌 and skolemisation

Γ ⊢ 𝜎 skol 𝛿−−−−→ 𝜌 ; Γ′ judgements depends on whether the depth 𝛿 is deepD or shallow S; see Figure 5.
The relations gather the binders of 𝜎 and instantiates or skolemises these with monotypes 𝜏 or fresh

type variables, respectively. Both invoke binders𝛿 (𝜎) = a; 𝜌 , which splits a type scheme 𝜎 into a list

of its bound type variables a and the remaining instantiated type 𝜌 . Under shallow instantiation

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

1:14 Gert-Jan Bottu and Richard A. Eisenberg

binders𝛿 (𝜎) = a; 𝜌 (Binders)

Bndr-Mono

bindersD (𝜏) = ·;𝜏

Bndr-Function

bindersD (𝜎2) = a; 𝜌2

bindersD (𝜎1 → 𝜎2) = a;𝜎1 → 𝜌2

Bndr-Forall

bindersD (𝜎) = b; 𝜌

bindersD (∀ a.𝜎) = a, b; 𝜌

Bndr-Shallow

bindersS (∀ a.𝜌) = a; 𝜌

Γ ⊢ 𝜎 inst 𝛿−−−−→ 𝜌 (Type instantiation)

Inst-Inst

binders𝛿 (𝜎) = a; 𝜌

Γ ⊢ 𝜎 inst 𝛿−−−−→[𝜏/a] 𝜌

Γ ⊢ 𝜎 skol 𝛿−−−−→ 𝜌 ; Γ′ (Type skolemisation)

Skol-Skol

binders𝛿 (𝜎) = a; 𝜌

Γ ⊢ 𝜎 skol 𝛿−−−−→ 𝜌 ; Γ, a

type (𝜓 ;𝜎 ∼ 𝜎 ′) (Telescope Type Construction)

Type-Empty

type (·;𝜎 ∼ 𝜎)

Type-Var

type (𝜓 ;𝜎2 ∼ 𝜎 ′
2
)

type (𝜏1,𝜓 ;𝜎2 ∼ 𝜏1 → 𝜎 ′
2
)

Fig. 5. Type Instantiation and Skolemisation

(rule Bndr-Shallow), this relation just returns all type variables bound at the top of the input type

scheme. Under deep instantiation however (which is based directly on relations in Peyton Jones

et al. [2007, Section 4.6.2]), this gathers variables bound both at the top level and on the right of

function arrows.

The instantiation and skolemisation relations as presented here work properly only when going

from a type scheme 𝜎 to an instantiated type 𝜌 . However, we see some rules relate other types. For

example, rule Tm-InfVar instantiates the type scheme 𝜎 assigned to a variable from a context to a

synthesised type [𝜖 (the 𝜖 is included to remind us on the importance of the eagerness parameter).

Because a synthesised type is a type schemewhenwework with lazy instantiation, this instantiation

in rule Tm-InfVar is actually a no-op in that scenario; however, under eager instantiation, a

synthesised type is the same as an instantiated type (with no ∀s at the top), and we must actually

instantiate. This is why the use of instantiation in rule Tm-InfVar is coloured in emerald. Conversely,

examine rule Tm-InfApp. This rule handles when we are applying one expression to another. If

we have instantiated eagerly, then we need take no action before applying the function to the

argument: any type variables in the function’s type have already been instantiated. Under lazy

instantiation, however, function application is a point where we might need to finally instantiate.

Accordingly, the rule instantiates the synthesised [𝜖 to 𝜎1 → 𝜙𝛿
2
, which is an instantiated type, meta

variable 𝜌 . Recall that, under eager instantiation, a synthesised type [𝜖 is already an instantiated

type 𝜌 , and then this instantiation is a no-op. The instantiation applies only under the lazy scheme,

and thus is coloured in lavender.

Data constructors. Typing a data constructor (rule Tm-InfCon) works identically to typing

variables, after assembling the data constructor type from its pieces.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

Seeking Stability 1:15

_-expressions. Synthesis for abstractions (rule Tm-InfAbs) works as usual, by assigning a mono-

type 𝜏 to the variable x when checking the expression e. Type checking for abstractions (rule Tm-
CheckAbs) works similarly, but also allows a full type scheme as argument type. Note that we

first need to skolemise the given type 𝜎 into a function type 𝜎1 → 𝜙𝛿
2
(if this is not possible, type

checking fails). Skolemisation takes the available binders of 𝜎 and simply adds them to the context

Γ′. These variables behave as skolem constants when checking e.

Function Application. Let us examine rule Tm-InfApp more closely, which synthesises the type

for an application e1 e2. First, the type of e1 is synthesised. Under eager instantiation, this produces
an instantiated type which should be a function type 𝜎1 → 𝜙𝛿

2
; if it’s not, type synthesis fails.

Under lazy instantiation, and as described above, the type of e1 is now instantiated. Then we must

check the argument e2 against known type 𝜎1. Having checked the application itself, we must now

perhaps instantiate the result type 𝜙𝛿
2
. This would happen only with eager instantiation, and there

can be variables to instantiate only when the previous eager instantiation did not find them—that

is, when instantiation is shallow. Thus the final premise to rule Tm-InfApp applies only in the

eager, shallow scheme, marked in emerald and with stripes.

Mode Changing. Going from type synthesis to type checking is achieved using an annotation.

Typing an annotated expression e : 𝜎 (rule Tm-InfAnn) works by checking the expression e under
the given type 𝜎 . Note that under eager instantiation, the type for this annotated expression is not

the type scheme 𝜎 , but an instantiated form of this type.

Going from checking to synthesis mode is also allowed (rule Tm-CheckInf), but only when e
is not a lambda or let expression, and thus when no other type checking rule would apply. We

first skolemise the given type 𝜎 to bind any new type variables in Γ′. We then infer a type for the

expression e and match it against the skolemised type 𝜌 . Note that under lazy instantiation, the

synthesised type still needs to be instantiated in order to match 𝜌 .

Let Binders. As mentioned previously, let-expressions let decl in e define a single variable, with or

without a type signature. See Figure 3, which defines the judgement Γ ⊢ decl ⇒ Γ′. This judgement

examines a declaration to produce a new context Γ′, extended with a binding for the declared

variable.

Rules Decl-NoAnnSingle and Decl-NoAnnMulti distinguish between a single equation with-

out a type signature and multiple equations. In the former case, we synthesise the types of the

patterns using the ⊢𝑃 judgement and then the type of the right-hand side. We assemble the complete

type with type, and then generalise. The multiple-equation case is broadly similar, synthesising

types for the patterns (note that each equation must yield the same types𝜓) and then synthesis-

ing types for the right-hand side. These types are then instantiated (only necessary under lazy

instantiation—eager instantiation would have already done this step). This additional instantiation

step is the only difference between the single-equation case and the multiple-equation case. The

reason is that rule EDecl-NoAnnMulti needs to construct a single type that subsumes the types

of every branch. Following GHC, we simplify this process by first instantiating the types.

RuleDecl-Ann checks a declaration with a type signature. It works by first checking the patterns

𝜋 i on the left of the equals sign against the provided type 𝜎 . The right-hand sides ei are then checked
against the remaining type 𝜎 ′i .

Patterns. The pattern synthesis relation Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ is presented in Figure 4. As the full

type is not yet available, it produces argument descriptors 𝜓 and a typing context extension Δ.
Inferring a type for a variable pattern (rule Pat-InfVar) works similarly to expression inference,

by constructing a monotype and placing it in the context. Inferring a type for a data constructor

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

1:16 Gert-Jan Bottu and Richard A. Eisenberg

pattern (rule Pat-InfCon) works by looking up the type ∀ a0 .𝜎0 → T a0 of the constructor K in

the typing context, and checking the applied patterns 𝜋 under this instantiated type. Note that

as there are no forall binders to the right of an arrow, instantiation simply needs to supply types

𝜏0 for the top level a0 variables. The remaining type should be the result type for the constructor,

meaning that the constructor always needs to be fully applied. Finally, the remaining patterns are

typed under this extended environment.

Checking a variable pattern in rule Pat-CheckVar works by placing the variable in the typing

context, with its type 𝜎1, extracted from the known type of the function we are checking. The

same holds for checking against a polytype (rule Pat-CheckForall), which gets skolemised by

placing it in the typing context. Note that in order for the rules to be syntax-directed, rule Pat-

CheckForall does not apply when the patterns are empty. Checking a data constructor pattern

(rule Pat-CheckCon) works similarly to synthesis mode. The type∀ a0 .𝜎0 → T a0 of the constructor
is looked up in the typing context. Then, the patterns 𝜋 are checked under an instantiated form of

∀ a0.𝜎0 → T a0. The remaining type should then be equal to an instantiated form of the provided

type 𝜎1. Finally, the remaining patterns 𝜋 ′ are checked under the extended context
7
.

6.2 Alternative Formalisation
Section 7 presents an extension of our _-calculus formalisation to a more advanced language, mixing

implicit and explicit polymorphism. Notably, this covers features like recursive let bindings, visible

type application and user-defined provenance. However, under eager instantiation, explicit type

application poses an issue with our current formalisation, as it requires temporarily postponing

type instantiation during inference. Here, we replace our typing rules based on nested applications

from Section 6.1 with an alternative formalisation inspired by the structure from Serrano et al.

[2020]. The reason for this will become clear in Section 7, as this representation can easily be

extended with explicit type application.

Figure 6 shows the updated system. These rules implement the same language as the rules we
reviewed previously, but it is recast in a way easier to extend later.

Application. In order to simplify the introduction of explicit type application, applications are now

modelled as applying a head h to a (maximally long) list of arguments 𝑎𝑟𝑔. This concept of modelling

applications is inspired by Serrano et al. [2020], which also features visible type application and

eager instantiation. The main idea is that under eager instantiation, type instantiation for the head

is postponed until it has been applied to its arguments. A head h is thus defined to be either a

variable x, a data constructor K , an annotated expression e : 𝜎 or a simple expression e. This last
form will not be typed with a type scheme under eager instantiation—that is, we will not be able

to use explicit instantiation—but is required to enable application of a lambda expression. At the

moment, as we have only term application (not type application), an argument arg is defined to

just be an expression e. This will be extended in Section 7 to include type application as well.

When inferring a type for an application h𝑎𝑟𝑔 (rule ETm-InfApp), a type scheme 𝜎 is inferred for

the head h. The arguments 𝑎𝑟𝑔 are then checked under this type 𝜎 , producing a residual type 𝜎 ′8.
Finally, after the head has been applied to all its arguments, the remaining type 𝜎 ′ is instantiated
(under eager instantiation), producing a type [𝜖 for the final expression.

Note that as applications are always typed in this fashion, head typing needs only a synthesis

mode, and argument typing needs to be defined only for checking mode. Type synthesis for heads

Γ ⊢𝐻 h⇒ 𝜎 works identically to expressions from the basic system, except that the types are not

7
Extending the context for later patterns is not used in the basic system, but it would be required for extensions like view

patterns.

8
The application judgement is inspired by Dunfield and Krishnaswami [2013].

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

Seeking Stability 1:17

e ::= h𝑎𝑟𝑔 | _x .e Expression
| let decl in e

h ::= x | K | e : 𝜎 | e Application head
arg ::= e Application argument

Γ ⊢𝐻 h⇒ 𝜎 (Head Type Synthesis)
H-Var

x : 𝜎 ∈ Γ
Γ ⊢𝐻 x ⇒ 𝜎

H-Con

K : a;𝜎 ; T ∈ Γ
Γ ⊢𝐻 K ⇒ ∀ a.𝜎 → T a

H-Ann

Γ ⊢ e⇐ 𝜎

Γ ⊢𝐻 e : 𝜎 ⇒ 𝜎

H-Inf

Γ ⊢ e⇒ 𝜎

Γ ⊢𝐻 e⇒ 𝜎

Γ ⊢ e⇒ [𝜖 (Term Type Synthesis)

ETm-InfAbs

Γ, x : 𝜏1 ⊢ e⇒ [𝜖
2

Γ ⊢ _x .e⇒ 𝜏1 → [𝜖
2

ETm-InfApp

Γ ⊢𝐻 h⇒ 𝜎

Γ ⊢𝐴 𝑎𝑟𝑔⇐ 𝜎 ⇒ 𝜎 ′

Γ ⊢ 𝜎 ′ inst 𝛿−−−−→[𝜖

Γ ⊢ h𝑎𝑟𝑔⇒ [𝜖

ETm-InfLet

Γ ⊢ decl ⇒ Γ′

Γ′ ⊢ e⇒ [𝜖

Γ ⊢ let decl in e⇒ [𝜖

Γ ⊢ e⇐ 𝜎 (Term Type Checking)

ETm-CheckAbs

Γ ⊢ 𝜎 skol S
99999K 𝜎1 → 𝜎2; Γ1

Γ1, x : 𝜎1 ⊢ e⇐ 𝜎2

Γ ⊢ _x .e⇐ 𝜎

ETm-CheckLet

Γ ⊢ decl ⇒ Γ′

Γ′ ⊢ e⇐ 𝜎

Γ ⊢ let decl in e⇐ 𝜎

ETm-CheckInf

Γ ⊢ 𝜎 skol 𝛿−−−−→ 𝜌 ; Γ1
Γ1 ⊢ e⇒ [𝜖

Γ1 ⊢ [𝜖 inst 𝛿−−−−→ 𝜌

𝑒 ≠ _,Λ, let

Γ ⊢ e⇐ 𝜎

Γ ⊢𝐴 𝑎𝑟𝑔⇐ 𝜎 ⇒ 𝜎 ′ (Argument Type Checking)

Arg-Empty

Γ ⊢𝐴 · ⇐ 𝜎 ⇒ 𝜎

Arg-App

Γ ⊢ e⇐ 𝜎1

Γ ⊢𝐴 𝑎𝑟𝑔⇐ 𝜎2 ⇒ 𝜎 ′

Γ ⊢𝐴 e, 𝑎𝑟𝑔⇐ 𝜎1 → 𝜎2 ⇒ 𝜎 ′

Arg-Inst

Γ ⊢𝐴 e, 𝑎𝑟𝑔⇐ [𝜏1/a] 𝜎2 ⇒ 𝜎3

Γ ⊢𝐴 e, 𝑎𝑟𝑔⇐ ∀ a.𝜎2 ⇒ 𝜎3

Fig. 6. Alternative formulation for the Implicit Polymorphic _-Calculus

instantiated. Argument type checking Γ ⊢𝐴 𝑎𝑟𝑔 ⇐ 𝜎 ⇒ 𝜎 ′ bears a close resemblance to pattern

checking, taking a typing context Γ, a list of arguments 𝑎𝑟𝑔 and a type scheme 𝜎 and producing a

residual type 𝜎 ′. Concretely, this means that bound type variables in the given type are instantiated

(rule Arg-Inst) and the list of arguments are type checked to have the given type.

7 MIXING IMPLICIT AND EXPLICIT TYPES
Figure 7 shows the extension of the language syntax to handle mixed implicit and explicit features.

We call this extended systemMixed Polymorphic _-calculus, or MPLC. Our formalisation is based on

Eisenberg et al. [2016] and Serrano et al. [2020], and extends the IPLCwith explicit type instantiation

and abstraction, along with user-defined type variable provenance. Application arguments are

extended with visible type application arguments @𝜏 , and both expressions and patterns are

extended with explicit type abstraction Λa.e and @𝜏 , respectively. Type schemes 𝜎 now allow

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

1:18 Gert-Jan Bottu and Richard A. Eisenberg

𝜎 ::= . . . | ∀ {a}.𝜎 Type scheme
𝜓 ::= . . . | @a Arg. descriptor

e ::= . . . | Λa.e Expression
𝜋 ::= . . . | @𝜎 Pattern
arg ::= . . . | @𝜎 Application argument

Γ ⊢𝐴 𝑎𝑟𝑔⇐ 𝜎 ⇒ 𝜎 ′ (Argument Type Checking)

Arg-TyApp

Γ ⊢𝐴 𝑎𝑟𝑔⇐ [𝜎1/a] 𝜎2 ⇒ 𝜎3

Γ ⊢𝐴 @𝜎1, 𝑎𝑟𝑔⇐ ∀ a.𝜎2 ⇒ 𝜎3

Arg-InfInst

Γ ⊢𝐴 𝑎𝑟𝑔⇐ [𝜏1/a] 𝜎2 ⇒ 𝜎3

Γ ⊢𝐴 𝑎𝑟𝑔⇐ ∀{a}.𝜎2 ⇒ 𝜎3

Γ ⊢ e⇒ [𝜖 (Term Type Synthesis)

ETm-InfTyAbs

Γ, a ⊢ e⇒ [𝜖
1

Γ ⊢ ∀ a.[𝜖
1

inst 𝛿−−−−→[𝜖
2

Γ ⊢ Λa.e⇒ [𝜖
2

type (𝜓 ;𝜎 ∼ 𝜎 ′) (Telescope Construction)

Type-TyVar

type (𝜓 ;𝜎 ∼ 𝜎 ′)
type (@a,𝜓 ;𝜎 ∼ ∀ a.𝜎 ′)

Γ ⊢ e⇐ 𝜎 (Term Type Checking)
ETm-CheckTyAbs

𝜎 = ∀ {a}.∀ a.𝜎 ′
Γ, a, a ⊢ e⇐ 𝜎 ′

Γ ⊢ Λa.e⇐ 𝜎

ETm-CheckAbs

Γ ⊢ 𝜎 skol S
99999K 𝜎1 → 𝜎2; Γ1

Γ1, x : 𝜎1 ⊢ e⇐ 𝜎2

Γ ⊢ _x .e⇐ 𝜎

Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ (Pattern Synthesis)

Pat-InfTyVar

Γ, a ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ

Γ ⊢𝑃 @a, 𝜋 ⇒ @a,𝜓 ; a,Δ

Pat-InfCon

K : a0;𝜎0; T ∈ Γ
Γ ⊢𝑃 𝜋 ⇐ [𝜎1, 𝜏0/a0] (𝜎0 → T a0) ⇒ T 𝜏 ;Δ1

Γ,Δ1 ⊢𝑃 𝜋 ′⇒ 𝜓 ;Δ2

Γ ⊢𝑃 (K @𝜎1 𝜋), 𝜋 ′⇒ T 𝜏,𝜓 ;Δ1,Δ2

Γ ⊢𝑃 𝜋 ⇐ 𝜎 ⇒ 𝜎 ′;Δ (Pattern Checking)

Pat-CheckType

a = fv (𝜎)
Γ, a ⊢𝑃 𝜋 ⇐ [𝜎/b] 𝜎1 ⇒ 𝜎2;Δ

Γ ⊢𝑃 @𝜎, 𝜋 ⇐ ∀ b.𝜎1 ⇒ 𝜎2; a,Δ

Pat-CheckCon

K : a0;𝜎0; T ∈ Γ
Γ ⊢ 𝜎1 inst 𝛿−−−−→ 𝜌1

Γ ⊢𝑃 𝜋 ⇐ [𝜎1, 𝜏0/a0] (𝜎0 → T a0) ⇒ 𝜌1;Δ1

Γ,Δ1 ⊢𝑃 𝜋 ′⇐ 𝜎2 ⇒ 𝜎 ′
2
;Δ2

Γ ⊢𝑃 (K @𝜎1 𝜋), 𝜋 ′⇐ 𝜎1 → 𝜎2 ⇒ 𝜎 ′
2
;Δ1,Δ2

Pat-CheckForall

Γ, a ⊢𝑃 𝜋 ⇐ 𝜎 ⇒ 𝜎 ′;Δ
𝜋 ≠ · and 𝜋 ≠ @𝜎, 𝜋 ′

Γ ⊢𝑃 𝜋 ⇐ ∀ a.𝜎 ⇒ 𝜎 ′; a,Δ

Pat-CheckInfForall

Γ, a ⊢𝑃 𝜋 ⇐ 𝜎 ⇒ 𝜎 ′;Δ
𝜋 ≠ ·

Γ ⊢𝑃 𝜋 ⇐ ∀{a}.𝜎 ⇒ 𝜎 ′; a,Δ

Fig. 7. The Mixed Polymorphic _-calculus (Extension of Figures 1, 3, 5, and 6)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

Seeking Stability 1:19

inferred variables ∀ {a}.𝜎 . Note, however, that the context Γ does not differentiate between specified
and inferred variables, as the provenance of variables no longer has any impact after skolemising.

Argument types 𝜓 are extended with type abstractions @a, used in a function definition like

f @a x = (x : a) and which corresponds to a polytype ∀ a.𝜎 when assembled with type. The binders
operation is updated to extract out inferred type variables; and the declaration typing relation

receives a minor update, marking generalised variables as inferred. Both updated definitions can be

found in Appendices C and D, respectively.

Explicit Type Instantiation. See rule Arg-TyApp, which shows the new argument type checking

relation. The alternative formalisation of the language presented in Section 6.2 reduces the intro-

duction of explicit type application—by all accounts a non-trivial language feature—to the addition

of a single typing rule. Note that inferred type variables (as presented in Section 4), handled in

rule Arg-InfInst, are unconditionally instantiated.

Explicit Type Abstraction. The definition of patterns 𝜋 now includes type arguments @𝜏 , and

expressions e include type abstraction Λa.e. Programmers can now explicitly abstract over type

variables in both lambda and let expressions.

When synthesising a type for an explicit type abstraction Λa.e (rule ETm-InfTyAbs), the ex-
pression e is typed under an extended environment, and the resulting forall type is instantiated

under eager instantiation. Type checking (rule ETm-CheckTyAbs) skolemises any top level inferred

binders, and recursively checks e under an extended environment. Note that in order to support

explicit type abstraction inside a lambda binder _x .Λa.e, rule ETm-CheckAbs has been slightly

altered to never skolemise after the arrow (even under deep instantiation).

Type abstraction@a in synthesis mode (rule Pat-InfTyVar) produces a type argument descriptor

@a and extends the typing environment. When in checking mode (rule Pat-CheckType), full type

schemes are allowed in patterns. The same holds for data constructor patterns (rule Pat-InfCon

and rule Pat-CheckCon), where these pattern types 𝜎1 are used to instantiate the variables a0
(possibly extended with guessed monotypes 𝜏0, if there are not enough 𝜎1). Consider, for example,

f (Just@Int x) = x +1, where the@Int refines the type of Just, which in turn assigns x the type Int.
Note that pattern checking allows skolemising bound type variables (rule Pat-CheckInfForall),

but only when the patterns are not empty in order not to lose syntax-directedness of the rules. The

same holds for rule Pat-CheckForall, which only applies when no other rules match.

8 EVALUATION
This section evaluates the impact of the type instantiation flavour on the stability of the program-

ming language. To this end, we define a set of eleven properties, based on the informal definition

of stability from Section 2. Every property is analysed against the four instantiation flavours, the

results of which are shown in Table 1, which also cross-references the examples from Section 5.3.

Formal proofs for each of the properties are provided in Appendix E.

We do not investigate the type safety of our formalisms, as both the IPLC and MPLC are subsets

of System F. We can thus be confident that programs in either language can be assigned a sensible

runtime semantics without‘going wrong.

8.1 Contextual Equivalence
Following the approach of GHC, rather than providing a dynamic operational semantics of our type

system directly, we instead define an elaboration of the surface language presented in this paper to

explicit System F, our core language. It is important to remark that elaborating deep instantiation

into this core language, involves semantics-changing [-expansion. This allows us to understand

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

1:20 Gert-Jan Bottu and Richard A. Eisenberg

E L
Sim. Ex. Properties S D S D
1 1, 2, 3 1 Let inlining Static Sem. ✓ ✓ ✓ ✓

1, 2, 3 2 Let extraction Static Sem. ✗ ✗ ✓ ✓
3 Dynamic Sem. ✓ ✗ ✓ ✗

2 4 Signature prop Static Sem. ✗ ✗ ✗ ✗
4 4b restricted ✗ ✗ ✓ ✓

5 Dynamic Sem. ✓ ✗ ✓ ✗
3 5 6 Type signatures Dynamic Sem. ✓ ✗ ✓ ✗
4 6 7 Pattern inlining Static Sem. ✗ ✗ ✓ ✓

8 Dynamic Sem. ✓ ✗ ✓ ✓
6 9 Pattern extraction Static Sem. ✗ ✗ ✓ ✓

5 7 10 Single/multi Static Sem. ✓ ✓ ✗ ✗
6 8 11 [-expansion Static Sem. ✗ ✗ ✗ ✗

11b restricted ✗ ✓ ✗ ✗

Table 1. Property Overview

the behaviour of Example 5, swizzle, which demonstrates a change in dynamic semantics arising

from a type signature. This change is caused by [-expansion, observable only in the core language.

The definition of this core language and the elaboration from MPLC to core are in Appendix D.

The meta variable t refers to core terms, and ⇝ denotes elaboration. In the core language, [-

expansion is expressed through the use of an expression wrapper ¤t, an expression with a hole,

which retypes the expression that gets filled in. The full details can be found in Appendix D. We

now provide an intuitive definition of contextual equivalence in order to describe what it means

for dynamic semantics to remain unchanged.

Definition 1 (Contextual Eqivalence). Two core expressions t1 and t2 are contextually equiv-
alent, written t1 ≃ t2, if there does not exist a context that can distinguish them. That is, t1 and t2
behave identically in all contexts.

Here, we understand a context to be a core expression with a hole, similar to an expression

wrapper, which instantiates the free variables of the expression that gets filled in. More concretely,

the expression built by inserting t1 and t2 to the context should either both evaluate to the same

value, or both diverge. A formal definition of contextual equivalence can be found in Appendix E.2.

8.2 Properties
let-inlining and extraction. We begin by analysing Similarity 1, which expands to the three

properties described in this subsection.

Property 1 (Let Inlining is Type Preserving).

• If Γ ⊢ let x = e1 in e2 ⇒ [𝜖 then Γ ⊢ [e1/x] e2 ⇒ [𝜖

• If Γ ⊢ let x = e1 in e2 ⇐ 𝜎 then Γ ⊢ [e1/x] e2 ⇐ 𝜎

Property 2 (Let Extraction is Type Preserving).

• If Γ ⊢ [e1/x] e2 ⇒ [𝜖
2
and Γ ⊢ e1 ⇒ [𝜖

1
then Γ ⊢ let x = e1 in e2 ⇒ [𝜖

2

• If Γ ⊢ [e1/x] e2 ⇐ 𝜎2 and Γ ⊢ e1 ⇒ [𝜖
1
then Γ ⊢ let x = e1 in e2 ⇐ 𝜎2

Property 3 (Let Inlining is Dynamic Semantics Preserving).

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

Seeking Stability 1:21

• If Γ ⊢ let x = e1 in e2 ⇒ [𝜖 ⇝ t1 and Γ ⊢ [e1/x] e2 ⇒ [𝜖 ⇝ t2 then t1 ≃ t2
• If Γ ⊢ let x = e1 in e2 ⇐ 𝜎 ⇝ t1 and Γ ⊢ [e1/x] e2 ⇐ 𝜎 ⇝ t2 then t1 ≃ t2

As an example for why Property 2 does not hold under eager instantiation, consider id@Int.
Extracting the id function into a new let-binder fails to type check, because id will be instantiated

and then re-generalised. This means that explicit type instantiation can no longer work. We discuss

this further in Section 8.3.

The dynamic semantics properties (both these and later ones) struggle under deep instantiation.

This is demonstrated by Example 5, swizzle, where we see that non-prenex quantification can cause

[-expansion during elaboration and thus change dynamic semantics.

Signature Property. Similarity 2 gives rise to these properties about signatures.

Property 4 (Signature Property is Type Preserving).

If Γ ⊢ x 𝜋 i = ei
i
⇒ Γ′ and x : 𝜎 ∈ Γ′ then Γ ⊢ x : 𝜎 ; x 𝜋 i = ei

i
⇒ Γ′

As an example of how this goes wrong under eager instantiation, consider the definition x =

Λa._y.(y : a). Annotating x with its inferred type ∀ {a}.a → a is rejected, because rule ETm-

CheckTyAbs requires a specified quantified variable, not an inferred one.

However, similarly to eager evaluation, even lazy instantiation needs to instantiate the types at

some point. In order to type a multi-equation declaration, a single type needs to be constructed that

subsumes the types of every branch. In our type system, rule EDecl-NoAnnMulti simplifies this

process by first instantiating every branch type (following the example set by GHC), thus breaking

Property 4. We thus introduce a simplified version of this property, limited to single equation

declarations. This raises a possible avenue of future work: parameterising the type system over the

handling of multi-equation declarations.

Property 4b (Signature Property is Type Preserving (Single Eqation)).

If Γ ⊢ x 𝜋 = e⇒ Γ′ and x : 𝜎 ∈ Γ′ then Γ ⊢ x : 𝜎 ; x 𝜋 = e⇒ Γ′

Property 5 (Signature Property is Dynamic Semantics Preserving).

If Γ ⊢ x 𝜋 i = ei
i
⇒ Γ′ ⇝ x : 𝜎 = t1 and Γ ⊢ x : 𝜎 ; x 𝜋 i = ei

i
⇒ Γ′ ⇝ x : 𝜎 = t2 then t1 ≃ t2

Type Signatures. Similarity 3 gives rise to the following property about dynamic semantics.

Property 6 (Type Signatures are Dynamic Semantics Preserving).

If Γ ⊢ x : 𝜎1; x 𝜋 i = ei
i
⇒ Γ1 ⇝ x : 𝜎1 = t1 and Γ ⊢ x : 𝜎2; x 𝜋 i = ei

i
⇒ Γ1 ⇝ x : 𝜎2 = t2

where Γ ⊢ 𝜎1 inst 𝛿−−−−→ 𝜌 ⇝ ¤t1 and Γ ⊢ 𝜎2 inst 𝛿−−−−→ 𝜌 ⇝ ¤t2, then ¤t1 [t1] ≃ ¤t2 [t2]

Consider let x : ∀a.Int → a → a; x = undefined in x ‘seq‘ (), which diverges. Yet under deep

instantiation, this version terminates: let x : Int → ∀a.a → a; x = undefined in x ‘seq‘ (). Under
shallow instantiation, the second program is rejected, because undefined cannot be instantiated

to the type Int → ∀a.a → a, as that would be impredicative. You can find the typing rules for

undefined and seq in Appendix D.1.

Pattern Inlining and Extraction. The properties in this section come from Similarity 4. Like in that

similarity, we assume that the patterns are just variables (either implicit type variables or explicit

term variables).

Property 7 (Pattern Inlining is Type Preserving).

If Γ ⊢ x 𝜋 = e1 ⇒ Γ′ and wrap (𝜋 ; e1 ∼ e2) then Γ ⊢ x = e2 ⇒ Γ′

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

1:22 Gert-Jan Bottu and Richard A. Eisenberg

The failure of pattern inlining under eager instantiationwill feel similar: if we take id@a x = x : a,
we will infer a type ∀ a.a→ a. Yet if we write id = Λa._x .(x : a), then eager instantiation will give

us the different type ∀ {a}.a→ a.

Property 8 (Pattern Inlining / Extraction is Dynamic Semantics Preserving).

If Γ ⊢ x 𝜋 = e1 ⇒ Γ′ ⇝ x : 𝜎 = t1, wrap (𝜋 ; e1 ∼ e2), and Γ ⊢ x = e2 ⇒ Γ′ ⇝ x : 𝜎 = t2 then t1 ≃ t2

Property 9 (Pattern Extraction is Type Preserving).

If Γ ⊢ x = e2 ⇒ Γ′ and wrap (𝜋 ; e1 ∼ e2) then Γ ⊢ x 𝜋 = e1 ⇒ Γ′

Single vs. multiple equations. Similarity 5 says that there should be no observable change between

the case for a single equation and multiple (redundant) equations with the same right-hand side.

That gets formulated into the following property.

Property 10 (Single/multiple Eqations is Type Preserving).

If Γ ⊢ x 𝜋 = e⇒ Γ, x : 𝜎 then Γ ⊢ x 𝜋 = e, x 𝜋 = e⇒ Γ′

This property favours the otherwise-unloved eager flavour. Imagine f = pair . Under eager
instantiation, this definition is accepted as type synthesis produces an instantiated type. Yet if we

simply duplicate this equation under lazy instantiation (realistic scenarios would vary the patterns

on the left-hand side, but duplication is simpler to state and addresses the property we want), then

rule EDecl-NoAnnMulti will reject as it requires the type to be instantiated.

[-expansion. Similarity 6 leads to the following property.

Property 11 ([-expansion is Type Preserving).

• If Γ ⊢ e⇒ [𝜖 where numargs([𝜖) = 𝑛 then Γ ⊢ _x𝑛 .e x𝑛 ⇒ [𝜖

• If Γ ⊢ e⇐ 𝜎 where numargs(𝜌) = 𝑛 then Γ ⊢ _x𝑛 .e x𝑛 ⇐ 𝜎

Here, x𝑛 represents 𝑛 variables. We use numargs(𝜎) to count the number of explicit arguments an

expression can take, possibly instantiating any intervening implicit arguments. A formal definition

can be found in Figure 9 in the appendix. However, in synthesis mode this property fails for every

flavour: [𝜖 might be a function type 𝜎1 → 𝜎2 taking a type scheme 𝜎1 as an argument, while we

only synthesise monotype arguments. We thus introduce a restricted version of Property 11, with

the additional premise that [𝜖 can not contain any binders to the left of an arrow.

Property 11b ([-expansion is Type Preserving (Monotype Restriction)).

• If Γ ⊢ e⇒ [𝜖 where numargs([𝜖) = 𝑛 and Γ ⊢ [𝜖 inst 𝛿−−−−→𝜏 then Γ ⊢ _x𝑛 .e x𝑛 ⇒ [𝜖

• If Γ ⊢ e⇐ 𝜎 where numargs(𝜌) = 𝑛 then Γ ⊢ _x𝑛 .e x𝑛 ⇐ 𝜎

This (restricted) property fails for all but the eager/deep flavour as [-expansion forces other

flavours to instantiate arguments they otherwise would not have.

8.3 Explicit Type Instantiation
The stability properties discussed above predominantly favour lazy instantiation, which is at least

partly due to the presence of explicit type instantiation. Limiting the language to implicit type

instantiation only implies that Property 2 holds under eager instantiation as well. The reason is

that while instantiation prevents any explicit type application afterwards, re-generalised types can

still be implicitly instantiated. Furthermore, as the distinction between inferred and specified types

becomes irrelevant, Properties 4b, 7 and 9 now also hold under eager instantiation.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

Seeking Stability 1:23

Note that the opposite holds true as well: discussing the static semantics stability for a language

with only explicit type instantiation is uninteresting as all static properties discussed above trivially

hold.

8.4 Conclusion
A brief inspection of Table 1 suggests how we should proceed: choose lazy, shallow instantiation.

While this configuration does not respect all properties, it is the clear winner—even more so when

we consider that Property 11b (one of only two that favour another mode) must be artificially

restricted in order for any of our flavours to support the property.

We should note here that we authors were surprised by this result. This paper arose from the

practical challenge of designing instantiation in GHC. After considerable debate among the authors

of GHC, we were unable to remain comfortable with any one decision—as we see here, no choice is

perfect, and so any suggestion was met with counter-examples showing how that suggestion was

incorrect. Yet we had a hunch that eager instantiation was the right design. We thus formulated the

similarities of Section 2 and went about building a formalisation and proving properties. Crucially,

we did not select the similarities to favour a particular result, though we did choose to avoid

reasonable similarities that would not show any difference between instantiation flavours. At an

early stage of this work, we continued to believe that eager instantiation was superior. It was only

through careful analysis, guided by our proofs and counter-examples, that we realised that lazy

instantiation was winning. We are now convinced by our own analysis.

9 INSTANTIATION IN GHC
Given the connection between this work and GHC, we now turn to examine some practicalities of

how lazy instantiation might impact the implementation.

9.1 Eagerness
GHC has used eager instantiation from the beginning, echoing Damas and Milner [1982]. Starting

with GHC 8.0, however, which contains support for explicit type application, GHC has implemented

an uneasy truce, sometimes using lazy instantiation (as advocated by Eisenberg et al. [2016]), and

sometimes eager. In particular, all definitions are instantiated before their type in inferred. The truce

is there because there is trouble supporting universal lazy instantiation, and any implementation

of pervasive lazy instantiation would have to surmount these obstacles.

Displaying inferred types. The types inferred for functions are more exotic with lazy instantiation.

For example, defining f = _ → id would infer f :: ∀ {a}. a → ∀ b. b → b. These types, which
could be reported by tools (including GHCi), might be confusing for users.

Monomorphism restriction. Eager instantiation makes the monomorphism restriction easier to

implement, because relevant constraints are instantiated.

The monomorphism restriction is a peculiarity of Haskell, introduced to avoid unexpected

runtime evaluation
9
. It potentially applies whenever a variable is defined without a type annotation

and without any arguments to the left of the =. As an example, the monomorphism restriction

would apply to let plus = (+) in . . . and let x = 5 in . . . (recalling that 5 :: Num a⇒ a in Haskell).

In these variable declarations, Haskell requires that the inferred type not be constrained. The

reason is that such a declaration looks like it is declaring a variable, not a function. Accordingly,

programmers might expect the variable to be evaluated once, and then accessible with no runtime

cost many times. However, a constrained variable compiles to a function, taking the type-class

9
The full description is in the Haskell Report, Section 4.5.5 [Marlow (editor) 2010].

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

1:24 Gert-Jan Bottu and Richard A. Eisenberg

dictionary [Hall et al. 1996] containing the runtime implementations of class methods. Thus, if

we inferred x :: Num a ⇒ a, then every occurrence of x would have to be evaluated separately,

causing runtime slowdown. The monomorphism restriction avoids this surprise by requiring an

unconstrained type; in practice, the type will be defaulted. The examples in this paragraph are

inferred to have types plus :: Integer → Integer → Integer and x :: Integer , unless usage sites of the
functions suggest a different numeric type.

Eager instantiation is helpful in implementing the monomorphism restriction, as the implementa-

tion of let-generalisation can look for unsolved constraints and default the type if necessary. With

lazy instantiation, on the other hand, we would have to infer the type and then make a check to see

whether it is constrained, instantiating it if necessary. Of course, the monomorphism restriction

itself introduces instability in the language (note that plus and (+) have different types), and so

perhaps revisiting this design choice is worthwhile.

Type application with un-annotated variables. For simplicity, we want all variables without type

signatures not to work with explicit type instantiation. (Eisenberg et al. [2016, Section 3.1] expands

on this point.) Eager instantiation accomplishes this, because variables without type signatures

would get their polymorphism via re-generalisation. On the other hand, lazy instantiation would

mean that some user-written variables might remain in a variable’s type, like in the type of f , just
above.

Yet even with eager instantiation, if instantiation is shallow, we can still get the possibility of

visible type application on un-annotated variables: the specified variables might simply be hiding

under a visible argument.

9.2 Depth
From the introduction of support for higher-rank types in GHC 6.8, GHC has done deep instantia-

tion, as outlined by Peyton Jones et al. [2007], the paper describing the higher-rank types feature.

However, deep instantiation has never respected the dynamic semantics of a program; Peyton Jones

[2019] has the details. In addition, deep instantiation is required in order to support covariance of

result types in the type subsumption judgement ([Peyton Jones et al. 2007, Figure 7]). This subsump-

tion judgement, though, weakens the ability to do impredicative type inference, as described by

Serrano et al. [2018] and Serrano et al. [2020]. GHC has thus, for GHC 9.0, changed to use shallow

subsumption and shallow instantiation.

9.3 The situation today:Quick Look impredicativity has arrived
The analysis around stability in this paper strongly suggests that GHC should use the lazy, shallow

approach to instantiation. Yet the struggles with lazy instantiation above remain. In order to simplify

the implementation, GHC has recently (for GHC 9.0) switched to use exclusively eager instantiation.

This choice sacrifices stability for convenience in implementation.

A second recent innovation within GHC (due for release in the next version, GHC 9.2) is the

implementation of the Quick Look algorithm for impredicative type inference [Serrano et al.

2020]. The design of that algorithm walks a delicate balance between expressiveness and stability. It

introduces new instabilities: for example, if f x y requires impredicative instantiation, (let unused =

5 in f) x y will fail. Given that users who opt into impredicative type inference are choosing to lose

stability properties, we deemed it more important to study type inference without impredicativity

in analysing stability. While our formulation of the inference algorithm is easily integrated with

the Quick Look algorithm, we leave an analysis of the stability of the combination as future work.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

Seeking Stability 1:25

10 RELATEDWORK
The type systems in this paper build most directly from Peyton Jones et al. [2007], Eisenberg et al.

[2016], and Serrano et al. [2020]. Each of these papers adds new capabilities to Haskell, and each

also decreases the stability of the language. While these papers do consider properties we would

consider to be components of stability, stability is not a key criterion in those authors’ evaluation.

By contrast, our work focuses squarely on stability as a believable proxy for the quality of the user

experience.

Many other works on designing type inference algorithms also introduce stability properties, but

these properties exist among others—such as completeness—and do not seem to guide the design

of the algorithm. We do call out one such work, that by Schrijvers et al. [2019], which revolves

around implicit programming systems, and describes a property they call stability. In the context

of that work, stability is about Haskell’s class-instance selection mechanism: we would like the

choice of instance to remain stable under substitutions. That is, if f :: C a⇒ a→ Int is called at an

argument of type Maybe b (for a type variable b), the instance selected for C (Maybe b) should be

the same as the one that would be selected if f were called on an argument of typeMaybe Int . After
allMaybe b can be substituted to becomeMaybe Int ; perhaps a small change to the program would

indeed cause this substitution, and we would not want a change in runtime behaviour. Accordingly,

the stability property, as used by Schrijvers et al. [2019], is what we would also call a stability

property, but it is much narrower than the definition we give the term.

In comparison to these other papers on type systems and type inference, the angle of this paper

is somewhat different: we are not introducing a new language or type system feature, proving

a language type safe, or proving an inference algorithm sound and complete to its declarative

specification. Instead, we introduce the concept of stability as a new metric for evaluating (new or

existing) type systems, and then apply this metric to a system featuring both implicit and explicit

instantiation. Because of this novel, and somewhat unconventional topic, we are unable to find

further related work.

11 CONCLUSION
This work introduces the concept of stability as a proxy for the usability of a language that supports

both implicit and explicit arguments. We believe that designers of all languages supporting this

mix of features need to grapple with this decision; those other designers may wish to follow our

lead in formalising the problem to seek the most stable design. While stability is uninteresting in

languages featuring pure explicit or pure implicit instantiation, it turns out to be an important

metric in the presence of mixed behaviour.

We introduced a family of type systems, parameterised over the instantiation flavour, and

featuring a mix of explicit and implicit behaviour. Using this family, we then evaluated the different

flavours of instantiation, against a set of formal stability properties. The results are surprisingly

unambiguous: (a) lazy instantiation achieves the highest stability for the static semantics, and (b)

shallow instantiation results in the most stable dynamic semantics.

REFERENCES
Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyon Jones. 2005. Associated Type Synonyms. In International

Conference on Functional Programming (Tallinn, Estonia) (ICFP ’05). ACM.

Luis Damas and Robin Milner. 1982. Principal Type-schemes for Functional Programs. In Symposium on Principles of
Programming Languages (Albuquerque, New Mexico) (POPL ’82). ACM.

Jana Dunfield and Neelakantan R. Krishnaswami. 2013. Complete and Easy Bidirectional Typechecking for Higher-rank

Polymorphism. In International Conference on Functional Programming (ICFP ’13). ACM.

Richard A. Eisenberg. 2018. Binding type variables in lambda-expressions. GHC Proposal #155. https://github.com/ghc-

proposals/ghc-proposals/blob/master/proposals/0155-type-lambda.rst

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0155-type-lambda.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0155-type-lambda.rst

1:26 Gert-Jan Bottu and Richard A. Eisenberg

Richard A. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and Stephanie Weirich. 2014. Closed Type Families with

Overlapping Equations. In Principles of Programming Languages (San Diego, California, USA) (POPL ’14). ACM.

Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan Ahmed. 2016. Visible Type Application. In European Symposium
on Programming (ESOP) (LNCS). Springer-Verlag.

Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler. 1996. Type Classes in Haskell. ACM Trans.
Program. Lang. Syst. 18, 2 (March 1996).

Robert Harper. 2016. Practical Foundations for Programming Languages (2nd ed.). Cambridge University Press.

Mark P. Jones. 2000. Type Classes with Functional Dependencies. In European Symposium on Programming.
Didier Le Botlan and Didier Rémy. 2009. Recasting MLF. Information and Computation 207, 6 (2009), 726–785. https:

//doi.org/10.1016/j.ic.2008.12.006

Simon Marlow (editor). 2010. Haskell 2010 Language Report.

Martin Odersky and Konstantin Läufer. 1996. Putting Type Annotations to Work. In Symposium on Principles of Programming
Languages (POPL ’96). ACM.

Simon Peyton Jones. 2019. Simplify subsumption. GHC Proposal #287. https://github.com/ghc-proposals/ghc-proposals/

blob/master/proposals/0287-simplify-subsumption.rst

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. 2007. Practical type inference for arbitrary-

rank types. Journal of Functional Programming 17, 1 (Jan. 2007).

Benjamin C. Pierce and David N. Turner. 2000. Local Type Inference. ACM Trans. Program. Lang. Syst. 22, 1 (Jan. 2000).
John C. Reynolds. 1974. Towards a theory of type structure. In Programming Symposium, B. Robinet (Ed.). Lecture Notes in

Computer Science, Vol. 19. Springer Berlin Heidelberg, 408–425.

Tom Schrijvers, Bruno C. d. S. Oliveira, Philip Wadler, and Koar Marntirosian. 2019. COCHIS: Stable and coherent implicits.

J. Funct. Program. 29 (2019), e3. https://doi.org/10.1017/S0956796818000242

Alejandro Serrano, Jurriaan Hage, Simon Peyton Jones, and Dimitrios Vytiniotis. 2020. A Quick Look at Impredicativity.

Proc. ACM Program. Lang. 4, ICFP, Article 89 (Aug. 2020), 29 pages. https://doi.org/10.1145/3408971

Alejandro Serrano, Jurriaan Hage, Dimitrios Vytiniotis, and Simon Peyton Jones. 2018. Guarded Impredicative Polymorphism.

In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (Philadelphia,

PA, USA) (PLDI 2018). Association for Computing Machinery, New York, NY, USA, 783–796. https://doi.org/10.1145/

3192366.3192389

Dimitrios Vytiniotis, Simon Peyton Jones, and Tom Schrijvers. 2010. Let Should Not Be Generalized. In Types in Language
Design and Implementation (TLDI ’10). ACM.

Philip Wadler and Stephen Blott. 1989. How to Make ad-hoc Polymorphism Less ad-hoc. In POPL. ACM, 60–76.

Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. 2013. System FC with Explicit Kind Equality. In International
Conference on Functional Programming (Boston, Massachusetts, USA) (ICFP ’13). ACM.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

https://doi.org/10.1016/j.ic.2008.12.006
https://doi.org/10.1016/j.ic.2008.12.006
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0287-simplify-subsumption.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0287-simplify-subsumption.rst
https://doi.org/10.1017/S0956796818000242
https://doi.org/10.1145/3408971
https://doi.org/10.1145/3192366.3192389
https://doi.org/10.1145/3192366.3192389

Seeking Stability 1:27

A FURTHER INSTABILITIES AROUND INSTANTIATION
A.1 Explicit Abstraction
Binding implicit variables in named function definitions. If we sometimes want to explicitly

instantiate an implicit argument, we will also sometimes want to explicitly abstract over an implicit

argument. A classic example of why this is useful is in the replicate function for length-indexed

vectors, here written in Idris:

replicate : {n : Nat } → a→ Vect n a
replicate {n = Z } = []
replicate {n = S } x = x :: replicate x

Because a length-indexed vector Vect includes its length in its type, we need not always pass the

desired length of a vector into the replicate function: type inference can figure it out. We thus decide

here to make the n : Nat parameter to be implicit, putting it in braces. However, in the definition of

replicate, we must pattern-match on the length to decide what to return. The solution is to use an

explicit pattern, in braces, to match against the argument n.
Idris andAgda both support explicit abstraction in parallel to their support of explicit instantiation:

when writing equations for a function, the user can use braces to denote the abstraction over an

implicit parameter. Idris requires such parameters to be named, while Agda supports both named

and ordered parameters, just as the languages do for instantiation. The challenges around stability

are the same here as they are for explicit instantiation.

Haskell has no implemented feature analogous to this. Its closest support is that for scoped type

variables, where a type variable introduced in a type signature becomes available in a function

body. For example:

const :: ∀ a b. a→ b→ a
const x y = (x :: a)

The ∀ a b brings a and b into scope both in the type signature and in the function body. This

feature in Haskell means that, like in Idris and Agda, changing the name of an apparently local

variable in a type signature may affect code beyond that type signature. It also means that the

top-level ∀ in a type signature is treated specially. For example, neither of the following examples

are accepted by GHC:

const1 :: ∀.∀ a b. a→ b→ a
const1 x y = (x :: a)
const2 :: (∀ a b. a→ b→ a)
const2 x y = (x :: a)

In const1, the vacuous ∀. (which is, generally, allowed) stops the scoped-type variables mechanism

from bringing a into scope; in const2, the parentheses around the type serve the same function.

Once again, we see how Haskell is unstable: programmers might reasonably think that syntax like

∀ a b. is shorthand for ∀ a.∀ b. or that outermost parentheses would be redundant, yet neither of

these facts is true.

Binding implicit variables in an anonymous function. Sometimes, binding a type variable only in a

function declaration is not expressive enough, however—we might want to do this in an anonymous

function in the middle of some other expression.

Here is a (contrived) example of this in Agda, where ∋ allows for prefix type annotations:

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

1:28 Gert-Jan Bottu and Richard A. Eisenberg

∋ : (A : Set) → A→ A
A ∋ x = x

ChurchBool : Set1
ChurchBool = {A : Set } → A→ A→ A

churchBoolToBit : ChurchBool → N
churchBoolToBit b = b 1 0

one : N
one = churchBoolToBit (_{A} x1 x2 → A ∋ x1)
Here, we bind the implicit variable A in the argument to churchBoolToBit . (Less contrived examples

are possible; see the Motivation section of Eisenberg [2018].)

Binding an implicit variable in a _-expression is subtler than doing it in a function clause. Idris

does not support this feature at all, requiring a named function to bind an implicit variable. Agda

supports this feature, as written above, but with caveats: the construct only works sometimes. For

example, the following is rejected:

id : {A : Set } → A→ A
id = _{A} x → A ∋ x
The fact that this example is rejected, but id {A} x = A ∋ x is accepted is another example

of apparent instability—we might naïvely expect that writing a function with an explicit _ and

using patterns to the left of an = are equivalent. Another interesting aspect of binding an implicit

variable in a _-abstraction is that the name of the variable is utterly arbitrary: instead of writing

(_{A} x1 x2 → A ∋ x1), we can write (_{anything = A} x1 x2 → A ∋ x1). This is an attempt to

use Agda’s support for named implicits, but the name can be, well, anything. This would appear to

be a concession to the fact that the proper name for this variable, A as written in the definition of

ChurchBool, can be arbitrarily far away from the usage of the name, so Agda is liberal in accepting

any replacement for it.

An accepted proposal [Eisenberg 2018] adds this feature to Haskell, though it has not been

implemented as of this writing. That proposal describes that the feature would be available only

when we are checking a term against a known type, taking advantage of GHC’s bidirectional type

system [Eisenberg et al. 2016; Peyton Jones et al. 2007]. One of the motivations that inspired this

paper was to figure out whether we could relax this restriction. After all, it would seem plausible

that we should accept a definition like id = _ @a (x :: a) → a without a type signature. (Here, the
@a syntax binds a to an otherwise-implicit type argument.) It will turn out that, in the end, we

can do this only when we instantiate lazily—see Section 8.

A.2 Implicit Generalisation
All three languages support some form of implicit generalisation, despite the fact that the designers

of Haskell famously declared that let should not be generalised [Vytiniotis et al. 2010] and that

both Idris and Agda require type signatures on all declarations.

Haskell. Haskell’s let-generalisation is the most active, as type signatures are optional.
10
Suppose

we have defined const x y = x , without a signature. What type do we infer? It could be ∀ a b. a→
10
Though not relevant for our analysis, some readers may want the details: Without any language extensions enabled, all

declarations without signatures are generalised, meaning that defining id x = x will give id the type ∀ a. a→ a. With the

MonoLocalBinds extension enabled, which is activated by either of GADTs or TypeFamilies, local definitions that capture
variables from an outer scope are not generalised—this is the effect of the dictum that let should not be generalised. As

an example, the g in f x = let g y = (y, x) in (g ’a’, g True) is not generalised, because its body mentions the captured

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

Seeking Stability 1:29

b → a or ∀ b a. a → b → a. This choice matters, because it affects the meaning of explicit type

instantiations. A natural reaction is to suggest choosing the former inferred type, following the

left-to-right scheme described above. However, in a language with a type system as rich as Haskell’s,

this guideline does not always work. Haskell supports type synonyms (which can reorder the

occurrence of variables), class constraints (whose ordering is arbitrary) [Wadler and Blott 1989],

functional dependencies (which mean that a type variable might be mentioned only in constraints

and not in the main body of a type) [Jones 2000], and arbitrary type-level computation through

type families [Chakravarty et al. 2005; Eisenberg et al. 2014]. With all of these features potentially

in play, it is unclear how to order the type variables. Thus, in a concession to language stability,

Haskell brutally forbids explicit type instantiation on any function whose type is inferred; we

discuss the precise mechanism in the next section.

Since GHC 8.0, Haskell allows dependency within type signatures [Weirich et al. 2013], meaning

that the straightforward left-to-right ordering of variables—even in a user-written type signature—

might not be well-scoped. As a simple example, consider tr :: TypeRep (a :: k), where TypeRep ::

∀ k . k → Type allows runtime type representation and is part of GHC’s standard library. A naive

left-to-right extraction of type variables would yield∀ a k . TypeRep (a ::k), which is ill-scoped when
we consider that a depends on k. Instead, we must reorder to ∀ k a. TypeRep (a :: k). In order to

support stability when instantiating explicitly, GHC thus defines a concrete sorting algorithm, called

“ScopedSort”, that reorders the variables; it has become part of GHC’s user-facing specification.

Any change to this algorithm may break user programs, and it is specified in GHC’s user manual.

Idris. Idris’s support for implicit generalisation is harder to trigger; see Appendix B for an

example of how to do it. The problem that arises in Idris is predictable: if the compiler performs the

quantification, then it must choose the name of the quantified type variable. How will clients know

what this name is, necessary in order to instantiate the parameter? They cannot. Accordingly, in

order to support stability, Idris uses a special name for generalised variables: the variable name

itself includes braces (for example, it might be {k : 265}) and thus can never be parsed
11
.

Agda. Recent versions of Agda support a new variable keyword12. Here is an example of it in

action:

variable
A : Set
l1 l2 : List A

The declaration says that an out-of-scope use of, say, A is a hint to Agda to implicitly quantify

over A : Set . The order of declarations in a variable block is significant: note that l1 and l2 depend
on A. However, because explicit instantiation by order is possible in Agda, we must specify the

order of quantification when Agda does generalisation. Often, this order is derived directly from

the variable block—but not always. Consider this (contrived) declaration:

property : length l2 + length l1 ≡ length l1 + length l2

What is the full, elaborated type of property? Note that the two lists l1 and l2 can have different
element types A. The Agda manual calls this nested implicit generalisation, and it specifies an

x . Accordingly, f is rejected, as it uses g at two different types (Char and Bool). Adding a type signature to g can fix the

problem.

11
Idris 1 does not use an exotic name, but still prevents explicit instantiation, using a mechanism similar to Haskell’s

provenance mechanism described below.

12
See https://agda.readthedocs.io/en/v2.6.0.1/language/generalization-of-declared-variables.html in the Agda manual for an

description of the feature.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

https://downloads.haskell.org/ghc/latest/docs/html/users_guide/glasgow_exts.html#index-20
https://agda.readthedocs.io/en/v2.6.0.1/language/generalization-of-declared-variables.html

1:30 Gert-Jan Bottu and Richard A. Eisenberg

algorithm—similar to GHC’s ScopedSort—to specify the ordering of variables. Indeed it must offer

this specification, as leaving this part out would lead to instability; that is, it would lead to the

inability for a client of property to know how to order their type instantiations.

B EXAMPLE OF IMPLICIT GENERALISATION IN IDRIS
It is easy to believe that a language that requires type signatures on all definitions will not have

implicit generalisation. However, Idris does allow generalisation to creep in, with just the right

definitions.

We start with this:

data Proxy : {k : Type } → k → Type where
P : Proxy a

The datatype Proxy here is polymorphic; its one explicit argument can be of any type.

Now, we define poly :

poly : Proxy a
poly = P

We have not given an explicit type to the type variable a in poly’s type. Because Proxy’s argument

can be of any type, a’s type is unconstrained. Idris generalises this type, giving poly the type

{k : Type } → {a : k } → Proxy a.
At a use site of poly , we must then distinguish between the possibility of instantiating the

user-written a and the possibility of instantiating the compiler-generated k. This is done by giving

the k variable an unusual name, {k:446} in our running Idris session.

C ADDITIONAL RELATIONS

binders𝛿 (𝜎) = a; 𝜌 (Binders)

EBndr-ShallowInst

bindersS (𝜌) = ·; 𝜌

EBndr-ShallowForall

bindersS (𝜎) = b; 𝜌

bindersS (∀ a.𝜎) = a, b; 𝜌

EBndr-ShallowInfForall

bindersS (𝜎) = b; 𝜌

bindersS (∀ {a}.𝜎) = {a}, b; 𝜌

EBndr-DeepMono

bindersD (𝜏) = ·;𝜏

EBndr-DeepFunction

bindersD (𝜎2) = a; 𝜌2

bindersD (𝜎1 → 𝜎2) = a;𝜎1 → 𝜌2

EBndr-DeepForall

bindersD (𝜎) = b; 𝜌

bindersD (∀ a.𝜎) = a, b; 𝜌

EBndr-DeepInfForall

bindersD (𝜎) = b; 𝜌

bindersD (∀ {a}.𝜎) = {a}, b; 𝜌

wrap (𝜋 ; e1 ∼ e2) (Pattern Wrapping)

PatWrap-Empty

wrap (·; e ∼ e)

PatWrap-Var

wrap (𝜋 ; e1 ∼ e2)
wrap (x, 𝜋 ; e1 ∼ _x .e2)

PatWrap-TyVar

wrap (𝜋 ; e1 ∼ e2)
wrap (@a, 𝜋 ; e1 ∼ Λa.e2)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

Seeking Stability 1:31

D CORE LANGUAGE
The dynamic semantics of the languages in Sections 6 and 7 are defined through a translation to

System F. While the target language is largely standard, a few interesting remarks can be made.

The language supports nested pattern matching through case lambdas case𝜋𝐹 i : 𝜓𝐹 → ti
i
, where

patterns 𝜋𝐹 include both term and type variables, as well as nested constructor patterns. Note that

while we reuse our type 𝜎 grammar for the core language, System F does not distinguish between

inferred and specified binders.

We also define two meta-language features to simplify the elaboration, and the proofs: Firstly, in

order to support eta-expansion (for translating deep instantiation to System F), we define expression

wrappers ¤t, essentially a limited form of expressions with a hole • in them. An expression t can be

filled in for the hole to get a new expression ¤t [t]. One especially noteworthy wrapper construct is

_t1 .t2, explicitly abstracting over and handling the expression to be filled in. Note that, as expression

wrappers are only designed to alter the type of expressions through eta-expansion, there is no need

to support the full System F syntax.

Secondly, in order to define contextual equivalence, we introduce contexts M . These are again

expressions with a hole • in them, but unlike expression wrappers, contexts do cover the entire

System F syntax. Typing contexts is performed by the M : Γ1;𝜎1 ↦→ Γ2;𝜎2 relation: “Given an

expression t that has type 𝜎1 under typing environment Γ1, then the resulting expression M [t]
has type 𝜎2 under typing environment Γ2”. We will elaborate further on contextual equivalence in

Appendix E.2.

t ::= x | K | t1 t2 | _x : 𝜎.t | t 𝜎 | Λa.t | undefined | seq Expression

| case𝜋𝐹 i : 𝜓𝐹 → ti
i
| true | false

v ::= _x : 𝜎.t | Λa.t | case𝜋𝐹 i : 𝜓𝐹 → ti
i
| K 𝑡 Value

¤t ::= • | _x : 𝜎.¤t | ¤t 𝜎 | Λa.¤t | _t1.t2 Expression Wrapper
M ::= • | _x : 𝜎.M | M t | t M | Λa.M | M 𝜎 Context
arg𝐹 ::= t | 𝜎 Argument
𝜋𝐹 ::= x : 𝜎 | @a | K 𝜋𝐹 Pattern
𝜓𝐹 ::= 𝜎 | @a Arg. descriptor

Γ ⊢ t : 𝜎 (System F Term Typing)

FTm-Var

x : 𝜎 ∈ Γ
Γ ⊢ x : 𝜎

FTm-Con

K : a;𝜎 ; T ∈ Γ
Γ ⊢ K : ∀ a.𝜎 → T a

FTm-App

Γ ⊢ t1 : 𝜎1 → 𝜎2
Γ ⊢ t2 : 𝜎1
Γ ⊢ t1 t2 : 𝜎2

FTm-Abs

Γ, x : 𝜎1 ⊢ t : 𝜎2
Γ ⊢ _x : 𝜎1 .t : 𝜎1 → 𝜎2

FTm-TyApp

Γ ⊢ t : ∀ a.𝜎1
Γ ⊢ t 𝜎2 : [𝜎2/a] 𝜎1

FTm-TyAbs

Γ, a ⊢ t : 𝜎
Γ ⊢ Λa.t : ∀ a.𝜎

FTm-Undef

Γ ⊢ undefined : ∀ a.a

FTm-True

Γ ⊢ true : Bool

FTm-False

Γ ⊢ false : Bool

FTm-Seq

Γ ⊢ seq : ∀ a.∀ b.a→ b→ b

FTm-Case

Γ ⊢𝑃 𝜋𝐹 i : 𝜓𝐹 ;Δ
i

Γ,Δ ⊢ ti : 𝜎1
i

type (𝜓𝐹 ;𝜎1 ∼ 𝜎2)

Γ ⊢ case𝜋𝐹 i : 𝜓𝐹 → ti
i
: 𝜎2

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

1:32 Gert-Jan Bottu and Richard A. Eisenberg

Γ ⊢𝑃 𝜋𝐹 : 𝜓𝐹 ;Δ (System F Pattern Typing)

FPat-Empty

Γ ⊢𝑃 · : ·; ·

FPat-Var

Γ, x : 𝜎 ⊢𝑃 𝜋𝐹 : 𝜓𝐹 ;Δ

Γ ⊢𝑃 x : 𝜎, 𝜋𝐹 : 𝜎,𝜓𝐹 ; x : 𝜎,Δ

FPat-TyVar

Γ, a ⊢𝑃 𝜋𝐹 : 𝜓𝐹 ;Δ

Γ ⊢𝑃 @a, 𝜋𝐹 : @a,𝜓𝐹 ; a,Δ

FPat-Con

K : a0;𝜎0; T ∈ Γ
Γ ⊢𝑃 𝜋𝐹 : [𝜎1/a0] 𝜎0;Δ1

Γ,Δ1 ⊢𝑃 𝜋𝐹
′
: 𝜓𝐹 ;Δ2

Γ ⊢𝑃 (K 𝜋𝐹), 𝜋𝐹 ′ : T 𝜎1,𝜓𝐹 ;Δ1,Δ2

M : Γ1;𝜎1 ↦→ Γ2;𝜎2 (System F Context Typing)

FCtx-Hole

• : Γ;𝜎 ↦→ Γ;𝜎

FCtx-Abs

M : Γ1;𝜎2 ↦→ Γ2, x : 𝜎1;𝜎3

_x : 𝜎1.M : Γ1;𝜎2 ↦→ Γ2;𝜎1 → 𝜎3

FCtx-AppR

M1 : Γ1;𝜎1 ↦→ Γ2;𝜎2 → 𝜎3
Γ2 ⊢ t2 : 𝜎2

M1 t2 : Γ1;𝜎1 ↦→ Γ2;𝜎3

FCtx-AppL

Γ2 ⊢ t1 : 𝜎2 → 𝜎3
M2 : Γ1;𝜎1 ↦→ Γ2;𝜎2

t1 M2 : Γ1;𝜎1 ↦→ Γ2;𝜎3

FCtx-TyAbs

M : Γ1;𝜎1 ↦→ Γ2, a;𝜎2
Λa.M : Γ1;𝜎1 ↦→ Γ2;∀ a.𝜎2

FCtx-TyApp

M : Γ1;𝜎1 ↦→ Γ2;∀ a.𝜎2
M 𝜎 : Γ1;𝜎1 ↦→ Γ2; [𝜎/a] 𝜎2

FCtx-Case

Γ1 ⊢𝑃 𝜋𝐹 i : 𝜓𝐹 ;Δ
i

Mi : Γ1,Δ;𝜎1 ↦→ Γ2;𝜎2
i

type (𝜓𝐹 ;𝜎2 ∼ 𝜎3)

case𝜋𝐹 i : 𝜓𝐹 → Mi

i
: Γ1;𝜎1 ↦→ Γ2;𝜎3

Evaluation for our System F target language is defined below.

match (𝜋𝐹 1 → t1; t2 : 𝜎2) ↩→ 𝜋𝐹 2 → t ′
1

(Core Pattern Matching)

FMatch-Var

match (x : 𝜎, 𝜋𝐹 → t1; t2 : 𝜎) ↩→ 𝜋𝐹 → [t2/x]t1

FMatch-Con

𝜎2 = 𝜓𝐹 1 → 𝜏2

t2 ↩→⇓ K 𝑡

(case𝜋𝐹 1 : 𝜓𝐹 1 → t1) 𝑡 ↩→⇓ v
match ((K 𝜋𝐹 1), 𝜋𝐹 2 → t1; t2 : 𝜎2) ↩→ 𝜋𝐹 2 → v

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

Seeking Stability 1:33

t1 ↩→ t2 (Core Evaluation)

FEval-App

t1 ↩→ t ′
1

t1 t2 ↩→ t ′
1
t2

FEval-AppAbs

(_x : 𝜎.t1) t2 ↩→ [t2/x]t1

FEval-Seq

t1 ↩→ t ′
1

seq t1 t2 ↩→ seq t ′
1
t2

FEval-SeqVal

seq v1 t2 ↩→ t2

FEval-CaseEmpty

case · : · → ti
i
↩→ t0

FEval-CaseMatch

∀ j ∈ vwhere (match (𝜋𝐹 j → tj ; t2 : 𝜎) ↩→ 𝜋𝐹
′
j → t ′j)

(case𝜋𝐹 i : 𝜎,𝜓𝐹 → ti
i<v
) t2 ↩→ case𝜋𝐹 ′j : 𝜓𝐹 → t ′j

j<w

FEval-TyApp

t1 ↩→ t ′
1

t1 𝜎 ↩→ t ′
1
𝜎

FEval-TyAppAbs

(Λa.t1) 𝜎 ↩→ [𝜎/a] t1

FEval-Undef

undefined ↩→ undefined

FEval-TyAbsCase

(case@ai, 𝜋𝐹 i : @a,𝜓𝐹 → ti
i
) 𝜎 ↩→ case [𝜎/a]𝜋𝐹 i : [𝜎/a]𝜓𝐹 → [𝜎/a] ti

i

t ↩→⇓ v (Big Step Evaluation)

FEvalBigStep-Step

t ↩→ t ′ t ′ ↩→⇓ v
t ↩→⇓ v

FEvalBigStep-Done

v ↩→⇓ v

D.1 Translation from the Mixed Polymorphic _-calculus

Γ ⊢𝐻 h⇒ 𝜎 ⇝ t (Head Type Synthesis)

H-Var

x : 𝜎 ∈ Γ
Γ ⊢𝐻 x ⇒ 𝜎 ⇝ x

H-Con

K : a;𝜎 ; T ∈ Γ
Γ ⊢𝐻 K ⇒ ∀ a.𝜎 → T a⇝ K

H-Ann

Γ ⊢ e⇐ 𝜎 ⇝ t

Γ ⊢𝐻 e : 𝜎 ⇒ 𝜎 ⇝ t

H-Undef

Γ ⊢𝐻 undefined ⇒ ∀ a.a⇝ undefined

H-Seq

Γ ⊢𝐻 seq⇒ ∀ a.∀ b.a→ b→ b⇝ seq

H-Inf

Γ ⊢ e⇒ 𝜎 ⇝ t

Γ ⊢𝐻 e⇒ 𝜎 ⇝ t

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

1:34 Gert-Jan Bottu and Richard A. Eisenberg

Γ ⊢ e⇒ [𝜖 ⇝ t (Term Type Synthesis)

ETm-InfAbs

Γ, x : 𝜏1 ⊢ e⇒ [𝜖
2
⇝ t1

Γ ⊢ _x .e⇒ 𝜏1 → [𝜖
2
⇝ _x : 𝜏1 .t1

ETm-InfTyAbs

Γ, a ⊢ e⇒ [𝜖
1
⇝ t

Γ ⊢ ∀ a.[𝜖
1

inst 𝛿−−−−→[𝜖
2
⇝ ¤t

Γ ⊢ Λa.e⇒ [𝜖
2
⇝ ¤t [Λa.t]

ETm-InfApp

Γ ⊢𝐻 h⇒ 𝜎 ⇝ t
Γ ⊢𝐴 𝑎𝑟𝑔⇐ 𝜎 ⇒ 𝜎 ′ ⇝ 𝑎𝑟𝑔𝐹

Γ ⊢ 𝜎 ′ inst 𝛿−−−−→[𝜖 ⇝ ¤t
Γ ⊢ h𝑎𝑟𝑔⇒ [𝜖 ⇝ ¤t [t 𝑎𝑟𝑔𝐹]

ETm-InfLet

Γ ⊢ decl ⇒ Γ′ ⇝ x : 𝜎 = t1
Γ′ ⊢ e⇒ [𝜖 ⇝ t2

Γ ⊢ let decl in e⇒ [𝜖 ⇝ (_x : 𝜎.t2) t1

ETm-InfTrue

Γ ⊢ true⇒ Bool ⇝ true

ETm-InfFalse

Γ ⊢ false⇒ Bool ⇝ false

Γ ⊢ e⇐ 𝜎 ⇝ t (Term Type Scheme Checking)

ETm-CheckAbs

Γ ⊢ 𝜎 skol S
99999K 𝜎1 → 𝜎2; Γ1 ⇝ ¤t

Γ1, x : 𝜎1 ⊢ e⇐ 𝜎2 ⇝ t1
Γ ⊢ _x .e⇐ 𝜎 ⇝ ¤t [_x : 𝜎1.t1]

ETm-CheckTyAbs

𝜎 = ∀ {a}.∀ a.𝜎 ′
Γ, a, a ⊢ e⇐ 𝜎 ′ ⇝ t

Γ ⊢ Λa.e⇐ 𝜎 ⇝ Λa.Λa.t

ETm-CheckLet

Γ ⊢ decl ⇒ Γ′ ⇝ x : 𝜎1 = t1
Γ′ ⊢ e⇐ 𝜎 ⇝ t2

Γ ⊢ let decl in e⇐ 𝜎 ⇝ (_x : 𝜎1.t2) t1

ETm-CheckInf

Γ ⊢ 𝜎 skol 𝛿−−−−→ 𝜌 ; Γ1 ⇝ ¤t1
Γ1 ⊢ e⇒ [𝜖 ⇝ t

Γ1 ⊢ [𝜖 inst 𝛿−−−−→ 𝜌 ⇝ ¤t2
𝑒 ≠ _,Λ, let

Γ ⊢ e⇐ 𝜎 ⇝ ¤t1 [¤t2 [t]]

Γ ⊢𝐴 𝑎𝑟𝑔⇐ 𝜎 ⇒ 𝜎 ′ ⇝ 𝑎𝑟𝑔𝐹 (Argument Type Checking)

Arg-Empty

Γ ⊢𝐴 · ⇐ 𝜎 ⇒ 𝜎 ⇝ ·

Arg-App

Γ ⊢ e⇐ 𝜎1 ⇝ t
Γ ⊢𝐴 𝑎𝑟𝑔⇐ 𝜎2 ⇒ 𝜎 ′ ⇝ 𝑎𝑟𝑔𝐹

Γ ⊢𝐴 e, 𝑎𝑟𝑔⇐ 𝜎1 → 𝜎2 ⇒ 𝜎 ′ ⇝ t, 𝑎𝑟𝑔𝐹

Arg-Inst

Γ ⊢𝐴 e, 𝑎𝑟𝑔⇐ [𝜏1/a] 𝜎2 ⇒ 𝜎3 ⇝ 𝑎𝑟𝑔𝐹

Γ ⊢𝐴 e, 𝑎𝑟𝑔⇐ ∀ a.𝜎2 ⇒ 𝜎3 ⇝ 𝑎𝑟𝑔𝐹

Arg-TyApp

Γ ⊢𝐴 𝑎𝑟𝑔⇐ [𝜎1/a] 𝜎2 ⇒ 𝜎3 ⇝ 𝑎𝑟𝑔𝐹

Γ ⊢𝐴 @𝜎1, 𝑎𝑟𝑔⇐ ∀ a.𝜎2 ⇒ 𝜎3 ⇝ 𝜏1, 𝑎𝑟𝑔𝐹

Arg-InfInst

Γ ⊢𝐴 𝑎𝑟𝑔⇐ [𝜏1/a] 𝜎2 ⇒ 𝜎3 ⇝ 𝑎𝑟𝑔𝐹

Γ ⊢𝐴 𝑎𝑟𝑔⇐ ∀{a}.𝜎2 ⇒ 𝜎3 ⇝ 𝑎𝑟𝑔𝐹

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

Seeking Stability 1:35

Γ ⊢ 𝜎 inst 𝛿−−−−→ 𝜌 ⇝ ¤t (Type Instantiation)

InstT-SInst

Γ ⊢ 𝜌 inst S
99999K 𝜌 ⇝ •

InstT-SForall

Γ ⊢ [𝜏/a] 𝜎 inst S
99999K 𝜌 ⇝ ¤t

Γ ⊢ ∀ a.𝜎 inst S
99999K 𝜌 ⇝ _t .(¤t [t 𝜏])

InstT-SInfForall

Γ ⊢ [𝜏/a] 𝜎 inst S
99999K 𝜌 ⇝ ¤t

Γ ⊢ ∀ {a}.𝜎 inst S
99999K 𝜌 ⇝ _t .(¤t [t 𝜏])

InstT-Mono

Γ ⊢ 𝜏 inst D−−−−−→𝜏 ⇝ •

InstT-Function

Γ ⊢ 𝜎2 inst D−−−−−→ 𝜌2 ⇝ ¤t

Γ ⊢ 𝜎1 → 𝜎2
inst D−−−−−→𝜎1 → 𝜌2 ⇝ _t ._x : 𝜎1.(¤t [t x])

InstT-Forall

Γ ⊢ [𝜏/a] 𝜎 inst D−−−−−→ 𝜌 ⇝ ¤t

Γ ⊢ ∀ a.𝜎 inst D−−−−−→ 𝜌 ⇝ _t .(¤t [t 𝜏])

InstT-InfForall

Γ ⊢ [𝜏/a] 𝜎 inst D−−−−−→ 𝜌 ⇝ ¤t

Γ ⊢ ∀ {a}.𝜎 inst D−−−−−→ 𝜌 ⇝ _t .(¤t [t 𝜏])

Γ ⊢ 𝜎 skol 𝛿−−−−→ 𝜌 ; Γ′ ⇝ ¤t (Type Skolemisation)

SkolT-SInst

Γ ⊢ 𝜌 skol S
99999K 𝜌 ; Γ ⇝ •

SkolT-SForall

Γ, a ⊢ 𝜎 skol S
99999K 𝜌 ; Γ1 ⇝ ¤t

Γ ⊢ ∀ a.𝜎 skol S
99999K 𝜌 ; Γ1 ⇝ Λa.¤t

SkolT-SInfForall

Γ, a ⊢ 𝜎 skol S
99999K 𝜌 ; Γ1 ⇝ ¤t

Γ ⊢ ∀ {a}.𝜎 skol S
99999K 𝜌 ; Γ1 ⇝ Λa.¤t

SkolT-Mono

Γ ⊢ 𝜏 skol D−−−−−→𝜏 ; Γ ⇝ •

SkolT-Function

Γ ⊢ 𝜎2 skol D−−−−−→ 𝜌2; Γ1 ⇝ ¤t

Γ ⊢ 𝜎1 → 𝜎2
skol D−−−−−→𝜎1 → 𝜌2; Γ1 ⇝ _t ._x : 𝜎1.(¤t [t x])

SkolT-Forall

Γ, a ⊢ 𝜎 skol D−−−−−→ 𝜌 ; Γ1 ⇝ ¤t

Γ ⊢ ∀ a.𝜎 skol D−−−−−→ 𝜌 ; Γ1 ⇝ Λa.¤t

SkolT-InfForall

Γ, a ⊢ 𝜎 skol D−−−−−→ 𝜌 ; Γ1 ⇝ ¤t

Γ ⊢ ∀ {a}.𝜎 skol D−−−−−→ 𝜌 ; Γ1 ⇝ Λa.¤t

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

1:36 Gert-Jan Bottu and Richard A. Eisenberg

Γ ⊢ decl ⇒ Γ′ ⇝ x : 𝜎 = t (Declaration Checking)

EDecl-NoAnnSingle

Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ⇝ 𝜋𝐹 : 𝜓𝐹

Γ,Δ ⊢ e⇒ [𝜖 ⇝ t
type (𝜓 ;[𝜖 ∼ 𝜎)
a = fv (𝜎) \ dom (Γ)

Γ ⊢ x 𝜋 = e⇒ Γ, x : ∀ {a}.𝜎 ⇝ x : ∀ {a}.𝜎 = case𝜋𝐹 : 𝜓𝐹 → t

EDecl-NoAnnMulti

i > 1

Γ ⊢𝑃 𝜋 i ⇒ 𝜓 ;Δ⇝ 𝜋𝐹 i : 𝜓𝐹

i

Γ,Δ ⊢ ei ⇒ [𝜖i ⇝ ti
i

Γ,Δ ⊢ [𝜖i
inst 𝛿−−−−→ 𝜌 ⇝ ¤ti

i

type (𝜓 ; 𝜌 ∼ 𝜎)
a = fv (𝜎) \ dom (Γ)

𝜎 ′ = ∀ {a}.𝜎

Γ ⊢ x 𝜋 i = ei
i
⇒ Γ, x : 𝜎 ′ ⇝ x : 𝜎 ′ = case𝜋𝐹 i : 𝜓𝐹 → ¤ti [ti]

i

EDecl-Ann

Γ ⊢𝑃 𝜋 i ⇐ 𝜎 ⇒ 𝜎 ′i ;Δ⇝ 𝜋𝐹 i : 𝜓𝐹

i

Γ,Δ ⊢ ei ⇐ 𝜎 ′i ⇝ ti
i

Γ ⊢ x : 𝜎 ; x 𝜋 i = ei
i
⇒ Γ, x : 𝜎 ⇝ x : 𝜎 = case𝜋𝐹 i : 𝜓𝐹 → ti

i

Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ⇝ 𝜋𝐹 : 𝜓𝐹 (Pattern Synthesis)

Pat-InfEmpty

Γ ⊢𝑃 · ⇒ ·; ·⇝ · : ·

Pat-InfVar

Γ, x : 𝜏1 ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ⇝ 𝜋𝐹 : 𝜓𝐹

Γ ⊢𝑃 x, 𝜋 ⇒ 𝜏1,𝜓 ; x : 𝜏1,Δ⇝ x : 𝜏1, 𝜋𝐹 : 𝜏1,𝜓𝐹

Pat-InfCon

K : a0;𝜎0; T ∈ Γ
Γ ⊢𝑃 𝜋 ⇐ [𝜎1, 𝜏0/a0] (𝜎0 → T a0) ⇒ T 𝜏 ;Δ1 ⇝ 𝜋𝐹 1 : 𝜓𝐹 1

Γ,Δ1 ⊢𝑃 𝜋 ′⇒ 𝜓 ;Δ2 ⇝ 𝜋𝐹 2 : 𝜓𝐹 2

Γ ⊢𝑃 (K @𝜎1 𝜋), 𝜋 ′⇒ T 𝜏,𝜓 ;Δ1,Δ2 ⇝ (K 𝜋𝐹 1), 𝜋𝐹 2 : T 𝜏,𝜓𝐹 2

Pat-InfTyVar

Γ, a ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ⇝ 𝜋𝐹 : 𝜓𝐹

Γ ⊢𝑃 @a, 𝜋 ⇒ @a,𝜓 ; a,Δ⇝ @a, 𝜋𝐹 : @a,𝜓𝐹

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

Seeking Stability 1:37

Γ ⊢𝑃 𝜋 ⇐ 𝜎 ⇒ 𝜎 ′;Δ⇝ 𝜋𝐹 : 𝜓𝐹 (Pattern Checking)

Pat-CheckEmpty

Γ ⊢𝑃 · ⇐ 𝜎 ⇒ 𝜎 ; ·⇝ · : ·

Pat-CheckVar

Γ, x : 𝜎1 ⊢𝑃 𝜋 ⇐ 𝜎2 ⇒ 𝜎 ′;Δ⇝ 𝜋𝐹 : 𝜓𝐹

Γ ⊢𝑃 x, 𝜋 ⇐ 𝜎1 → 𝜎2 ⇒ 𝜎 ′; x : 𝜎1,Δ⇝ x : 𝜎1, 𝜋𝐹 : 𝜎1,𝜓𝐹

Pat-CheckCon

K : a0;𝜎0; T ∈ Γ
Γ ⊢ 𝜎1 inst 𝛿−−−−→ 𝜌1 ⇝ ¤t

Γ ⊢𝑃 𝜋 ⇐ [𝜎1, 𝜏0/a0] (𝜎0 → T a0) ⇒ 𝜌1;Δ1 ⇝ 𝜋𝐹 1 : 𝜓𝐹 1

Γ,Δ1 ⊢𝑃 𝜋 ′⇐ 𝜎2 ⇒ 𝜎 ′
2
;Δ2 ⇝ 𝜋𝐹 2 : 𝜓𝐹 2

Γ ⊢𝑃 (K @𝜎1 𝜋), 𝜋 ′⇐ 𝜎1 → 𝜎2 ⇒ 𝜎 ′
2
;Δ1,Δ2 ⇝ (K 𝜋𝐹 1), 𝜋𝐹 2 : 𝜎1,𝜓𝐹 2

Pat-CheckForall

Γ, a ⊢𝑃 𝜋 ⇐ 𝜎 ⇒ 𝜎 ′;Δ⇝ 𝜋𝐹 : 𝜓𝐹

𝜋 ≠ · and 𝜋 ≠ @𝜎, 𝜋 ′

Γ ⊢𝑃 𝜋 ⇐ ∀ a.𝜎 ⇒ 𝜎 ′; a,Δ⇝ 𝜋𝐹 : @a,𝜓𝐹

Pat-CheckType

a = fv (𝜎)
Γ, a ⊢𝑃 𝜋 ⇐ [𝜎/b] 𝜎1 ⇒ 𝜎2;Δ⇝ 𝜋𝐹 : 𝜓𝐹

Γ ⊢𝑃 @𝜎, 𝜋 ⇐ ∀ b.𝜎1 ⇒ 𝜎2; a,Δ⇝ 𝜋𝐹 : @a,𝜓𝐹

Pat-CheckInfForall

Γ, a ⊢𝑃 𝜋 ⇐ 𝜎 ⇒ 𝜎 ′;Δ⇝ 𝜋𝐹 : 𝜓𝐹

𝜋 ≠ ·
Γ ⊢𝑃 𝜋 ⇐ ∀{a}.𝜎 ⇒ 𝜎 ′; a,Δ⇝ 𝜋𝐹 : @a,𝜓𝐹

E PROOFS
This section provides the formal proofs for the properties discussed in Section 8.

E.1 Let-Inlining and Extraction
Property 1 (Let Inlining is Type Preserving).

• If Γ ⊢ let x = e1 in e2 ⇒ [𝜖 then Γ ⊢ [e1/x] e2 ⇒ [𝜖

• If Γ ⊢ let x = e1 in e2 ⇐ 𝜎 then Γ ⊢ [e1/x] e2 ⇐ 𝜎

Before proving Property 1, we first introduce a number of helper lemmas:

Lemma E.1 (Expression Inlining is Type Preserving (Synthesis)).

If Γ1 ⊢ e1 ⇒ [𝜖
1
and Γ1, x : ∀ {a}.[𝜖

1
, Γ2 ⊢ e2 ⇒ [𝜖

2
where a = fv ([𝜖1) \ dom (Γ1)

then Γ1, Γ2 ⊢ [e1/x] e2 ⇒ [𝜖
2

Lemma E.2 (Expression Inlining is Type Preserving (Checking)).

If Γ1 ⊢ e1 ⇒ [𝜖
1
and Γ1, x : ∀ {a}.[𝜖

1
, Γ2 ⊢ e2 ⇐ 𝜎2 where a = fv ([𝜖1) \ dom (Γ1)

then Γ1, Γ2 ⊢ [e1/x] e2 ⇐ 𝜎2

Lemma E.3 (Head Inlining is Type Preserving).

If Γ1 ⊢ e1 ⇒ [𝜖
1
and Γ1, x : ∀ {a}.[𝜖

1
, Γ2 ⊢𝐻 h⇒ 𝜎2 where a = fv ([𝜖1) \ dom (Γ1)

then Γ1, Γ2 ⊢𝐻 [e1/x] h⇒ 𝜎2

Lemma E.4 (Argument Inlining is Type Preserving).

If Γ1 ⊢ e1 ⇒ [𝜖
1
and Γ1, x : ∀ {a}.[𝜖

1
, Γ2 ⊢𝐴 𝑎𝑟𝑔⇐ 𝜎1 ⇒ 𝜎2 where a = fv ([𝜖1) \ dom (Γ1)

then Γ1, Γ2 ⊢𝐴 [e1/x] 𝑎𝑟𝑔⇐ 𝜎1 ⇒ 𝜎2

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

1:38 Gert-Jan Bottu and Richard A. Eisenberg

Γ ⊢ e⇒ [𝜖 Γ ⊢ e⇐ 𝜎

Γ ⊢𝐻 h⇒ 𝜎

Γ ⊢𝐴 𝑎𝑟𝑔⇐ 𝜎1 ⇒ 𝜎2 Γ ⊢ decl ⇒ Γ′

Fig. 8. Relation dependencies

Lemma E.5 (Declaration Inlining is Type Preserving).

If Γ1 ⊢ e1 ⇒ [𝜖
1
and Γ1, x : ∀ {a}.[𝜖

1
, Γ2 ⊢ decl ⇒ Γ3 where a = fv ([𝜖1) \ dom (Γ1)

then Γ1, Γ2 ⊢ [e1/x] decl ⇒ Γ3

Figure 8 shows the dependencies between the different relations, and by extension the different

helper lemmas. An arrow from 𝐴 to 𝐵 denotes that 𝐵 depends on 𝐴. Note that these 5 lemmas need

to be proven through mutual induction. The proof proceeds by structural induction on the second

typing derivation. While the number of cases gets quite large, each case is entirely trivial.

Using these additional lemmas, we then continue proving Property 1. By case analysis on the

premise (rule ETm-InfLet or rule ETm-CheckLet, followed by rule EDecl-NoAnnSingle), we

learn that Γ ⊢ x = e1 ⇒ Γ, x : ∀ {a}.[𝜖
1
, Γ ⊢ e1 ⇒ [𝜖

1
, and either Γ, x : ∀ {a}.[𝜖

1
⊢ e2 ⇒ [𝜖 or

Γ, x : ∀ {a}.[𝜖
1
⊢ e2 ⇐ 𝜎 . Both parts of the goal now follow trivially from Lemma E.1 and E.2

respectively. □

Property 2 (Let Extraction is Type Preserving).

• If Γ ⊢ [e1/x] e2 ⇒ [𝜖
2
and Γ ⊢ e1 ⇒ [𝜖

1
then Γ ⊢ let x = e1 in e2 ⇒ [𝜖

2

• If Γ ⊢ [e1/x] e2 ⇐ 𝜎2 and Γ ⊢ e1 ⇒ [𝜖
1
then Γ ⊢ let x = e1 in e2 ⇐ 𝜎2

Similarly to before, we start by introducing a number of helper lemmas:

Lemma E.6 (Expression Extraction is Type Preserving (Synthesis)).

If Γ ⊢ e1 ⇒ [𝜖
1
and Γ ⊢ [e1/x] e2 ⇒ [𝜖

2

then Γ, x : ∀ {a}.[𝜖
1
⊢ e2 ⇒ [𝜖

2
where a = fv ([𝜖1) \ dom (Γ)

Lemma E.7 (Expression Extraction is Type Preserving (Checking)).

If Γ ⊢ e1 ⇒ [𝜖
1
and Γ ⊢ [e1/x] e2 ⇐ 𝜎2

then Γ, x : ∀ {a}.[𝜖
1
⊢ e2 ⇐ 𝜎2 where a = fv ([𝜖1) \ dom (Γ)

Lemma E.8 (Head Extraction is Type Preserving).

If Γ ⊢ e1 ⇒ [𝜖
1
and Γ ⊢𝐻 [e1/x] h⇒ 𝜎2

then Γ, x : ∀ {a}.[𝜖
1
⊢𝐻 h⇒ 𝜎2 where a = fv ([𝜖1) \ dom (Γ)

Lemma E.9 (Argument Extraction is Type Preserving).

If Γ ⊢ e1 ⇒ [𝜖
1
and Γ ⊢𝐴 [e1/x] 𝑎𝑟𝑔⇐ 𝜎1 ⇒ 𝜎2

then Γ, x : ∀ {a}.[𝜖
1
⊢𝐴 𝑎𝑟𝑔⇐ 𝜎1 ⇒ 𝜎2 where a = fv ([𝜖1) \ dom (Γ)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

Seeking Stability 1:39

Lemma E.10 (Declaration Extraction is Type Preserving).

If Γ ⊢ e1 ⇒ [𝜖
1
and Γ ⊢ [e1/x] decl ⇒ Γ, Γ′

then Γ, x : ∀ {a}.[𝜖
1
⊢ decl ⇒ Γ, x : ∀ {a}.[𝜖

1
, Γ′ where a = fv ([𝜖1) \ dom (Γ)

In addition to these helper lemmas, we also introduce two typing context lemmas:

Lemma E.11 (Environment Variable Shifting is Type Preserving).

• If Γ1, x1 : 𝜎1, x2 : 𝜎2, Γ2 ⊢ e⇒ [𝜖 then Γ1, x2 : 𝜎2, x1 : 𝜎1, Γ2 ⊢ e⇒ [𝜖

• If Γ1, x1 : 𝜎1, x2 : 𝜎2, Γ2 ⊢ e⇐ 𝜎 then Γ1, x2 : 𝜎2, x1 : 𝜎1, Γ2 ⊢ e⇐ 𝜎

Lemma E.12 (Environment Type Variable Shifting is Type Preserving).

• If Γ1, a, x : 𝜎, Γ2 ⊢ e⇒ [𝜖 and · = fv (𝜎) \ dom (Γ1) then Γ1, x : 𝜎, a, Γ2 ⊢ e⇒ [𝜖

• If Γ1, a, x : 𝜎, Γ2 ⊢ e⇐ 𝜎 and · = fv (𝜎) \ dom (Γ1) then Γ1, x : 𝜎, a, Γ2 ⊢ e⇐ 𝜎

• If Γ1, x : 𝜎, a, Γ2 ⊢ e⇒ [𝜖 then Γ1, a, x : 𝜎, Γ2 ⊢ e⇒ [𝜖

• If Γ1, x : 𝜎, a, Γ2 ⊢ e⇐ 𝜎 then Γ1, a, x : 𝜎, Γ2 ⊢ e⇐ 𝜎

Lemmas E.11 and E.12 are folklore, and can be proven through straightforward induction.

Now we can go about proving Lemmas E.6 till E.10. Similarly to the Property 1 helper lemmas,

they have to be proven using mutual induction. Most cases are quite straightforward, and we will

focus only on Lemma E.8. We start by performing case analysis on h:
Case h = y where y = x
By evaluating the substitution, we know from the premise that Γ ⊢ e1 ⇒ [𝜖

1
and Γ ⊢𝐻 e1 ⇒ 𝜎2,

while the goal remains Γ, x : ∀ {a}.[𝜖
1
⊢𝐻 x ⇒ 𝜎2. It is clear from rule H-Var that in order for the

goal to hold, 𝜎2 = ∀ {a}.[𝜖1 . We proceed by case analysis on the second derivation:

case rule H-Var e1 = x ′ : The rule premise tells us that x ′ : 𝜎2 ∈ Γ. The goal follows directly
under lazy instantiation. However, under eager instantiation, rule ETm-InfApp instantiates the

type Γ ⊢ 𝜎2 inst 𝛿−−−−→[𝜖
1
making the goal invalid.

case rule H-Con e1 = K , rule H-Ann e1 = e3 : 𝜎3, rule H-Inf e1 = e1, rule H-Undef

e1 = undefined, or rule H-Seq e1 = seq :
Similarly to the previous case, the goal is only valid under eager instantiation.

Case h = y where y ≠ x
This case is trivial, as the substitution [e1/x] does not alter h. The result thus follows from

weakening.

Case h = K , h = undefined, or h = seq
Similarly to the previous case, as the substitution does not alter h, the result thus follows from

weakening.

Case h = e : 𝜎
The result follows by applying Lemma E.7.

Case h = e
The result follows by applying Lemma E.6. □
Using these lemmas, both Property 2 goals follow straightforwardly using rule EDecl-NoAnnSingle,

in combination with rule ETm-InfLet and Lemma E.6 or rule ETm-CheckLet and Lemma E.7,

respectively. □

E.2 Contextual Equivalence
As we’ve now arrived at properties involving the dynamic semantics of the language, we first need

to formalise our definition of contextual equivalence, and introduce a number of useful lemmas.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

1:40 Gert-Jan Bottu and Richard A. Eisenberg

Definition 2 (Contextual Eqavalence).

t1 ≃ t2 ≡ Γ ⊢ t1 : 𝜎1 ∧ Γ ⊢ 𝜎1 inst 𝛿−−−−→ 𝜌3 ⇝ ¤t1
∧ Γ ⊢ t2 : 𝜎2 ∧ Γ ⊢ 𝜎2 inst 𝛿−−−−→ 𝜌3 ⇝ ¤t2
∧ ∀M : Γ; 𝜌3 ↦→ ·;Bool,
∃v : M [¤t1 [t1]] ↩→⇓ v ∧ M [¤t2 [t2]] ↩→⇓ v

This definition for contextual equivalence is modified from Harper [2016, Chapter 46]. Two core

expressions are thus contextually equivalent, if a common type exists to which both their types

instantiate, and if no (closed) context can distinguish between them. This can either mean that both

applied expressions evaluate to the same value v or both diverge. Note that while we require the

context to map to a closed, Boolean expression, other base types, like Int, would have been valid

alternatives as well.

We first introduce reflexivity, commutativity and transitivity lemmas:

Lemma E.13 (Contextual Eqivalence Reflexivity).

If Γ ⊢ t : 𝜎 then t ≃ t

The proof follows directly from the definition of contextual equivalence, along with the deter-

minism of System F evaluation.

Lemma E.14 (Contextual Eqivalence Commutativity).

If t1 ≃ t2 then t2 ≃ t1

Trivial proof by unfolding the definition of contextual equivalence.

Lemma E.15 (Contextual Eqivalence Transitivity).

If t1 ≃ t2 and t2 ≃ t3 then t1 ≃ t3

Trivial proof by unfolding the definition of contextual equivalence.

Furthermore, we also introduce a number of compatibility lemmas for the contextual equivalence

relation, along with two helper lemmas:

Lemma E.16 (Compatibility Term Abstraction).

If t1 ≃ t2 then _x : 𝜎.t1 ≃ _x : 𝜎.t2

Lemma E.17 (Compatibility Term Application).

If t1 ≃ t2 and t ′1 ≃ t ′
2
then t1 t ′1 ≃ t2 t ′2

Lemma E.18 (Compatibility Type Abstraction).

If t1 ≃ t2 then Λa.t1 ≃ Λa.t2

Lemma E.19 (Compatibility Type Application).

If t1 ≃ t2 then t1 𝜎 ≃ t2 𝜎

Lemma E.20 (Compatibility Case Abstraction).

If ∀ 𝑖 : t1 i ≃ t2 i then case𝜋𝐹 i : 𝜓𝐹 → t1 i
i
≃ case𝜋𝐹 i : 𝜓𝐹 → t2 i

i

Lemma E.21 (Compatibility Expression Wrapper).

If t1 ≃ t2 then ¤t [t1] ≃ ¤t [t2]

Lemma E.22 (Compatibility Helper Forwards).

If M [t1] ↩→⇓ v and t1 ↩→ t2 then M [t2] ↩→⇓ v

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

Seeking Stability 1:41

Lemma E.23 (Compatibility Helper Backwards).

If M [t2] ↩→⇓ v and t1 ↩→ t2 then M [t1] ↩→⇓ v

The helper lemmas are proven by straightforward induction on the evaluation step derivation.

We will prove Lemma E.18 as an example, as it is non-trivial. The other compatibility lemmas are

proven similarly.

We start by unfolding the definition of contextual equivalence in both the premise: Γ ⊢ t1 : 𝜎1,
Γ ⊢ 𝜎1 inst 𝛿−−−−→ 𝜌3 ⇝ ¤t1, Γ ⊢ t2 : 𝜎2, Γ ⊢ 𝜎2 inst 𝛿−−−−→ 𝜌3 ⇝ ¤t2, ∀M : Γ; 𝜌3 ↦→ ·;Bool, ∃v : M [¤t1 [t1]] ↩→⇓ v
and M [¤t2 [t2]] ↩→⇓ v. Unfolding the definition reduces the goal to be proven to Γ′ ⊢ Λa.t1 : 𝜎 ′

1
,

Γ′ ⊢ 𝜎 ′
1

inst 𝛿−−−−→ 𝜌 ′
3
⇝ ¤t ′

1
, Γ′ ⊢ Λa.t2 : 𝜎 ′

2
, Γ′ ⊢ 𝜎 ′

2

inst 𝛿−−−−→ 𝜌 ′
3
⇝ ¤t ′

2
, ∀M ′ : Γ′; 𝜌 ′

3
↦→ ·;Bool, ∃v ′ :

M ′[¤t ′
1
[Λa.t1]] ↩→⇓ v ′ and M ′[¤t ′

2
[Λa.t2]] ↩→⇓ v ′.

The typing judgement goals follow directly from rule FTm-TyAbs, where we take 𝜎 ′
1
= ∀a.𝜎1,

𝜎 ′
2
= ∀ a.𝜎2 and Γ′ = [𝜏/a] Γ for some 𝜏 .

As we know Γ ⊢ 𝜎1 inst 𝛿−−−−→ 𝜌3 ⇝ ¤t1, it is easy to see that [𝜏/a] Γ ⊢ [𝜏/a] 𝜎1 inst 𝛿−−−−→[𝜏/a] 𝜌3 ⇝
[𝜏/a] ¤t1, and similarly for [𝜏/a] 𝜎2. Using this, the instantiation goals follow from rule InstT-

SForall and rule InstT-Forallwith 𝜌 ′
3
= [𝜏/a] 𝜌3, ¤t ′1 = _t .([𝜏/a] ¤t1 [t 𝜏]) and ¤t ′2 = _t .([𝜏/a] ¤t2 [t 𝜏]).

Finally, by inlining the definitions, the first halve of the third goal becomesM ′[(_t .([𝜏/a] ¤t1 [t 𝜏])) [Λa.t1]] ↩→⇓
v ′. This reduces to M ′[[𝜏/a] ¤t1 [(Λa.t1) 𝜏]] ↩→⇓ v ′. By lemma E.22 (note that we can consider the

combination of a context and an expression wrapper as a new context): M ′[[𝜏/a] ¤t1 [[𝜏/a] t1]] ↩→⇓
v ′.We can now bring the substitutions to the front, and reduce the goal (by LemmaE.23)M ′′[¤t1 [t1]] ↩→⇓
v ′ where we define M ′′ = _t .M ′[(Λa.t) 𝜏] (note that we use _𝑡 as meta-notation here, to sim-

plify our definition of M ′′). We perform the same derivation for the second halve of the goal:

M ′′[¤t2 [t2]] ↩→⇓ v ′. As M ′′ : Γ; 𝜌3 ↦→ ·;Bool, the goal follows directly from the unfolded premise,

where v ′ = v. □
We introduce an additional lemma stating that instantiating the type of expressions does not

alter their behaviour:

Lemma E.24 (Type Instantiation is Dynamic Semantics Preserving).

If Γ ⊢ t : 𝜎 and Γ ⊢ 𝜎 inst 𝛿−−−−→ 𝜌 ⇝ ¤t then t ≃ ¤t [t]

The proof proceeds by induction on the instantiation relation:

Case rule InstT-SInst ¤t = • :
Trivial case, as ¤t [t] = t, the goal follows directly from Lemma E.13.

Case rule InstT-SForall ¤t = _t1 .(¤t ′[t1 𝜏]) :
We know from the first premise, along with rule FTm-TyApp that Γ ⊢ t 𝜏 : [𝜏/a] 𝜎 ′ where

𝜎 = ∀a.𝜎 ′. By applying the induction hypothesis we get t 𝜏 ≃ ¤t ′[t 𝜏]. The goal to be proven is

t ≃ (_t1 .(¤t ′[t1 𝜏])) [t], which reduces to t ≃ ¤t ′[t 𝜏]. By unfolding the definition of contextual

equivalence in both the goal and the induction hypothesis result (using Lemma E.15), the remaining

goals are:

• Γ ⊢ t : 𝜎1 : follows directly from the first premise.

• Γ ⊢ ∀a.𝜎 ′ inst S
99999K 𝜌 ′ ⇝ ¤t1 and Γ ⊢ 𝜌 ′ inst S

99999K 𝜌 ⇝ ¤t2 : follows directly from the premise if

we take 𝜌 ′ = 𝜌 , ¤t1 = ¤t and ¤t2 = •.
• M [¤t1 [t]] ↩→⇓ v and M [¤t [t]] ↩→⇓ v : trivial as both sides are identical and evaluation is

deterministic.

Case rule InstT-SInfForall ¤t = _t1.(¤t ′[t1 𝜏]) :
The proof follows analogously to the previous case. We have thus proven Lemma E.24 under

shallow instantiation.

Case rule InstT-Mono ¤t = • :

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

1:42 Gert-Jan Bottu and Richard A. Eisenberg

Trivial case, as ¤t [t] = t, the goal follows directly from Lemma E.13.

Case rule InstT-Function ¤t = _t1 ._x : 𝜎1.(¤t ′[t1 x]) :
It is clear that the goal does not hold in this case. Under deep instantiation, full eta expansion is

performed, which alters the evaluation behaviour. Consider for example undefined and its expansion
_x : 𝜎.undefined x. □

Finally, we introduce a lemma stating that evaluation preserves contextual equivalence. However,

in order to prove it, we first need to introduce the common preservation lemma:

Lemma E.25 (Preservation).

If Γ ⊢ t : 𝜎 and t ↩→ t ′ then Γ ⊢ t ′ : 𝜎

The preservation proof for System F is folklore, and proceeds by straightforward induction on

the evaluation relation.

Lemma E.26 (Evaluation is Contextual Eqivalence Preserving).

If t1 ≃ t2 and t2 ↩→ t ′
2
then t1 ≃ t ′

2

The proof follows by Lemma E.25 (to cover type preservation) and Lemma E.22 (to cover the

evaluation aspect).

E.3 Let-Inlining and Extraction, Continued
Property 3 (Let Inlining is Dynamic Semantics Preserving).

• If Γ ⊢ let x = e1 in e2 ⇒ [𝜖 ⇝ t1 and Γ ⊢ [e1/x] e2 ⇒ [𝜖 ⇝ t2 then t1 ≃ t2
• If Γ ⊢ let x = e1 in e2 ⇐ 𝜎 ⇝ t1 and Γ ⊢ [e1/x] e2 ⇐ 𝜎 ⇝ t2 then t1 ≃ t2

We first need typing preservation lemmas before we can prove Property 3.

Lemma E.27 (Expression Typing Preservation (Synthesis)).

If Γ ⊢ e⇒ [⇝ t then Γ ⊢ t : [

Lemma E.28 (Expression Typing Preservation (Checking)).

If Γ ⊢ e⇐ 𝜎 ⇝ t then Γ ⊢ t : 𝜎

Lemma E.29 (Head Typing Preservation).

If Γ ⊢𝐻 h⇒ 𝜎 ⇝ t then Γ ⊢ t : 𝜎

Lemma E.30 (Argument Typing Preservation).

If Γ ⊢𝐴 𝑎𝑟𝑔⇐ 𝜎 ⇒ 𝜎 ′ ⇝ 𝑎𝑟𝑔𝐹 then ∀ti ∈ 𝑎𝑟𝑔𝐹 : Γ ⊢ ti : 𝜎i
Lemma E.31 (Declaration Typing Preservation).

If Γ ⊢ decl ⇒ Γ′ ⇝ x : 𝜎 = t then Γ ⊢ t : 𝜎

Similarly to the helper lemmas for Property 1, these lemmas need to be proven using mutual

induction. The proofs follow through straightforward induction on the typing derivation.

We continue by introducing another set of helper lemmas:

Lemma E.32 (Expression Inlining is Dynamic Semantics Preserving (Synthesis)).

If Γ1, x : ∀ {a}.[𝜖
1
, Γ2 ⊢ e2 ⇒ [𝜖

2
⇝ t2, Γ1 ⊢ e1 ⇒ [𝜖

1
⇝ t1 and Γ1, Γ2 ⊢ [e1/x] e2 ⇒ [𝜖

2
⇝ t3

where a = fv ([𝜖1) \ dom (Γ1) then t3 ≃ (_x : ∀ a.[𝜖
1
.t2) t1

Lemma E.33 (Expression Inlining is Dynamic Semantics Preserving (Checking)).

If Γ1, x : ∀ {a}.[𝜖
1
, Γ2 ⊢ e2 ⇐ 𝜎2 ⇝ t2, Γ1 ⊢ e1 ⇒ [𝜖

1
⇝ t1 and Γ1, Γ2 ⊢ [e1/x] e2 ⇐ 𝜎2 ⇝ t3

where a = fv ([𝜖1) \ dom (Γ1) then t3 ≃ (_x : ∀ a.[𝜖
1
.t2) t1

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

Seeking Stability 1:43

Lemma E.34 (Head Inlining is Dynamic Semantics Preserving).

If Γ1, x : ∀ {a}.[𝜖
1
, Γ2 ⊢𝐻 h ⇒ 𝜎 ⇝ t2, Γ1 ⊢ e1 ⇒ [𝜖

1
⇝ t1 and Γ1, Γ2 ⊢𝐻 [e1/x] h ⇒ 𝜎 ⇝ t3

where a = fv ([𝜖1) \ dom (Γ1) then t3 ≃ (_x : ∀ a.[𝜖
1
.t2) t1

Lemma E.35 (Argument Inlining is Dynamic Semantics Preserving).

If Γ1, x : ∀ {a}.[𝜖
1
, Γ2 ⊢𝐴 𝑎𝑟𝑔⇐ 𝜎1 ⇒ 𝜎2 ⇝ 𝑎𝑟𝑔𝐹 1, Γ1 ⊢ e1 ⇒ [𝜖

1
⇝ t1

and Γ1, Γ2 ⊢𝐴 [e1/x] 𝑎𝑟𝑔⇐ 𝜎1 ⇒ 𝜎2 ⇝ 𝑎𝑟𝑔𝐹 2 where a = fv ([𝜖1) \ dom (Γ1)
then ∀ti ∈ 𝑎𝑟𝑔𝐹 1, t ′i ∈ 𝑎𝑟𝑔𝐹 2 : t ′i ≃ (_x : ∀ a.[𝜖

1
.ti) t1

Lemma E.36 (Declaration Inlining is Dynamic Semantics Preserving).

If Γ1, x : ∀ {a}.[𝜖
1
, Γ2 ⊢ decl ⇒ Γ3 ⇝ y : 𝜎2 = t2, Γ1 ⊢ e1 ⇒ [𝜖

1
⇝ t1 and Γ1, Γ2 ⊢ [e1/x] decl ⇒ Γ3 ⇝

y : 𝜎2 = t3 where a = fv ([𝜖1) \ dom (Γ1) then t3 ≃ (_x : ∀ a.[𝜖
1
.t2) t1

As is probably clear by now, these lemmas are proven through mutual induction. The proof

proceeds by structural induction on the first typing derivation. We will focus on the non-trivial

cases:

Case rule H-Var h = y where y = x :
The goal reduces to t1 ≃ (_x : ∀ a.[𝜖

1
.x) t1, which follows directly from Lemmas E.13 and E.26.

Case rule H-Var h = y where y ≠ x :
The goal reduces to y ≃ (_x : ∀ a.[𝜖

1
.y) t1. Since (_x : ∀ a.[𝜖

1
.y) t1 ↩→ y, the goal follows directly

from Lemmas E.13 and E.26.

Case rule ETm-InfAbs e2 = _y.e4 :
The premise tells us Γ1, x : ∀ {a}.[𝜖

1
, Γ2, y : 𝜏1 ⊢ e4 ⇒ [𝜖

4
⇝ t4 and Γ1, Γ2, y : 𝜏1 ⊢ [e1/x] e4 ⇒

[𝜖
4
⇝ t5. Applying the induction hypothesis gives us t5 ≃ (_x : ∀ a.[𝜖

1
.t4) t1. The goal reduces to

_y : 𝜏1.t5 ≃ (_x : ∀ a.[𝜖
1
._y : 𝜏1 .t4) t1. In order not to clutter the proof too much, we introduce an

additional helper lemma E.37. The goal then follows from Lemmas E.16 and E.37.

Case rule ETm-InfTyAbs e2 = Λa.e4 :
The premise tells us Γ1, x : ∀ {a}.[𝜖

1
, Γ2, a ⊢ e4 ⇒ [𝜖

4
⇝ t4, Γ1, Γ2, a ⊢ [e1/x] e4 ⇒ [𝜖

4
⇝ t5 and

Γ1, Γ2 ⊢ ∀a.[𝜖4
inst 𝛿−−−−→[𝜖

5
⇝ ¤t. Applying the induction hypothesis gives us t5 ≃ (_x : ∀ a.[𝜖

1
.t4) t1.

The goal reduces to ¤t [Λa.t5] ≃ (_x : ∀ a.[𝜖
1
.¤t [Λa.t4]) t1. Similarly to before, we avoid cluttering the

proof by introducing an additional helper lemma E.38. The goal then follows from Lemmas E.18,

E.24 and E.38. □

Lemma E.37 (Property 3 Term Abstraction Helper).

If Γ ⊢ _x : 𝜎2 .((_y : 𝜎1.t2) t1) : 𝜎3 and Γ ⊢ t1 : 𝜎1 then _x : 𝜎2 .((_y : 𝜎1 .t2) t1) ≃ (_y : 𝜎1._x :

𝜎2.t2) t1
Lemma E.38 (Property 3 Type Abstraction Helper).

If Γ ⊢ Λa.((_x : 𝜎1 .t2) t1) : 𝜎2 and a ∉ fv (𝜎1) then Λa.((_x : 𝜎1.t2) t1) ≃ (_x : 𝜎1 .Λa.t2) t1
Both lemmas follow from the definition of contextual equivalence.

We now return to proving Property 3. By case analysis (Either rule ETm-InfLet or rule ETm-

CheckLet, followed by rule EDecl-NoAnnSingle) we know Γ, x : ∀ {a}.[𝜖
1
⊢ e2 ⇒ [𝜖 ⇝ t3

or Γ, x : ∀ {a}.[𝜖
1
⊢ e2 ⇐ 𝜎 ⇝ t3 where t1 = (_x : ∀ a.[𝜖

1
.t3) t4, Γ ⊢ e1 ⇒ [𝜖

1
⇝ t4 and

a = fv ([𝜖1) \ dom (Γ). The goal thus follows directly from Lemma E.32 or E.33. However, as

Lemma E.24 only holds under shallow instantiation, we cannot prove Property 3 under deep

instantiation. □

E.4 Type Signatures
Property 4b (Signature Property is Type Preserving).

If Γ ⊢ x 𝜋 = e⇒ Γ′ and x : 𝜎 ∈ Γ′ then Γ ⊢ x : 𝜎 ; x 𝜋 = e⇒ Γ′

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

1:44 Gert-Jan Bottu and Richard A. Eisenberg

Before proving Property 4b, we first introduce a number of helper lemmas:

Lemma E.39 (Skolemisation Exists).

If fv (𝜎) ∈ Γ then ∃𝜌, Γ′ such that Γ ⊢ 𝜎 skol 𝛿−−−−→ 𝜌 ; Γ′

The proof follows through careful examination of the skolemisation relation.

Lemma E.40 (Skolemisation Implies Instantiation).

If Γ ⊢ 𝜎 skol 𝛿−−−−→ 𝜌 ; Γ′ then Γ′ ⊢ 𝜎 inst 𝛿−−−−→ 𝜌

The proof follows by straightforward induction on the skolemisation relation. Note that as

skolemisation binds all type variables in Γ′, they can then be used for instantiation.

Lemma E.41 (Inferred Type Binders Preserve Expression Checking).

If Γ ⊢ e⇐ 𝜎 then Γ ⊢ e⇐ ∀{a}.𝜎

The proof follows by straightforward induction on the typing derivation.

Lemma E.42 (Pattern Synthesis Implies Checking).

If Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ then ∀𝜎 ′, ∃𝜎 : Γ ⊢𝑃 𝜋 ⇐ 𝜎 ⇒ 𝜎 ′;Δ where type (𝜓 ;𝜎 ′ ∼ 𝜎)

The proof follows by straightforward induction on the pattern typing derivation.

Lemma E.43 (Expression Synthesis Implies Checking).

If Γ ⊢ e⇒ [𝜖 then Γ ⊢ e⇐ [𝜖

The proof follows by induction on the typing derivation. We will focus on the non-trivial cases

below:

Case rule ETm-InfAbs e = _x .e′ :
We know from the premise of the typing rule that Γ, x : 𝜏1 ⊢ e′ ⇒ [𝜖

2
where [𝜖 = 𝜏1 → [𝜖

2
. By

rule ETm-CheckAbs, the goal reduces to Γ ⊢ 𝜏1 → [𝜖
2

skol S
99999K 𝜏1 → [𝜖

2
; Γ (which follows directly

by rule SkolT-SInst) and Γ, x : 𝜏1 ⊢ e′⇐ [𝜖
2
(which follows by the induction hypothesis).

Case rule ETm-InfTyAbs e = Λa.e′ :
The typing rule premise tells us that Γ, a ⊢ e′ ⇒ [𝜖

1
and Γ ⊢ ∀a.[𝜖

1

inst 𝛿−−−−→[𝜖
2
. By rule ETm-

CheckTyAbs, the goal reduces to [𝜖
2
= ∀ {a}.∀a.𝜎 ′ and Γ, {a}, a ⊢ e′ ⇐ 𝜎 ′. It is now clear that

this property can never hold under eager instantiation, as the forall type in ∀a.[𝜖
1
would always

be instantiated away. We will thus focus solely on lazy instantiation from here on out, where

[𝜖
2
= ∀ a.[𝜖

1
. In this case, the goal follows directly from the induction hypothesis.

Case rule ETm-InfApp e = h𝑎𝑟𝑔 :
Weknow from the typing rule premise that Γ ⊢𝐻 h⇒ 𝜎 , Γ ⊢𝐴 𝑎𝑟𝑔⇐ 𝜎 ⇒ 𝜎 ′ and Γ ⊢ 𝜎 ′ inst 𝛿−−−−→[𝜖 .

Note that as we assume lazy instantiation, [𝜖 = 𝜎 ′. By rule ETm-CheckInf, the goal reduces to

Γ ⊢ [𝜖 skol 𝛿−−−−→ 𝜌 ; Γ′ (follows by Lemma E.39), Γ′ ⊢ h𝑎𝑟𝑔⇒ [𝜖
1
(follows by performing environment

weakening on the premise, with [𝜖
1
= [𝜖) and Γ′ ⊢ [𝜖

1

inst 𝛿−−−−→ 𝜌 (given that [𝜖
1
= [𝜖 , this follows by

Lemma E.40). □
We now proceed with proving Property 4b, through case analysis on the declaration typing

derivation (rule EDecl-NoAnnSingle):

We know from the typing rule premise that Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ, Γ,Δ ⊢ e ⇒ [𝜖 , type (𝜓 ;[𝜖 ∼ 𝜎1)
and 𝜎 = ∀ {a}.𝜎1 where a = fv (𝜎1) \ dom (Γ). By rule EDecl-Ann, the goal reduces to Γ ⊢𝑃 𝜋 ⇐
∀{a}.𝜎1 ⇒ 𝜎2;Δ2 and Γ,Δ2 ⊢ e ⇐ 𝜎2. We know from Lemma E.42 that Γ ⊢𝑃 𝜋 ⇐ 𝜎1 ⇒ 𝜎3;Δ

where type (𝜓 ;𝜎3 ∼ 𝜎1). Furthermore, from Lemma E.43 we get Γ,Δ ⊢ e⇐ [𝜖 . Note that we thus

only prove Property 4b under lazy instantiation. We now proceed by case analysis on 𝜋 :

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

Seeking Stability 1:45

Case 𝜋 = · :
The first goal now follows trivially by rule Pat-CheckEmpty with 𝜎2 = ∀ {a}.𝜎1, 𝜎1 = [𝜖 and

Δ = Δ2 = ·. The second goal follows by Lemma E.41.

Case 𝜋 ≠ · :
The first goal follows by repeated application of rule Pat-CheckInfForall with 𝜎2 = 𝜎3 = [𝜖 .

The second goal then follows directly from Lemma E.43. □

Property 5 (Signature Property is Dynamic Semantics Preserving).

If Γ ⊢ x 𝜋 i = ei
i
⇒ Γ′ ⇝ x : 𝜎 = t1 and Γ ⊢ x : 𝜎 ; x 𝜋 i = ei

i
⇒ Γ′ ⇝ x : 𝜎 = t2 then t1 ≃ t2

We start by introducing a number of helper lemmas:

Lemma E.44 (Pattern Typing Mode Preserves Translation).

If Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ⇝ 𝜋𝐹 1 : 𝜓𝐹 1 and Γ ⊢𝑃 𝜋 ⇐ 𝜎 ⇒ 𝜎 ′;Δ⇝ 𝜋𝐹 2 : 𝜓𝐹 2 where type (𝜓 ;𝜎 ′ ∼ 𝜎)
then 𝜋𝐹 1 = 𝜋𝐹 2 and𝜓𝐹 1 = 𝜓𝐹 2

The proof follows by straightforward induction on the pattern type inference derivation.

Lemma E.45 (Compatibility One-Sided Type Abstraction).

If t1 ≃ t2 then t1 ≃ Λa.t2

The proof follows by the definition of contextual equivalence. Note that while the left and right

hand sides have different types, they still instantiate to a single common type.

Lemma E.46 (Partial Skolemisation Preserves Type Checking and Dynamic Semantics).

If Γ ⊢ e⇐ ∀{a}.𝜎 ⇝ t1 then Γ, a ⊢ e⇐ 𝜎 ⇝ t2 where t1 ≃ t2.

The proof proceeds by induction on the type checking derivation. Note that every case performs a

(limited) form of skolemisation. Every case proceeds by applying the induction hypothesis, followed

by Lemma E.45.

Lemma E.47 (Typing Mode Preserves Dynamic Semantics).

If Γ ⊢ e⇒ [𝜖 ⇝ t1 and Γ ⊢ e⇐ 𝜎 ⇝ t2 where Γ ⊢ [𝜖 inst 𝛿−−−−→ 𝜌 ⇝ ¤t1 and Γ ⊢ 𝜎 inst 𝛿−−−−→ 𝜌 ⇝ ¤t2
then t1 ≃ t2

The proof proceeds by induction on the first typing derivation. Each case follows straightfor-

wardly by applying the induction hypothesis, along with the corresponding compatibility lemma

(Lemmas E.16 till E.20).

We now turn to proving property 5, through case analysis on the first declaration typing deriva-

tion:

Case rule EDecl-NoAnnSingle :
We know from the premise of the first derivation that Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ⇝ 𝜋𝐹 1 : 𝜓𝐹 1, Γ,Δ ⊢ e⇒

[𝜖 ⇝ t ′
1
, type (𝜓 ;[𝜖 ∼ 𝜎1), t1 = case𝜋𝐹 1 : 𝜓𝐹 1 → t ′

1
and 𝜎 = ∀ {a}.𝜎1 where a = fv (𝜎1) \ dom (Γ).

By case analysis on the second derivation (rule EDecl-Ann), we get Γ ⊢𝑃 𝜋 ⇐ ∀{a}.𝜎1 ⇒ 𝜎2;Δ⇝
𝜋𝐹 2 : 𝜓𝐹 2, Γ,Δ ⊢ e⇐ 𝜎2 ⇝ t ′

2
and t2 = case𝜋𝐹 2 : 𝜓𝐹 2 → t ′

2
.

We proceed by case analysis on the patterns 𝜋 :

case 𝜋 = · : We know from rule Pat-InfEmpty, rule Pat-CheckEmpty and rule Type-Empty

that 𝜎2 = ∀ {a}.𝜎1 = ∀ {a}.[𝜖 . By applying Lemma E.46, we get Γ, a ⊢ e ⇐ [𝜖 ⇝ t3 where t ′2 ≃ t3.
The goal now follows by Lemma E.47 (after environment weakening, where 𝜎 = 𝜌 = [𝜖), and

Lemma E.15.

case 𝜋 ≠ · : By case analysis on the pattern checking derivation (rule Pat-CheckInfForall),

we know that Γ, a ⊢𝑃 𝜋 ⇐ 𝜎1 ⇒ 𝜎2;Δ
′ ⇝ 𝜋𝐹 2 : 𝜓𝐹

′
2
where Δ = a,Δ′ and 𝜓𝐹 2 = @a,𝜓𝐹

′
2
.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

1:46 Gert-Jan Bottu and Richard A. Eisenberg

By Lemma E.42 (where we take 𝜎 = 𝜎1), we know that type (𝜓 ;𝜎2 ∼ 𝜎1). This thus means that

𝜎2 = [𝜖 . By Lemma E.44, the goal reduces to case𝜋𝐹 1 : 𝜓𝐹 1 → t ′
1
≃ case𝜋𝐹 1 : 𝜓𝐹 1 → t ′

2
. Applying

Lemma E.20 reduces this goal further to t ′
1
≃ t ′

2
. This follows directly from Lemma E.47 (where

𝜎 = 𝜌 = [𝜖).

Case rule EDecl-NoAnnMulti :
We know from the premise of the first derivation that ∀𝑖 : Γ ⊢𝑃 𝜋 i ⇒ 𝜓 ;Δ ⇝ 𝜋𝐹 i : 𝜓𝐹 ,

Γ,Δ ⊢ ei ⇒ [𝜖i ⇝ ti and Γ,Δ ⊢ [𝜖i
inst 𝛿−−−−→ 𝜌 ′ ⇝ ¤ti. Furthermore, t1 = case𝜋𝐹 i : 𝜓𝐹 → ¤ti [ti]

i
,

type (𝜓 ; 𝜌 ′ ∼ 𝜎 ′) and 𝜎 = ∀ {a}.𝜎 ′ where a = fv (𝜎 ′) \ dom (Γ). By case analysis on the second

derivation (rule EDecl-Ann), we know that ∀𝑖 : Γ ⊢𝑃 𝜋 i ⇐ ∀{a}.𝜎 ′ ⇒ 𝜎i;Δ ⇝ 𝜋𝐹
′
i : 𝜓𝐹

′
,

Γ,Δ ⊢ ei ⇐ 𝜎i ⇝ t ′i and t2 = case𝜋𝐹 ′i : 𝜓𝐹

′→ t ′i
i
.

We again perform case analysis on the patterns 𝜋 :

case 𝜋 = · : Similarly to last time, we know that 𝜎 ′ = 𝜌 ′ and ∀𝑖 : 𝜎i = ∀ {a}.𝜌 ′. We know by

Lemma E.46 that ∀𝑖 : Γ, a ⊢ ei ⇐ 𝜌 ′ ⇝ t ′′i where t ′i ≃ t ′′i . The goal now follows by Lemma E.47

(where we take 𝜎 = 𝜌 = 𝜌 ′) and Lemma E.15.

case 𝜋 ≠ · : Similarly to the previous case, we can derive that ∀𝑖 : Γ, a ⊢𝑃 𝜋 ⇐ 𝜎 ′ ⇒
𝜎i;Δ

′ ⇝ 𝜋𝐹
′
i : 𝜓𝐹

′′
where Δ = a,Δ′ and 𝜓𝐹

′
= @a,𝜓𝐹

′′
. We again derive by Lemma E.42 that

type (𝜓 ;𝜎i ∼ 𝜎 ′) and thus that 𝜎i = 𝜌 ′. By Lemma E.44, the goal reduces to case𝜋𝐹 i : 𝜓𝐹 → ¤ti [ti]
i
≃

case𝜋𝐹 i : 𝜓𝐹 → t ′i
i
. We reduce this goal further by applying Lemma E.20 to ∀𝑖 : ¤ti [ti] ≃ t ′i . This

follows directly from Lemma E.47 (where 𝜎 = 𝜌 = 𝜌 ′).
Note however, that as Lemma E.47 only holds under shallow instantiation, that the same holds

true for Property 5. □

Property 6 (Type Signatures are Dynamic Semantics Preserving).

If Γ ⊢ x : 𝜎1; x 𝜋 i = ei
i
⇒ Γ1 ⇝ x : 𝜎1 = t1 and Γ ⊢ x : 𝜎2; x 𝜋 i = ei

i
⇒ Γ1 ⇝ x : 𝜎2 = t2

where Γ ⊢ 𝜎1 inst 𝛿−−−−→ 𝜌 ⇝ ¤t1 and Γ ⊢ 𝜎2 inst 𝛿−−−−→ 𝜌 ⇝ ¤t2 then ¤t1 [t1] ≃ ¤t2 [t2]
We start by introducing a number of helper lemmas:

Lemma E.48 (Substitution in Expressions is Type Preserving (Synthesis)).

If Γ, a ⊢ e⇒ [𝜖 ⇝ t then Γ ⊢ [𝜏/a] e⇒ [𝜏/a] [𝜖 ⇝ [𝜏/a] t
Lemma E.49 (Substitution in Expressions is Type Preserving (Checking)).

If Γ, a ⊢ e⇐ 𝜎 ⇝ t then Γ ⊢ [𝜏/a] e⇐ [𝜏/a] 𝜎 ⇝ [𝜏/a] t
Lemma E.50 (Substitution in Heads is Type Preserving).

If Γ, a ⊢𝐻 h⇒ 𝜎 ⇝ t then Γ ⊢𝐻 [𝜏/a] h⇒ [𝜏/a] 𝜎 ⇝ [𝜏/a] t
Lemma E.51 (Substitution in Arguments is Type Preserving).

If Γ, a ⊢𝐴 𝑎𝑟𝑔⇐ 𝜎 ⇒ 𝜎 ′ ⇝ 𝑎𝑟𝑔𝐹 then Γ ⊢𝐴 [𝜏/a] 𝑎𝑟𝑔⇐ [𝜏/a] 𝜎 ⇒ [𝜏/a] 𝜎 ′ ⇝ [𝜏/a] 𝑎𝑟𝑔𝐹
Lemma E.52 (Substitution in Declarations is Type Preserving).

If Γ, a ⊢ decl ⇒ Γ, a, x : 𝜎 ⇝ x : 𝜎 = t then Γ ⊢ [𝜏/a] decl ⇒ Γ, x : [𝜏/a] 𝜎 ⇝ x : 𝜎 = [𝜏/a] t
The proof proceeds by mutual induction on the typing derivation. While the number of cases

gets pretty large, each is quite straightforward.

Lemma E.53 (Type Instantiation Produces Eqivalent Expressions (Synthesis)).

If Γ1 ⊢ e⇒ [𝜖
1
⇝ t1, Γ2 ⊢ e⇒ [𝜖

2
⇝ t2 and ∃ a ⊆ fv ([𝜖1) ∪ fv ([𝜖2)

such that Γ′ = [𝜏/a] Γ1 = [𝜏/a] Γ2 and Γ′ ⊢ ∀ a.[𝜖
1

inst 𝛿−−−−→ 𝜌 ⇝ ¤t1 and Γ′ ⊢ ∀ a.[𝜖
2

inst 𝛿−−−−→ 𝜌 ⇝ ¤t2
then ¤t1 [Λa.t1] ≃ ¤t2 [Λa.t2]

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

Seeking Stability 1:47

Lemma E.54 (Type Instantiation Produces Eqivalent Expressions (Checking)).

If Γ1 ⊢ e⇐ 𝜎1 ⇝ t1 and Γ2 ⊢ e⇐ 𝜎2 ⇝ t2 and ∃ a ⊆ fv (𝜎1) ∪ fv (𝜎2)
such that Γ′ = [𝜏/a] Γ1 = [𝜏/a] Γ2 and Γ′ ⊢ ∀ a.𝜎1 inst 𝛿−−−−→ 𝜌 ⇝ ¤t1 and Γ′ ⊢ ∀ a.𝜎2 inst 𝛿−−−−→ 𝜌 ⇝ ¤t2
then ¤t1 [Λa.t1] ≃ ¤t2 [Λa.t2]

Lemma E.55 (Type Instantiation Produces Eqivalent Expressions (Head Judgement)).

If Γ1 ⊢𝐻 h⇒ 𝜎1 ⇝ t1, Γ2 ⊢𝐻 h⇒ 𝜎2 ⇝ t2 and ∃ a ⊆ fv ([𝜖1) ∪ fv ([𝜖2)
such that Γ′ = [𝜏/a] Γ1 = [𝜏/a] Γ2 and Γ′ ⊢ ∀ a.𝜎1 inst 𝛿−−−−→ 𝜌 ⇝ ¤t1 and Γ′ ⊢ ∀ a.𝜎2 inst 𝛿−−−−→ 𝜌 ⇝ ¤t2
then ¤t1 [Λa.t1] ≃ ¤t2 [Λa.t2]

Note that we define [𝜏/a] Γ as removing a from the environment Γ and substituting any occur-

rence of a in types bound to term variables. Furthermore, we use a1 ∪ a2 as a shorthand for list

concatenation, removing duplicates. The proof proceeds by induction on the first typing derivation.

Note that Lemmas E.53, E.54 and E.55 have to be proven using mutual induction. However, the

proof for Lemma E.55 is trivial, as every case besides rule H-Inf is deterministic. As usual, we will

focus on the non-trivial cases:

Case rule ETm-CheckAbs e = _x .e′ :
We know from the premise of the first and second (as the relation is syntax directed) typing

derivation that Γ1 ⊢ 𝜎1 skol S
99999K 𝜎4 → 𝜎5; Γ

′
1
⇝ ¤t ′

1
, Γ2 ⊢ 𝜎2 skol S

99999K 𝜎 ′
4
→ 𝜎 ′

5
; Γ′

2
⇝ ¤t ′

2
, Γ′

1
, x : 𝜎4 ⊢

e′⇐ 𝜎5 ⇝ t3 and Γ′
2
, x : 𝜎 ′

4
⊢ e′⇐ 𝜎 ′

5
⇝ t4, where t1 = ¤t ′1 [_x : 𝜎4.t3] and t2 = ¤t ′2 [_x : 𝜎 ′

4
.t4].

At this point, it is already clear that Lemma E.54 can not hold under deep instantiation, as

instantiation performs full eta expansion. We will thus focus on shallow instantiation from here on

out.

By case analysis on the skolemisation and instantiation premises, it is clear that Γ′
1
= Γ1, a1,

Γ′
2
= Γ2, a2 and 𝜌 = [𝜏1/a1] (𝜎4 → 𝜎5) = [𝜏2/a2] (𝜎 ′4 → 𝜎 ′

5
) = 𝜎3 → 𝜎 ′

3
. In order to apply the

induction hypothesis, we take a′ as a ∪ a1 ∪ a2. Note that this does not alter the instantiation to

𝜌 in any way, as these variables would already have been instantiated. We apply the induction

hypothesis with Γ1 ⊢ ∀ a′.𝜎5 inst 𝛿−−−−→𝜎 ′
3
⇝ ¤t3 and Γ2 ⊢ ∀ a′.𝜎 ′5

inst 𝛿−−−−→𝜎 ′
3
⇝ ¤t4 (after weakening),

producing ¤t3 [Λa′.t3] ≃ ¤t4 [Λa′.t4]. Under shallow instantiation, these two instantiations follow

directly from the premise with ¤t3 = ¤t1 and ¤t4 = ¤t2.
The goal reduces to ¤t1 [Λa.¤t ′1 [_x : 𝜎4 .t3]] ≃ ¤t2 [Λa.¤t ′2 [_x : 𝜎 ′

4
.t4]]. By the definition of skolemisa-

tion, this further reduces to ¤t1 [Λa.Λa1 ._x : 𝜎4.t3] ≃ ¤t2 [Λa.Λa2 ._x : 𝜎 ′
4
.t4]. Finally, the goal follows

by the induction hypothesis and compatibility Lemmas E.18, E.16 and E.21, along with transitivity

Lemma E.15.

Case rule ETm-CheckTyAbs e = Λa.e′ :
We know the premise of the typing derivation that 𝜎1 = ∀ {a}

1
.∀a.𝜎 ′

1
, 𝜎2 = ∀ {a}.∀a.𝜎 ′

2
,

Γ1, a1, a ⊢ e′ ⇐ 𝜎 ′
1
⇝ t ′

1
, Γ2, a2, a ⊢ e′ ⇐ 𝜎 ′

2
⇝ t ′

2
, t1 = Λa1.Λa.t ′1 and t2 = Λa2.Λa.t ′2. By

case analysis on the type instantiation (rule InstT-SForall and rule InstT-SInfForall), we get

Γ′ ⊢ [𝜏1/a] [𝜏 ′1/a1] [𝜏1/a] 𝜎 ′1
inst 𝛿−−−−→ 𝜌 ⇝ ¤t ′

1
and Γ′ ⊢ [𝜏2/a] [𝜏 ′2/a2] [𝜏2/a] 𝜎 ′2

inst 𝛿−−−−→ 𝜌 ⇝ ¤t ′
2
where

¤t1 = _t .(¤t ′
1
[t 𝜏1 𝜏 ′1 𝜏1]) and ¤t2 = _t .(¤t ′

2
[t 𝜏2 𝜏 ′2 𝜏2]).

The goal to be proven is ¤t1 [Λa.Λa1.Λa.t ′1] ≃ ¤t2 [Λa.Λa2.Λa.t ′2]. This reduces to ¤t ′1 [(Λa.Λa1.Λa.t ′1) 𝜏1 𝜏
′
1
𝜏1] ≃

¤t ′
2
[(Λa.Λa2.Λa.t ′2) 𝜏2 𝜏

′
2
𝜏2].

We now define a substitution \ = [𝜏1/a] .[𝜏2/a] .[𝜏 ′1/a1] .[𝜏 ′2/a2] .[𝜏1/a] .[𝜏2/a]. From the instan-

tiation relation (and the fact that both types instantiate to the same type 𝜌 , we conclude that if

[𝜏i/a] ∈ \ and [𝜏j/a] ∈ \ that 𝜏i = 𝜏j . By applying Lemma E.49, we transform the premise to

[𝜏1/a] Γ1 ⊢ \ e′⇐ \ 𝜎 ′
1
⇝ \ t ′

1
and [𝜏2/a] Γ2 ⊢ \ e′⇐ \ 𝜎 ′

2
⇝ \ t ′

2
.

By applying the induction hypothesis, we get that ¤t ′
1
[\ t ′

1
] ≃ ¤t ′

2
[\ t ′

2
]. The goal follows directly

from the definition of \ .

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

1:48 Gert-Jan Bottu and Richard A. Eisenberg

Case rule ETm-CheckInf :
We know from the premise of the typing derivation that Γ1 ⊢ 𝜎1

skol 𝛿−−−−→ 𝜌1; Γ
′
1
⇝ ¤t ′

1
, Γ2 ⊢

𝜎2
skol 𝛿−−−−→ 𝜌2; Γ

′
2
⇝ ¤t ′

2
, Γ′

1
⊢ e ⇒ [𝜖

1
⇝ t ′

1
, Γ′

2
⊢ e ⇒ [𝜖

2
⇝ t ′

2
, Γ′

1
⊢ [𝜖

1

inst 𝛿−−−−→ 𝜌1 ⇝ ¤t ′′
1
,

Γ′
2
⊢ [𝜖

2

inst 𝛿−−−−→ 𝜌2 ⇝ ¤t ′′
2
, t1 = ¤t ′

1
[¤t ′′
1
[t ′
1
]] and t2 = ¤t ′′

2
[¤t ′
2
[t ′
2
]]. The goal to be proven is thus

¤t1 [Λa.¤t ′1 [¤t ′′1 [t ′1]]] ≃ ¤t2 [Λa.¤t ′2 [¤t ′′2 [t ′2]]].
From the definition of shallow skolemisation, we know that Γ′

1
= Γ1, a1, Γ′2 = Γ2, a2, ¤t ′1 = _t .Λa1.t

and ¤t ′
2
= _t .Λa2.t. We now take a′ = a ∪ a1 ∪ a2. As 𝜎1 and 𝜎2 instantiate to the same type

𝜌 , it is not hard to see from the definition of skolemisation that Γ′
1
⊢ ∀ a′.[𝜖

1

inst 𝛿−−−−→ 𝜌 ⇝ ¤t3 and
Γ′
2
⊢ ∀ a′.[𝜖

2

inst 𝛿−−−−→ 𝜌 ⇝ ¤t4. By applying Lemma E.53, we thus get ¤t3 [Λa′.t ′1] ≃ ¤t4 [Λa
′
.t ′
2
]. The goal

follows through careful examination of the skolemisation and instantiation premises. □

Lemma E.56 (Pattern Checking Implies Synthesis).

If Γ ⊢𝑃 𝜋 ⇐ 𝜎 ⇒ 𝜎 ′;Δ⇝ 𝜋𝐹 : 𝜓𝐹 then ∃𝜓 : Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ⇝ 𝜋𝐹 : 𝜓𝐹 where type (𝜓 ;𝜎 ′ ∼ 𝜎)

The proof follows by straightforward induction on the pattern typing derivation.

We now go back to proving Property 6, and proceed by case analysis on both typing deriva-

tions (rule EDecl-Ann). We know from the premise that Γ ⊢𝑃 𝜋 i ⇐ 𝜎1 ⇒ 𝜎i 1;Δ1 ⇝ 𝜋𝐹 i : 𝜓𝐹 1,

Γ ⊢𝑃 𝜋 i ⇐ 𝜎2 ⇒ 𝜎i 2;Δ2 ⇝ 𝜋𝐹 i : 𝜓𝐹 2, Γ,Δ1 ⊢ ei ⇐ 𝜎i 1 ⇝ ti 1, Γ,Δ2 ⊢ ei ⇐ 𝜎i 2 ⇝ ti 2, t1 =

case𝜋𝐹 i : 𝜓𝐹 1 → ti 1
i
and t2 = case𝜋𝐹 i : 𝜓𝐹 2 → ti 2

i
. The goal to be proven is ¤t1 [case𝜋𝐹 i : 𝜓𝐹 1 → ti 1

i
] ≃

¤t2 [case𝜋𝐹 i : 𝜓𝐹 2 → ti 2
i
]. Lemma E.20 reduces this to ∀𝑖 : ¤t1 [ti 1] ≃ ¤t2 [ti 2].

We take a = dom (Δ1) ∪ dom (Δ2) \ dom (Γ), and apply weakening to get Γ, a ⊢ ei ⇐ 𝜎i 1 ⇝ ti 1
and Γ, a ⊢ ei ⇐ 𝜎i 2 ⇝ ti 2. The goal now follows directly from Lemma E.54 with a = ·, if we can
show that Γ, a ⊢ 𝜎i 1 inst 𝛿−−−−→ 𝜌 ′ ⇝ ¤t1 and Γ, a ⊢ 𝜎i 2 inst 𝛿−−−−→ 𝜌 ′ ⇝ ¤t2 for some 𝜌 ′ (Note that Lemma E.54

only holds under shallow instantiation).

We know from Lemma E.56 that ∃𝜓𝐹 : Γ ⊢𝑃 𝜋 i ⇒ 𝜓 ;Δ⇝ 𝜋𝐹 i : 𝜓𝐹 such that type (𝜓 ;𝜎i 1 ∼ 𝜎1)
and type (𝜓 ;𝜎i 2 ∼ 𝜎2). The remaining goal follows from the definition of the type relation, and

shallow instantiation. □

E.5 Pattern Inlining and Extraction
Property 7 (Pattern Inlining is Type Preserving).

If Γ ⊢ x 𝜋 = e1 ⇒ Γ′ and wrap (𝜋 ; e1 ∼ e2) then Γ ⊢ x = e2 ⇒ Γ′

We first introduce a helper lemma to prove pattern inlining in expressions preserves the type:

Lemma E.57 (Pattern Inlining in Expressions is Type Preserving (Synthesis)).

If Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ and Γ,Δ ⊢ e1 ⇒ [𝜖
1
where wrap (𝜋 ; e1 ∼ e2)

then Γ ⊢ e2 ⇒ [𝜖
2
and type (𝜓 ;[𝜖

1
∼ [𝜖

2
)

The proof proceeds by induction on the pattern typing derivation. We will focus on the non-

trivial cases below. Note that the rule Pat-InfCon is an impossible case as wrap (K 𝜋 ; e1 ∼ e2) is
undefined.

Case rule Pat-InfVar 𝜋 = x, 𝜋 ′,𝜓 = 𝜏1,𝜓
′
and Δ = x : 𝜏1,Δ

′ :
We know from the rule premise that Γ, x : 𝜏1 ⊢𝑃 𝜋 ′ ⇒ 𝜓

′
;Δ′. Furthermore, by inlining the

definitions of Δ and 𝜋 in the lemma premise, we get Γ, x : 𝜏1,Δ
′ ⊢ e1 ⇒ [𝜖

1
and wrap (x, 𝜋 ′; e1 ∼

_x .e′
2
) and thus (by rule PatWrap-Var) wrap (𝜋 ′; e1 ∼ e′

2
). By the induction hypothesis, we get

Γ, x : 𝜏1 ⊢ e′2 ⇒ [𝜖
3
and type (𝜓 ′;[𝜖

1
∼ [𝜖

3
). The goal follows by rule ETm-InfAbs and rule Type-Var.

Case rule Pat-InfTyVar 𝜋 = @a, 𝜋 ′,𝜓 = @a,𝜓
′
and Δ = a,Δ′ :

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

Seeking Stability 1:49

We know from the rule premise that Γ, a ⊢𝑃 𝜋 ′ ⇒ 𝜓
′
;Δ′. Again, by inlining the definitions

in the lemma premise, we get Γ, a,Δ′ ⊢ e1 ⇒ [𝜖
1
and wrap (@a, 𝜋 ′; e1 ∼ Λa.e′

2
) and thus (by

rule PatWrap-TyVar) wrap (𝜋 ′; e1 ∼ e′
2
). By the induction hypothesis, we get Γ, a ⊢ e′

2
⇒ [𝜖

3
and

type (𝜓 ′;[𝜖
1
∼ [𝜖

3
).

The goal to be proven is Γ ⊢ Λa.e′
2
⇒ ∀a.[𝜖

3
where type (@a,𝜓

′
;[𝜖

1
∼ ∀a.[𝜖

3
) (follows by

rule Type-TyVar). However, under eager instantiation, this goal can never hold as rule ETm-

InfTyAbs would instantiate the forall binder away. We can thus only prove this lemma under lazy

instantiation, where the goal follows trivially from rule ETm-InfTyAbs. □
We now proceed with proving Property 7, through case analysis on the declaration typing relation

(rule EDecl-NoAnnSingle). We know from the premise of the first derivation that Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ,

Γ,Δ ⊢ e1 ⇒ [𝜖
1
, type (𝜓 ;[𝜖

1
∼ 𝜎) and Γ′ = Γ, x : ∀ {a}.𝜎 where a = fv (𝜎) \ dom (Γ). The goal to

be proven thus becomes Γ ⊢𝑃 · ⇒ ·; · (follows directly from rule Pat-InfEmpty) and Γ ⊢ e2 ⇒ [𝜖
2

where [𝜖
2
= 𝜎 (follows from Lemma E.57). Note that as we require Lemma E.57, we can only prove

Property 7 under lazy instantiation. □

Property 9 (Pattern Extraction is Type Preserving).

If Γ ⊢ x = e2 ⇒ Γ′ and wrap (𝜋 ; e1 ∼ e2) then Γ ⊢ x 𝜋 = e1 ⇒ Γ′

We first introduce another helper lemma to prove that pattern extraction from expressions

preserves the typing:

Lemma E.58 (Pattern Extraction from Expressions is Type Preserving (Synthesis)).

If Γ ⊢ e2 ⇒ [𝜖
2
and ∃ e1, 𝜋 such that wrap (𝜋 ; e1 ∼ e2)

then Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ and Γ,Δ ⊢ e1 ⇒ [𝜖
1
where type (𝜓 ;[𝜖

1
∼ [𝜖

2
)

The proof proceeds by induction on the e2 typing derivation. As usual, we will focus on the

non-trivial cases:

Case rule ETm-InfAbs e2 = _x .e′
2
and [𝜖

2
= 𝜏2 → [𝜖

3
:

We know from the rule premise that Γ, x : 𝜏2 ⊢ e′
2
⇒ [𝜖

3
. It is clear by case analysis on

wrap (𝜋 ; e1 ∼ _x .e′
2
) that 𝜋 = x, 𝜋 ′ and wrap (𝜋 ′; e1 ∼ e′

2
). By applying the induction hypothesis,

we get Γ, x : 𝜏2 ⊢𝑃 𝜋 ′⇒ 𝜓
′
;Δ′, Γ, x : 𝜏2,Δ

′ ⊢ e1 ⇒ [𝜖
1
and type (𝜓 ′;[𝜖

1
∼ [𝜖

3
). The goal thus follows

straightforwardly by rule Pat-InfVar and rule Type-Var.

Case rule ETm-InfTyAbs e2 = Λa.e′
2
:

We know from the rule premise that Γ, a ⊢ e′
2
⇒ [𝜖

3
and Γ ⊢ ∀a.[𝜖

3

inst 𝛿−−−−→[𝜖
2
. Furthermore, it

is clear by case analysis on wrap (𝜋 ; e1 ∼ Λa.e′
2
) that 𝜋 = @a, 𝜋 ′ and wrap (𝜋 ′; e1 ∼ e′

2
). By the

induction hypothesis, we get Γ, a ⊢𝑃 𝜋 ′⇒ 𝜓
′
;Δ′, Γ, a,Δ′ ⊢ e1 ⇒ [𝜖

1
and type (𝜓 ′;[𝜖

1
∼ [𝜖

3
).

The goal to be proven is Γ ⊢𝑃 @a, 𝜋 ′⇒ @a,𝜓
′
; a,Δ′ (follows by rule Pat-InfTyVar), Γ, a,Δ′ ⊢

e1 ⇒ [𝜖
1
(follows by the induction hypothesis) and type (@a,𝜓

′
;[𝜖

1
∼ [𝜖

2
). However, it is clear that

this final goal does not hold under eager instantiation, as rule ETm-InfTyAbs instantiates the forall

binder away. Under lazy instantiation, the remaining goal follows directly from the premise.

Case rule ETm-InfApp e2 = h𝑎𝑟𝑔 and 𝑎𝑟𝑔 = · and h = e :
The goal follows directly by the induction hypothesis.

Case rule ETm-InfApp e2 = h𝑎𝑟𝑔 and 𝑎𝑟𝑔 ≠ · or h ≠ e :
It is clear from the definition ofwrap (𝜋 ; e1 ∼ h𝑎𝑟𝑔) that 𝜋 = ·. The goal thus follows trivially. □
We now return to prove Property 9 by case analysis on the declaration typing derivation

(rule EDecl-NoAnnSingle). We know from the derivation premise that Γ ⊢ e2 ⇒ [𝜖
2
and

𝜎 = ∀ {a}.[𝜖
2
where a = fv ([𝜖2) \ dom (Γ). The goal follows directly from Lemma E.58. Note

that as Lemma E.58 only holds under lazy instantiation, the same holds true for Property 9. □

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

1:50 Gert-Jan Bottu and Richard A. Eisenberg

Property 8 (Pattern Inlining / Extraction is Dynamic Semantics Preserving).

If Γ ⊢ x 𝜋 = e1 ⇒ Γ′ ⇝ x : 𝜎 = t1, wrap (𝜋 ; e1 ∼ e2), and Γ ⊢ x = e2 ⇒ Γ′ ⇝ x : 𝜎 = t2 then t1 ≃ t2

We start by introducing a helper lemma, proving pattern inlining preserves the dynamic semantics

for expressions.

Lemma E.59 (Pattern Inlining in Expressions is Dynamic Semantics Preserving).

If Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ⇝ 𝜋𝐹 : 𝜓𝐹 and Γ,Δ ⊢ e1 ⇒ [𝜖
1
⇝ t1 and Γ ⊢ e2 ⇒ [𝜖

2
⇝ t2 wherewrap (𝜋 ; e1 ∼ e2)

then case𝜋𝐹 : 𝜓𝐹 → t1 ≃ t2

The proof proceeds by induction on the pattern typing derivation.Wewill focus on the non-trivial

cases. Note that, as wrap (K 𝜋 ; e1 ∼ e2) is undefined, rule Pat-InfCon is an impossible case.

Case rule Pat-InfVar 𝜋 = x, 𝜋 ′,𝜓 = 𝜏1,𝜓
′
, Δ = x : 𝜏1,Δ

′, 𝜋𝐹 = x : 𝜏1, 𝜋𝐹
′ and𝜓𝐹 = 𝜏1,𝜓𝐹

′
:

We know from the pattern typing derivation premise that Γ, x : 𝜏1 ⊢𝑃 𝜋 ′⇒ 𝜓
′
;Δ′ ⇝ 𝜋𝐹

′
: 𝜓𝐹

′
.

By inlining the definitions and rule PatWrap-Var, we get e2 = _x .e′
2
and wrap (𝜋 ′; e1 ∼ e′

2
). By

case analysis on the e2 typing derivation (rule ETm-InfAbs), we know Γ, x : 𝜏1 ⊢ e′2 ⇒ [𝜖
3
⇝ t ′

2

where [𝜖
2
= 𝜏1 → [𝜖

3
and t2 = _x : 𝜏1.t ′2. By applying the induction hypothesis, we get case𝜋𝐹 ′ :

𝜓𝐹

′→ t1 ≃ t ′
2
. The goal to be proven is _x : 𝜏1 .case𝜋𝐹 ′ : 𝜓𝐹

′→ t1 = _x : 𝜏1 .t ′2, and follows directly

from Lemma E.16.

Case rule Pat-InfTyVar 𝜋 = @a, 𝜋 ′,𝜓 = @a,𝜓
′
, Δ = a,Δ′, 𝜋𝐹 = @a, 𝜋𝐹 ′ and𝜓𝐹 = @a,𝜓𝐹

′
:

We know from the pattern typing derivation premise that Γ, a ⊢𝑃 𝜋 ′ ⇒ 𝜓
′
;Δ′ ⇝ 𝜋𝐹

′
: 𝜓𝐹

′
.

Similarly to the previous case, by inlining and rule PatWrap-TyVar, we get e2 = Λa.e′
2
and

wrap (𝜋 ′; e1 ∼ e′
2
). By case analysis on the e2 typing derivation (rule ETm-InfTyAbs), we get

Γ, a ⊢ e′
2
⇒ [𝜖

3
⇝ t ′

2
, Γ ⊢ ∀ a.[𝜖

3

inst 𝛿−−−−→[𝜖
2
⇝ ¤t and t2 = ¤t [Λa.t ′2]. Applying the induction hypothesis

tells us that case𝜋𝐹 ′ : 𝜓𝐹

′→ t1 ≃ t ′
2
.

The goal to be proven is Λa.case𝜋𝐹 ′ : 𝜓𝐹

′→ t1 ≃ ¤t [Λa.t ′2]. By applying Lemma E.18 to the result

of the induction hypothesis, we get Λa.case𝜋𝐹 ′ : 𝜓𝐹

′→ t1 ≃ Λa.t ′
2
. Under lazy instantiation, the

goal follows directly from this result, as ¤t = •. Under eager deep instantiation, it is clear that the goal
does not hold, as ¤t might perform eta expansion, thus altering the dynamic semantics. Under eager

shallow instantiation, the goal follows straightforwardly, as ¤t can only perform type applications.

Note that this implies that Λa.case𝜋𝐹 ′ : 𝜓𝐹

′→ t1 and ¤t [Λa.t ′2] could thus have different types, but

can always instantiate to the same type. □
We now return to proving Property 8, by case analysis on the first declaration typing relation

(rule EDecl-NoAnnSingle). We know from the derivation premise that Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ ⇝
𝜋𝐹 : 𝜓𝐹 , Γ,Δ ⊢ e1 ⇒ [𝜖

1
⇝ t ′

1
, t1 = case𝜋𝐹 : 𝜓𝐹 → t ′

1
, type (𝜓 ;[𝜖

1
∼ 𝜎 ′), 𝜎 = ∀ {a}.𝜎 ′ where

a = fv (𝜎 ′) \ dom (Γ). The premise of the second declaration typing derivations tells us that

Γ ⊢ e2 ⇒ [𝜖
2
⇝ t2. The goal now follows directly from Lemma E.59. Note that as Lemma E.59 does

not hold under eager deep instantiation, the same is true for Property 8. □

E.6 Single vs. Multiple Equations
Property 10 (Single/multiple Eqations is Type Preserving).

If Γ ⊢ x 𝜋 = e⇒ Γ, x : 𝜎 then Γ ⊢ x 𝜋 = e, x 𝜋 = e⇒ Γ′

The proof proceeds by case analysis on the declaration typing derivation (rule EDecl-NoAnnSingle).

From the derivation premise, we get Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ, Γ,Δ ⊢ e ⇒ [𝜖 , type (𝜓 ;[𝜖 ∼ 𝜎1) and
𝜎 = ∀ {a}

1
.𝜎1 where a1 = fv (𝜎1) \ dom (Γ). The goal to be proven thus reduces to Γ,Δ ⊢ [𝜖 inst 𝛿−−−−→ 𝜌 ,

type (𝜓 ; 𝜌 ∼ 𝜎2) and 𝜎 = ∀ {a}
2
.𝜎2 where a2 = fv (𝜎2) \ dom (Γ). It is clear that the property can not

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

Seeking Stability 1:51

numargs (𝜎) = m (Explicit Argument Counting)

Numargs-TyVar

numargs (a) = 0

Numargs-Con

numargs (T 𝜏) = 0

Numargs-Arrow

numargs (𝜎2) = m

numargs (𝜎1 → 𝜎2) =𝑚 + 1

Numargs-Forall

numargs (𝜎) = m

numargs (∀ a.𝜎) = m

Numargs-InfForall

numargs (𝜎) = m

numargs (∀ {a}.𝜎) = m

Fig. 9. Counting Explicit Arguments

hold under lazy instantiation, as rule EDecl-NoAnnMulti performs an additional instantiation

step, thus altering the type. Under eager instantiation, [𝜖 is already an instantiated type by the

type inference relation, making the instantiation in the goal a no-op (by definition). The goal is

thus trivially true. □

E.7 [-expansion
Property 11b ([-expansion is Type Preserving).

• If Γ ⊢ e⇒ [𝜖 where numargs([𝜖) = 𝑛 and Γ ⊢ [𝜖 inst 𝛿−−−−→𝜏 then Γ ⊢ _x𝑛 .e x𝑛 ⇒ [𝜖

• If Γ ⊢ e⇐ 𝜎 where numargs(𝜌) = 𝑛 then Γ ⊢ _x𝑛 .e x𝑛 ⇐ 𝜎

A formal definition of numargs is shown in Figure 9. We prove Property 11b by first introducing

a slightly more general lemma:

Lemma E.60 ([-expansion is Type Preserving - Generalised).

• If Γ ⊢ e⇒ [𝜖 where 0 ⩽ 𝑛 ⩽ numargs([𝜖) and Γ ⊢ [𝜖 inst 𝛿−−−−→𝜏 then Γ ⊢ _x𝑛 .e x𝑛 ⇒ [𝜖

• If Γ ⊢ e⇐ 𝜎 where 0 ⩽ 𝑛 ⩽ numargs(𝜌) then Γ ⊢ _x𝑛 .e x𝑛 ⇐ 𝜎

The proof proceeds by induction on the integer 𝑛.

Case 𝑛 = 0 :
This case is trivial, as it follows directly from the premise.

Case 𝑛 =𝑚 + 1 ⩽ numargs([𝜖) :
case synthesis mode : We know from the induction hypothesis that Γ ⊢ _x𝑚 .e x𝑚 ⇒ [𝜖 .

We perform case analysis on this result (𝑚 repeated applications of rule ETm-InfAbs) to get

Γ, xi : 𝜏i i<m ⊢ e x𝑚 ⇒ [𝜖
1
where [𝜖 = 𝜏i

i<m → [𝜖
1
. Performing case analysis again on this

result (rule ETm-InfApp), gives us Γ, xi : 𝜏i i<m ⊢𝐻 e ⇒ 𝜎1, Γ, xi : 𝜏i i<m ⊢𝐴 x𝑚 ⇐ 𝜎1 ⇒ 𝜎2

and Γ, xi : 𝜏i i<m ⊢ 𝜎2 inst 𝛿−−−−→[𝜖
1
.

The goal to be proven is Γ ⊢ _x𝑚+1.e x𝑚+1 ⇒ [𝜖 , which (by rule ETmInfAbs) reduces to

Γ, xi : 𝜏i i<m, x : 𝜏 ⊢ e x𝑚+1 ⇒ [𝜖
2
, where [𝜖 = 𝜏i

i<m → 𝜏 → [𝜖
2
.

Note that this requires proving that [𝜖
1
= 𝜏 → [𝜖

2
. While we know that𝑚 < numargs([𝜖), we

can only prove this under eager deep instantiation. Under lazy instantiation, type inference does

not instantiate the result type at all. Under eager shallow, it is instantiated, but only up to the first

function type. From here on out, we will thus assume eager deep instantiation. Furthermore, note

that as even deep instantiation does not instantiate argument types, we need the additional premise

that [𝜖 instantiates into a monotype, in order to prove this goal.

This result in turn (by rule ETm-InfApp) reduces to Γ, xi : 𝜏i i<m, x : 𝜏 ⊢𝐻 e ⇒ 𝜎1 (follows by

weakening), Γ, xi : 𝜏i i<m, x : 𝜏 ⊢𝐴 x, x𝑚 ⇐ 𝜎1 ⇒ 𝜎3 (follows by rule Arg-Inst, rule Arg-App

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

1:52 Gert-Jan Bottu and Richard A. Eisenberg

and the fact that [𝜖
1
= 𝜏 → [𝜖

2
) and Γ, xi : 𝜏i i<m, x : 𝜏 ⊢ 𝜎3 inst 𝛿−−−−→[𝜖

2
(follows by the definition of

instantiation).

case checking mode : We know from the induction hypothesis that Γ ⊢ _x𝑚 .e x𝑚 ⇐ 𝜎 .

The proof proceeds similarly to the synthesis mode case, by case analysis on this result (rule ETm-

CheckAbs). One additional step is that rule ETm-CheckInf is applied to type e x𝑚 . The derivation

switches to synthesis mode at this point, and becomes completely identical to the previous case. □
The proof for Property 11b now follows directly by Lemma E.60, by taking 𝑛 = numargs([𝜖). □

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: August 2021.

	Abstract
	1 Introduction
	2 Stability
	3 Mixing Implicit and Explicit Features is Unstable
	3.1 Haskell
	3.2 Idris
	3.3 Agda
	3.4 Conclusion

	4 Provenance in Haskell
	5 Type Instantiation
	5.1 Deep vs. Shallow Instantiation
	5.2 Eager vs. Lazy Instantiation
	5.3 Thorny Examples
	5.4 Conclusion

	6 The Implicit Polymorphic -Calculus
	6.1 Typing rules
	6.2 Alternative Formalisation

	7 Mixing Implicit and Explicit Types
	8 Evaluation
	8.1 Contextual Equivalence
	8.2 Properties
	8.3 Explicit Type Instantiation
	8.4 Conclusion

	9 Instantiation in GHC
	9.1 Eagerness
	9.2 Depth
	9.3 The situation today: Quick Look impredicativity has arrived

	10 Related Work
	11 Conclusion
	References
	A Further instabilities around instantiation
	A.1 Explicit Abstraction
	A.2 Implicit Generalisation

	B Example of Implicit Generalisation in Idris
	C Additional Relations
	D Core Language
	D.1 Translation from the Mixed Polymorphic -calculus

	E Proofs
	E.1 Let-Inlining and Extraction
	E.2 Contextual Equivalence
	E.3 Let-Inlining and Extraction, Continued
	E.4 Type Signatures
	E.5 Pattern Inlining and Extraction
	E.6 Single vs. Multiple Equations
	E.7 -expansion

