
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Implicit Code Generation for
Polymorphism

Gert-Jan Bottu

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Computer Science

January 2022

Supervisor:
Prof. dr. ir. T. Schrijvers

Implicit Code Generation for Polymorphism

Gert-Jan BOTTU

Examination committee:
Prof. dr. ir. H. Van Brussel, chair
Prof. dr. ir. T. Schrijvers, supervisor
Prof. dr. ir. G. Janssens
Prof. dr. ir. F. Piessens
Dr. R. Eisenberg
(Tweag Software Innovation Lab, France)

Dr. W. Swierstra
(Universiteit Utrecht, Netherlands)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Computer Science

January 2022

© 2022 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Gert-Jan Bottu, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Preface

First and foremost, I would like to thank my supervisor, Tom Schrijvers, who
offered me the opportunity to start this work, the advice and teaching to guide
me through this work, and the support and drive to do better to finish this work.
Without him, none of this would have been possible, for which I’m incredibly
grateful.

Secondly, I want to thank George Karachalias, who introduced me to the
wonderful world of type theory. His unrelenting patience and mentorship taught
me so much about science, about work and about life in general. Against better
judgement, he even got me started in JavaScript development. He not only
made this thesis happen, but made me the person I am today.

Furthermore, I would like to thank the jury for reading this work, for providing
their insightful feedback, and for many educating discussions, both during the
defense of this thesis and before, and hopefully afterwards as well.

My thanks also goes out to my collegues: Alexander, Amr, Birthe, Cesar,
George, Klara, Koen, Ningning, Roger, Ruben and Steven. Together, we made
the office both a fun and enlightening place to be, not to mention being in a
constant state of amazement. Furthermore, I would like to thank my more
junior collegues for our many interesting discussions and offering me the ability
to pass on what I learned: Elias, Francisco, Jelle, Jo-Thijs, Lena, Reinert, Rene
and Thomas.

My gratitude goes out to the incredible teams at Digital Asset and Tweag.io,
who thaught me the real world applications behind the theory. Their knowledge
and enthousiasm got me excited for working in industry. A special mention for
Richard Eisenberg, for taking the time to introduce me to GHC development.

i

ii PREFACE

Of course, I’d like to thank my friends, family and parents for the incredibly
important role they play in my life, and for which I’m eternally grateful. None
of this would be possible without them. And last but not least, I’m grateful to
Ruben for his love, patience and support. You’re the best!

Gert-Jan
January 2022

Abstract

As software keeps growing in size and complexity, more sophisticated
programming languages are needed to keep software development manageable.
One important aspect in a capable programming language is its type system.
A sufficiently powerful static type system can not only reduce bugs, but also
implicitly generate common boilerplate code. This thesis improves upon on
two forms of this implicit type-directed code generation, both in the context of
polymorphism: parametric polymorphism and type classes.

The goal of this work is to improve the current state of the art in polymorphism,
and we tackle this in three complementary ways:

Firstly, we investigate parametric polymorphism in Haskell by evaluating two
design decisions related to type instantiation. For this, we introduce the concept
of stability as a way of making these decisions. Stability is a measure of whether
the meaning of a program alters under small, seemingly innocuous changes
in the code (e.g., inlining). We define a type system family, which can be
materialised to four different approaches of type instantiation. After defining 11
different stability related properties, and formally verifying them against every
variant of the type system family, we conclude that the most stable approach
is lazy (instantiate a polytype only when absolutely necessary) and shallow
(instantiate only top-level type variables, not variables that appear after explicit
arguments).

Secondly, we increase confidence in the type class resolution mechanism, the
implicit type-directed code generation used by Haskell for function overloading.
While type class resolution is generally nondeterministic (both in Haskell and
other languages like Mercury and PureScript), we prove that it still behaves
predictably. Indeed, multiple ways can exist to satisfy a wanted constraint in
terms of global instances and locally given constraints. However, the property
of coherence guarantees that every possible outcome of this nondeterministic
resolution process behaves indistinguishably from the others in practice. Even

iii

iv ABSTRACT

though coherence is generally assumed to hold for type class resolution, as far
as we know, this work is the first to provide a formal proof of this property
in the presence of sources of nondeterminism, like superclasses and flexible
contexts. The proof is non-trivial because the semantics elaborates resolution
into a target language where different elaborations can be distinguished by
contexts that do not have a source language counterpart. Inspired by the
notion of full abstraction we present a two-step strategy that first elaborates
nondeterministically into an intermediate language that preserves contextual
equivalence, and then deterministically elaborates from there into the target
language. We use an approach based on logical relations to establish contextual
equivalence and thus coherence for the first step of elaboration, while the second
step’s determinism straightforwardly preserves this coherence property.

Thirdly, we increase expressivity of type classes from Horn clauses to the
universal fragment of Hereditary Harrop logic. In fact, quantified class
constraints have been proposed many years ago for exactly this purpose.
Yet, despite being widely asked for over the years, besides a number of
stopgap workarounds, quantified constraints had never been formally studied or
implemented. We elaborate the idea into a practical language design, and provide
a declarative specification of the type system. Furthermore, we design a type
inference algorithm that elaborates into System F. While not a direct mapping,
this work has provided the necessary kick-start for a GHC implementation
of quantified constraints. Finally, we extend the aforementioned coherence
proof with quantified class constraints, a non-trivial extension, to show the
adaptability of the proof.

In conclusion, we have improved the state of the art of polymorphism, and its
type-directed code generation aspects in particular. We have increased (1) the
stability of parametric polymorphism, (2) faith in the correctness of type class
resolution by formally proving it coherent, and (3) the expressivity of type
classes by adopting quantified class constraints. This clears the way for more
wide-spread adoption of these features.

Beknopte samenvatting

Met almaar groter en complexer wordende softwareprojecten neemt het belang
van geavanceerde programmeertalen toe om de ontwikkeling van software
beheersbaar te houden. Een belangrijk aspect van een degelijke programmeertaal
is het typesysteem. Een voldoende krachtig statisch typesysteem kan niet enkel
fouten vermijden, maar kan ook impliciet veelvoorkomende code genereren.
Deze thesis verbetert twee vormen van impliciete type-gestuurde codegeneratie,
beide in het kader van polymorfisme: parametrisch polymorfisme en typeklassen.

Het doel van dit werk is om de huidige staat van polymorfisme te verbeteren.
Dit bereiken we op drie complementaire manieren:

Ten eerste onderzoeken we parametrisch polymorfisme in Haskell door twee
ontwerpkeuzes gerelateerd aan type-instantiatie te evalueren. We introduceren
hiervoor het concept stabiliteit als een manier om deze beslissingen te maken.
Stabiliteit is een maat van hoe de betekenis van een programma verandert onder
kleine, schijnbaar onschuldige aanpassingen in de code (e.g., het inlijnen van een
variabele). We construeren een familie van typesystemen, waarvan de varianten
vier verschillende vormen van type-instantiatie gebruiken. We definiëren 11
verschillende stabiliteitgerelateerde eigenschappen, en verifiëren ze tegen elke
variant van onze familie van typesystemen. Onze conclusie is dat lui (een type
enkel instantiëren wanneer dit absoluut noodzakelijk is) en oppervlakkig (enkel
de bovenste laag variabelen instantiëren, dus geen variabelen die voorkomen na
expliciete argumenten) instantiëren het meest stabiel is.

Ten tweede verhogen we het vertrouwen in het resolutiemechanisme van
typeklassen, de impliciete type-gestuurde codegeneratie die door Haskell gebruikt
wordt voor het overladen van functies. Ondanks dat typeklasseresolutie in
het algemeen niet-deterministisch verloopt (zowel in Haskell als in andere
talen zoals Mercury en PureScript), bewijzen we dat het zich wel steeds
voorspelbaar gedraagt. Inderdaad, er kunnen meerdere manieren bestaan om
een gevraagde constraint op te lossen in functie van globale instanties en lokale

v

vi BEKNOPTE SAMENVATTING

gegeven constraints. Desondanks garandeert de coherentie-eigenschap dat elke
mogelijke uitkomst van dit niet-deterministische proces zich in de praktijk niet
te onderscheiden gedraagt van de anderen. Hoewel er algemeen aangenomen
wordt dat coherentie geldt voor typeklasseresolutie, is dit werk—voor zover we
weten—het eerste dat deze eigenschap formeel bewijst in het bijzijn van bronnen
van niet-determinisme zoals superklassen en flexibele contexten. Het bewijs is
niet-triviaal omdat de semantiek resolutie vertaalt naar een doeltaal waar een
onderscheid gemaakt kan worden tussen verschillende vertalingen in contexten
die geen starttaal wederhelft hebben. Gebaseerd op de notie van volledige
abstractie presenteren we een twee-staps strategie welke eerst op een niet-
deterministische manier vertaalt naar een intermediaire taal, waar contextuele
equivalentie gerespecteerd wordt, en vervolgens op een deterministische manier
van daar naar de doeltaal. We gebruiken een methode gebaseerd op logische
relaties om een contextuele equivalentie te bepalen. Van hieruit kunnen we
coherentie van de eerste stap in de vertaling besluiten. Aangezien de tweede
stap deterministisch is, behoudt deze triviaal de coherentie-eigenschap.

Ten derde verbeteren we de expressiviteit van typeklassen van Horn clausules
tot het universele fragment van Hereditary Harrop logica. In feite zijn
gekwantificeerde klasseconstraints al jaren geleden voorgesteld voor deze reden.
Maar ondanks de grote aanhoudende vraag zijn gekwantificeerde constraints,
met uitzondering van een aantal gedeeltelijke noodoplossingen, nooit formeel
bestudeerd of geimplementeerd. We breiden dit idee uit tot een praktisch
taalontwerp, en presenteren een declaratieve specificatie van het typesysteem.
Vervolgens ontwerpen we een type interferentie algoritme dat vertaalt naar
System F. Hoewel het geen een-op-een mapping betreft, heeft dit werk
het startsein gegeven voor een GHC implementatie van gekwantificeerde
constraints. Uiteindelijk breiden we het eerder genoemd coherentiebewijs uit
met gekwantificeerde klasseconstraints—een niet triviale extensie—en tonen
hiermee de aanpasbaarheid van dit bewijs aan.

We concluderen dat we de staat van polymorfisme, en de type-gestuurde
codegeneratie aspecten specifiek, verbeterd hebben op drie manieren. We
hebben (1) de stabiliteit van parametrisch polymorfisme verbeterd, (2) het
vertrouwen in de correctheid van typeklasseresolutie verhoogd door het formeel
coherent te bewijzen, en (3) de expressiviteit van typeklassen verbeterd door
gekwantificeerde klasseconstraints toe te voegen. Dit maakt de weg vrij voor
een meer wijdverspreid gebruik van deze functionaliteit.

Contents

Abstract iii

Beknopte samenvatting v

List of Symbols vii

Contents vii

List of Figures xiii

1 Introduction 1
1.1 Haskell . 2
1.2 Aim of the Thesis . 3
1.3 Thesis Overview . 4

1.3.1 Part I: Parametric Polymorphism 4
1.3.2 Part II: Ad-Hoc Polymorphism 5

2 Laying the Foundations 7
2.1 Programming Languages . 7
2.2 Dynamic Semantics . 8
2.3 Static Semantics . 8
2.4 Meta-Theory . 9

I Parametric Polymorphism 11

3 Polymorphic Types 12
3.1 System F . 12
3.2 Hindley Milner . 13

4 Type Instantiation 15

vii

viii CONTENTS

4.1 Introduction . 15
4.2 Instantiation in GHC . 16

4.2.1 Deep vs. Shallow Instantiation 17
4.2.2 Eager vs. Lazy Instantiation 18

5 Meta Theory: Stability 19
5.1 Stability . 19

5.1.1 Stability . 25
5.2 The Mixed Polymorphic λ-Calculus 26

5.2.1 Syntax . 27
5.2.2 Type system overview 29
5.2.3 Instantiation and Skolemisation 33

5.3 Evaluation . 35
5.3.1 Contextual Equivalence 35
5.3.2 Properties . 37
5.3.3 Conclusion . 40

5.4 Instantiation in GHC . 40
5.4.1 Eagerness . 40
5.4.2 Depth . 42
5.4.3 The situation today: Quick Look impredicativity has arrived 42

5.5 Instabilities around instantiation beyond Haskell 42
5.5.1 Explicit Instantiation 43
5.5.2 Idris . 43
5.5.3 Agda . 43
5.5.4 Explicit Abstraction . 44
5.5.5 Implicit Generalisation 46

5.6 Example of Implicit Generalisation in Idris 48
5.7 Related Work . 49
5.8 Scientific Output . 49

II Ad-hoc Polymorphism 51

6 Type Classes 52
6.1 Introduction . 53
6.2 Overview . 53

6.2.1 Dictionary-Passing Elaboration 53
6.2.2 Alternatives . 56

6.3 Source Language λTC . 56
6.4 Target Language F{} . 63

6.4.1 Elaboration from λTC to F{} 63

7 Meta Theory: Coherence 67

CONTENTS ix

7.1 Introduction . 67
7.2 Overview . 70

7.2.1 Dictionary-Passing Elaboration 70
7.2.2 Nondeterminism and Coherence 70
7.2.3 Contextual Difference 71
7.2.4 Our Approach to Proving Coherence 72

7.3 Coherence . 74
7.3.1 Contextual Equivalence 74
7.3.2 Coherence . 75

7.4 Intermediate Language FD . 75
7.4.1 Elaboration from λTC to FD 81
7.4.2 Elaboration from FD to F{} 84
7.4.3 Elaboration Decomposition 85

7.5 Coherence Revisited . 85
7.5.1 Coherent Elaboration from λTC to FD 86
7.5.2 Deterministic Elaboration from FD to F{} 91

7.6 Discussion of Possible Extensions 93
7.7 Related Work . 95
7.8 Scientific Output . 96

8 Extension: Quantified Constraints 99
8.1 Introduction . 99
8.2 Motivation . 101

8.2.1 Precise and Succinct Specifications 101
8.2.2 Terminating Corecursive Resolution 103
8.2.3 Summary . 104

8.3 Declarative Type System . 105
8.3.1 Syntax . 105
8.3.2 The Type System . 107
8.3.3 Constraint Entailment 109
8.3.4 Remaining Nondeterminism 111

8.4 Type Inference . 113
8.4.1 Preliminaries . 114
8.4.2 Constraint Generation For Terms 115
8.4.3 Constraint Solving . 115
8.4.4 Checking Declarations 120
8.4.5 Program Typing . 121

8.5 Translation to System F . 121
8.5.1 Target Language: System F 121
8.5.2 Elaboration of Types & Constraints 122
8.5.3 Elaboration of Terms . 122
8.5.4 Dictionary Construction 123
8.5.5 Declaration Elaboration 124

x CONTENTS

8.6 Termination of Resolution . 125
8.7 Related Work . 127
8.8 Quantified Constraints in GHC 130
8.9 Scientific Output . 131

9 Meta Theory: Coherence for Quantified Constraints 133
9.1 Introduction . 133
9.2 Calculus Updates . 134

9.2.1 λ⇒TC Updates . 134
9.2.2 Example Derivation . 137
9.2.3 F⇒D Updates . 138
9.2.4 Example Translation . 140

9.3 Meta-Theory . 142
9.3.1 F⇒D Type Safety . 142
9.3.2 Strong Normalisation for F⇒D 143
9.3.3 Elaboration from λ⇒TC to F⇒D 143
9.3.4 Elaboration from F⇒D to F{} 143

9.4 Coherence . 145
9.4.1 Logical Relations . 145
9.4.2 Coherence Theorem Updates 146

9.5 Conclusion . 150

10 Conclusion 151
10.1 Parametric Polymorphism . 151
10.2 Ad-Hoc Polymorphism . 154

A Additional Relations 159
A.1 MPLC Additional Definitions 159
A.2 MPLC Core Language Definitions 161

A.2.1 Translation from the Mixed Polymorphic λ-calculus . . 165
A.3 λTC Additional Definitions . 170

A.3.1 Syntax . 170
A.3.2 λTC Judgments and Elaboration 170
A.3.3 λTC Judgments and Elaboration through FD 177

A.4 λ⇒TC Declarative Type System Additional Judgments 188
A.4.1 Well-formedness of Types & Constraints 188
A.4.2 Program Typing . 188
A.4.3 Elaboration of Programs 189

A.5 λ⇒TC Additional Definitions . 190
A.5.1 Syntax . 190
A.5.2 λ⇒TC Judgments and Elaboration 190
A.5.3 λ⇒TC Judgments and Elaboration through F⇒D 197
A.5.4 Unification Algorithm 208

CONTENTS xi

A.6 FD Additional Definitions . 209
A.6.1 Syntax . 209
A.6.2 FD Judgments and Elaboration 210

A.7 F⇒D Additional Definitions . 216
A.7.1 Syntax . 216
A.7.2 FD Judgments and Elaboration 217

A.8 F{} Additional Definitions . 224
A.8.1 Syntax . 224
A.8.2 F{} Judgments . 225

A.9 System F with Data Types Definitions 227
A.9.1 Term Typing . 228
A.9.2 Well-formedness of Types 228
A.9.3 Program Typing . 228
A.9.4 Value Binding Typing 229
A.9.5 Datatype Declaration Typing 229
A.9.6 Call-by-name Operational Semantics 229

B Stability Proofs 231
B.1 Let-Inlining and Extraction . 231
B.2 Contextual Equivalence . 234
B.3 Let-Inlining and Extraction, Continued 238
B.4 Type Signatures . 240
B.5 Pattern Inlining and Extraction 247
B.6 Single vs. Multiple Equations 250
B.7 η-expansion . 251

C Coherence Proofs 253
C.1 Logical Relations . 253

C.1.1 Dictionary Relation . 253
C.1.2 Expression Relation . 255
C.1.3 Environment Relation 257

C.2 Strong Normalization Relations 258
C.2.1 Dictionary Relation . 259
C.2.2 Expression Relation . 259

C.3 Equivalence Relations . 261
C.3.1 Kleene Equivalence Relations 261
C.3.2 Contextual Equivalence Relations 261

C.4 λ⇒TC Theorems . 262
C.4.1 Conjectures . 262
C.4.2 Lemmas . 263
C.4.3 Typing Preservation . 268

C.5 FD Theorems . 291
C.5.1 Conjectures . 291

xii CONTENTS

C.5.2 Lemmas . 293
C.5.3 Type Safety . 296
C.5.4 Strong Normalization 307

C.6 Elaboration Equivalence Theorems 329
C.7 Coherence Theorems . 354

C.7.1 Compatibility Lemmas 354
C.7.2 Helper Theorems . 378
C.7.3 Partial Coherence Theorems 412
C.7.4 Main Coherence Theorems 428

C.8 FD-to-F{} Theorems . 434
C.8.1 Lemmas . 434
C.8.2 Soundness . 437
C.8.3 Determinism . 448
C.8.4 Semantic Preservation 458

Bibliography 471

List of Figures

2.1 Grammar for the λ calculus . 8
2.2 Operational Semantics for the λ calculus 8
2.3 Typing Rules for the STLC . 9
2.4 Grammar for the STLC, Extension of Figure 2.1 9

3.1 Grammar for System F, Extension of Figure 2.4 13
3.2 Typing Rules for System F, Extension of Figure 2.3 13
3.3 Grammar for HM, Extension of Figure 2.4 14
3.4 Typing Rules for HM, Extension of Figure 2.3 14

5.1 Mixed Polymorphic λ-Calculus (MPLC) Syntax 26
5.2 Term Typing for Mixed Polymorphic λ-Calculus 30
5.3 Argument and Declaration Typing for Mixed Polymorphic λ-

Calculus . 31
5.4 Pattern Typing for Mixed Polymorphic λ-Calculus 32
5.5 Type Instantiation and Skolemisation 33

6.1 Overview of the different calculi of Part II. 52
6.2 λTC syntax . 57
6.3 λTC typing, selected rules . 60
6.4 Closure and unambiguity relations 61
6.5 λTC constraint entailment . 62
6.6 λTC instance declaration typing 62
6.7 Target language syntax . 63

7.1 The different calculi with elaborations 73
7.2 FD, selected syntax . 76
7.3 FD typing and operational semantics, selected rules 78
7.4 FD environment well-formedness, selected rules 79
7.5 FD dictionary typing . 79
7.6 λTC typing with elaboration to FD, selected rules 81

xiii

xiv LIST OF FIGURES

7.7 λTC constraint entailment with elaboration to FD 82

8.1 Source Syntax . 105
8.2 Declarative Type System (Selected Rules) 106
8.3 Tractable Constraint Entailment 110
8.4 Unambiguity . 113
8.5 Constraint Generation for Terms with Elaboration 114
8.6 Constraint Entailment with Dictionary Construction 117
8.7 Declaration Elaboration . 118
8.8 Subsumption Rule . 120
8.9 System F Syntax . 121

9.1 Updated Grammar for λ⇒TC with Type Annotations, Extension
of Figure 8.1 . 135

9.2 Constraint resolution for λ⇒TC 136
9.3 Example Constraint Entailment Derivation 139
9.4 Grammar for F⇒D , extension of Figure 7.2 140
9.5 Dictionary typing relation for F⇒D 141
9.6 Operational Semantics for F⇒D , Extension of Figure 7.3 142
9.7 Strong Normalisation Relation for Dictionaries 144
9.8 Updated Logical Relations for Dictionaries 147
9.9 Updated Logical Relations for Expressions, Extension of Defini-

tions 6 and 7 . 148

B.1 Relation dependencies . 232
B.2 Counting Explicit Arguments . 251

C.1 Dependency graph for Typing Preservation Theorems 269
C.2 Dependency graph for Strong Normalization Theorems 316
C.3 Dependency graph for Equivalence Theorems 329
C.4 Dependency graph for Coherence Theorems 409

Chapter 1

Introduction

“He was determined to discover
the underlying logic behind the
universe. Which was going to be
hard, because there wasn’t one.”

Mort
Terry Pratchett

The exponential growth of software development, that we have seen over the past
few decades, is posing ever more complex problems for software developers [57].
The market demands increasingly complicated software, with more features,
more performance, fewer bugs and with minimal development cost and time.
As an example, consider the on-board software on space missions, which has
steadily increased by a factor of 10, every 10 years, for the past 50 years [2].

Increasing the scope of software complexity that programmers can effectively
manage, can be partly achieved by improving the programming languages and
the tools at their disposal.

Static Typing One well-established approach of making software development
more manageable, is through the use of a static type system. Conceptually, a
type is a property of an expression or value, that denotes how the programmer
intends to use this object. For example the value 42 (an Integer) supports
different operations than the text "hello world" (a String). The type system
consists of a set of judgements assigning types to expressions, and restricting
which operations are allowed on which expressions. Static type systems detect

1

2 INTRODUCTION

certain kinds of errors early on, at compile time. For this reason, they are used
extensively in many mainstream languages like C#, C++ and Java. Empirical
research [78] shows a noticable, yet modest effect of type systems on the total
number of bugs, but more large-scale studies are needed to measure their impact.

Implicit Type-Directed Code Generation More recently, type systems have
expanded their scope beyond reducing the number of bugs, and into increasing
programmer productivity by automatically generating parts of the software. In
particular, repetitive code (so-called boilerplate) whose definition depends on
the structure of the types, can often be automatically generated. This text
focusses on such code that is generated implicitly at compile time, invisible to
the programmer.

Polymorphism Since the early days of computer programming, developers
have been looking for ways to stop reinventing the wheel and to reuse their
existing code. For example, generic programming [63] was introduced as a
way of reusing implementations. This text focusses on polymorphism, where a
function can be reused on arguments of different types. As customary [90], we
differentiate between two different forms of polymorphism: Firstly, parametric
polymorphism allows a function to abstract over any type, and behave uniformly,
independently of its type. A common example is computing the length of a list,
which acts uniformly over lists of Integers, and over lists of Strings. Secondly,
ad-hoc polymorphism allows a function to differentiate its behaviour, depending
on the type of its arguments. A common example is computing the equality of
two objects.

Stability We consider a language stable when it is robust to small, seeminingly-
innocuous changes to the program code. In other words, applying common
code transformations should not have a dramatic impact on the meaning of the
program. This property turns out to be an import metric in languages with a
mix of both implicit and explicit features. Chapter 5 explains the concept in
more detail.

1.1 Haskell

This thesis text largely focusses on Haskell, as it features a state-of-the-art,
powerful static type system, and takes a pioneering role with new compiler and
type system features. Furthermore, Haskell features advanced systems for both
parametric and ad-hoc polymorphism (through type classes).

AIM OF THE THESIS 3

Parametric Polymorphism Consider the function pair :: ∀ a b. a → b → (a, b)
which takes two arguments and constructs a tuple containing both. The
implementation is straightforward pair x y = (x , y). Note that this function is
parametrically polymorphic as it works on any two arguments, of any two types:
pair performs the exact same operation in both pair 5 ’x’ and pair True id .

Ad-Hoc Polymorphism As a second example, consider a function show ::
∀ a. a→ String , which serialises an argument into a String value. As serialisation
depends on the type of its argument (e.g., serializing an Integer is quite different
from serializing a boolean), we need to provide several distinct implementations.
We do this using Haskells type classes, as follows:

class Show a where
show :: a→ String

instance Show Bool where
show True = "True"
show False = "False"

instance Show Int where
show = showInt

Note that—unlike with parametric polymorphism, which operates on any type—
we have now only defined show for a specific number of types.

While both parametric and ad-hoc polymorphism features in Haskell are used
in academia and industry alike, the meta-theory behind these features—both in
terms of correctness and stability—can certainly be explored further.

1.2 Aim of the Thesis

The goal of this thesis is to improve the current state of the art in polymorphism.
In particular, we aim to answer the following research questions:

Question 1: How can we improve the stability of polymorphism
features?
Question 2: How can we increase the expressivity of polymorphism
features?
Question 3: How can we increase confidence in implicit program-
ming features for polymorphism?

We answer these questions by formally evaluating and proving important
correctness and stability properties of implicit programming features. Concretely,

4 INTRODUCTION

Part I of the thesis focusses on stability properties of parametric polymorphism in
Haskell. Part II focusses on a property of type classes, related to its predictability
and non-ambiguity. This increases confidence in this form of implicit code
generation for mission-critical software, and consequently may increase its usage
in industry. Furthermore, the thesis introduces a number of new features as a
case study of the aforementioned evaluations.

While the examples and use cases presented in this thesis are in the Haskell
language, we focus on the evaluation of more general properties. We are thus
confident that the results from this work are more broadly applicable.

1.3 Thesis Overview

This thesis consists of two main parts: Parametric Polymorphism and Ad-Hoc
Polymorphism.

1.3.1 Part I: Parametric Polymorphism

The first part is concerned with the stability of parametric polymorphism in
Haskell. We formalize the concept of stability as a way of evaluating user-facing
design decisions. We then apply it to improve type instantiation with both
implicit and explicit arguments.

The material found in this part is largely taken from the following publication:

Gert-Jan Bottu and Richard A. Eisenberg. 2021. Seeking
stability by being lazy and shallow: lazy and shallow instantiation
is user friendly. In Proceedings of the 14th ACM SIGPLAN
International Symposium on Haskell (Haskell 2021). Associa-
tion for Computing Machinery, New York, NY, USA, 85–97.
DOI:https://doi.org/10.1145/3471874.3472985

Chapters 2, 3 and 4 provide the necessary background knowledge. Chapter 5
introduces and evaluates the concept of stability. The formal proofs can be
found in Appendix B.

THESIS OVERVIEW 5

1.3.2 Part II: Ad-Hoc Polymorphism

The second part focuses on the concept of coherence as a correctness and
predictability property of type classes in Haskell. Furthermore, we discuss
quantified class constraints as a case study.

The material found in this part is partially taken from the following publications:

Gert-Jan Bottu, Ningning Xie, Koar Marntirosian, and Tom
Schrijvers. 2019. Coherence of type class resolution. Proc. ACM
Program. Lang. 3, ICFP, Article 91 (August 2019), 28 pages.
DOI:https://doi.org/10.1145/3341695

Gert-Jan Bottu, Georgios Karachalias, Tom Schrijvers, Bruno
C. d. S. Oliveira, and Philip Wadler. 2017. Quantified
class constraints. In Proceedings of the 10th ACM SIGPLAN
International Symposium on Haskell (Haskell 2017). Associa-
tion for Computing Machinery, New York, NY, USA, 148–161.
DOI:https://doi.org/10.1145/3122955.3122967

Chapter 6 provides the necessary background knowledge on ad-hoc polymor-
phism in Haskell. Chapter 7 introduces and evaluates the concept of coherence.
Quantified class constraints are introduced in Chapter 8. Chapter 9 evaluates
the impact of this extension on our proof of coherence. The adapted proof of
coherence with quantified constraints can be found in Appendix C. The specific
contributions of the author of this thesis are enumerated at the end of each
chapter.

Chapter 2

Laying the Foundations

“Prepare to be amazed!”

George Karachalias

This chapter introduces a number of concepts used extensively throughout the
thesis. Note that this text only provides a very brief taste of these fascinating
topics. If you’re interested to explore them in more detail, I heartily recommend
the bible of programming languages: Pierce [75]. Alternatively, if you already
have a basis in programming language and type theory, you can freely skip
ahead to Chapter 4.

2.1 Programming Languages

While programmable computers have only existed for about 80 years, a plethora
of different programming languages exist. These range dramatically in their level
of expressiveness (general purpose languages vs. domain specific languages), level
of abstraction (high level vs. low level languages), verification of programmer
code (static typing vs. dynamic types vs. ...) etc. When working with
programming languages, and even more so when investigating the meta-theory
of these languages, it is often useful to have a formal specification.

The first step in constructing a formal specification for a programming language
is to describe a grammar for the possible syntactical constructs. For instance,
Figure 2.1 shows an inductive definition for a simple programming language (the

7

8 LAYING THE FOUNDATIONS

e ::= x | e1 e2 | λx.e Expression

Figure 2.1: Grammar for the λ calculus

e −→ e′ (Operational Semantics)

e1 −→ e′1
e1 e2 −→ e′1 e2

TmApp
(λx.e1) e2 −→ [e2/x]e1

TmAppAbs

Figure 2.2: Operational Semantics for the λ calculus

untyped λ calculus). Expressions e in this language consist of variables—which,
throughout this text, we will denote with x and y—, applications e1 e2 and
abstractions λx.e.

2.2 Dynamic Semantics

Being able to execute programs is a crucial aspect of any programming language.
Computation in functional programming languages can often be represented
using β-reduction: (λx.e1) e2 [e2/x]e1. This states that applying a function
λx.e1 to an expression e2 is equivalent to replacing every occurrence of x in
e1 with e2. For example, Figure 2.2 shows the operational semantics for the
toy language showcased above. This example describes call-by-name semantics,
where evaluation is postponed for as long as possible.

2.3 Static Semantics

As introduced in Chapter 1, static type systems are used extensively as a way
of avoiding computer bugs. A sufficiently powerful type system can differentiate
between a ’valid’ or well-typed program, and a program that might potentially
get stuck or crash. For illustration purposes, Figure 2.3 shows a declarative
specification of a type system for the λ-calculus described in the previous section.
This system is known as the Simply Typed λ-Calculus (STLC).

The relation Γ t̀m e : τ denotes that, under typing environment Γ, the expression
e is well-formed and is assigned the type τ . A type τ in the STLC is either

META-THEORY 9

Γ t̀m e : τ (Term Typing)

Γ t̀m true : Bool
TmTrue

Γ t̀m false : Bool
TmFalse

(x : τ) ∈ Γ
Γ t̀m x : τ

TmVar

x /∈ dom(Γ)
Γ, x : τ1 t̀m e : τ2

Γ t̀m λ(x : τ1).e : τ1 → τ2
TmAbs

Γ t̀m e1 : τ1 → τ2 Γ t̀m e2 : τ1
Γ t̀m e1 e2 : τ2

TmApp

Figure 2.3: Typing Rules for the STLC

e ::= true | false | λ(x : τ).e | . . . Expression
τ ::= Bool | τ1 → τ2 Type
Γ ::= • | Γ, x : τ Typing Environment

Figure 2.4: Grammar for the STLC, Extension of Figure 2.1

a base type like Bool, or a function type τ1 → τ2. The typing environment Γ
consists of a list of term variables x that may appear free in e. Free variables
are variables that are not introduced by a lambda binder in e, and are thus
available to be substituted. We say that λ(x : τ).e binds the variable x in e.
The definitions of these symbols are given in Figure 2.4. Applications e1 e2 are
typed (TmApp) by verifying that e1 has a function type, and that the type of
e2 corresponds to the expected argument type of e1. Abstractions λ(x : τ1).e
are typed (TmAbs) by extending the typing environment Γ with the newly
bound variable x and its accompanying type τ1. The abstraction itself is then
assigned a function type τ1 → τ2. Finally, a variable is typed (TmVar) by
looking up its type in the typing environment Γ.

2.4 Meta-Theory

While including a static type system has the potential to reduce bugs, generate
boilerplate code, and all-round improve developer productivity, it does come
with an up-front cost. Many programming languages require the programmer
to write type annotations (either on every declaration like in Java, or selectively
like in Haskell), which takes additional development time.

It is thus not unreasonable to demand formal guarantees that the type system
itself is in fact ’correct’, in exchange for the additional effort. This is even more

10 LAYING THE FOUNDATIONS

important in the context of mission critical software, for banks, hospitals, etc.
Defining correctness is not straightforward, and often involves multiple different
correctness properties.

These correctness properties can be proven using the formal specification of the
language, such as the one described in this chapter. Common properties for a
type system include

• progress: Any well-typed expression is either already a value (in our case,
a boolean value or a function), or can be evaluated further. In other
words, its evaluation is not stuck.

• preservation: When a well-typed expression takes an evaluation step, the
resulting expression remains well-typed with the same type.

Commonly investigated properties for a typing algorithm include

• soundness: Any type inferred by the algorithm, is in fact a valid type for
the given expression in the declarative specification of the type system.

• completeness: Any valid type for the declarative specification can also be
derived by the algorithm.

• termination: The type system halts for every possible input program.

Part I

Parametric Polymorphism

11

Chapter 3

Polymorphic Types

"Let W be a classical watch ; a
mustard watch derived from W is
any W’ obtained from W by
adding a certain amount of
mustard in the mechanism."

An integrated approach to time
and food [81]

Jean-Yves Girard

3.1 System F

While the STLC described in Chapter 2 is provably type safe, it is not very
expressive. In fact, the calculus does not support polymorphic functions - the
topic of this thesis - in any form. In order to solve this issue, Girard and
Reynolds [29, 79] created an extension of the STLC with type-level abstraction:
System F.

This extension to the syntax of the language is shown in Figure 3.1. Similarly to
term variables, System F additionally features type variables, which we denote
with a. For System F, we will denote types using σ, which feature abstractions
∀a.σ. Expressions e now support abstracting over a type variable as Λa.e, as
well as instantiating a type variables with a given type in e σ.

12

HINDLEY MILNER 13

e ::= Λa.e | e σ | . . . Expression
σ ::= Bool | a | σ1 → σ2 | ∀a.σ Type
Γ ::= • | Γ, x : τ | Γ, a Typing Environment

Figure 3.1: Grammar for System F, Extension of Figure 2.4

Γ t̀y σ (Type Well-Formedness)

Γ t̀y Bool
TyBool

a ∈ Γ
Γ t̀y a

TyVar

Γ t̀y σ1 Γ t̀y σ2

Γ t̀y σ1 → σ2
TyArrow

Γ, a t̀y σ

Γ t̀y ∀a.σ
TyForall

Γ t̀m e : σ (Term Typing)

a /∈ Γ Γ, a t̀m e : σ
Γ t̀m Λa.e : ∀a.σ

TmTyAbs
Γ t̀m e : ∀a.σ Γ t̀y σ1

Γ t̀m e σ1 : [σ1/a]σ
TmTyApp

Figure 3.2: Typing Rules for System F, Extension of Figure 2.3

The new typing rules are shown in Figure 3.2. Similarly to term abstractions,
typing a type abstraction (TmTyAbs) entails binding the newly declared type
variable a in the typing environment Γ, and checking the remaining expression
under this extended environment. Correspondingly, type applications provide
a type σ with which to substitute the type variable a. Furthermore, as types
now contain variables, a well-formedness relation Γ t̀y σ is included to check
the well-scopedness of variables.

3.2 Hindley Milner

As discussed previously, while static type systems have great potential to
increase programmer productivity, they are not free, and manually writing type
annotations poses a significant up-front cost. Thankfully, this is not always
required. A compiler like GHC can infer most common types by itself. Under
the hood, this type inference process is based on the well-known Hindley-Milner
(HM) algorithm [17]. Type inference requires making a difficult trade-off between
decidability and expressiveness: On one side of the spectrum, type inference for

14 POLYMORPHIC TYPES

e ::= λx.e | . . . Expression
τ ::= Bool | τ1 → τ2 Monotype
σ ::= τ | ∀a.σ Polytype

Figure 3.3: Grammar for HM, Extension of Figure 2.4

Γ t̀m e : σ (Term Typing)

x /∈ dom(Γ)
Γ, x : τ1 t̀m e : τ2 Γ t̀y τ1

Γ t̀m λx.e : τ1 → τ2
TmAbs

Γ t̀m e1 : τ1 → τ2
Γ t̀m e2 : τ1

Γ t̀m e1 e2 : τ2
TmApp

a /∈ Γ
Γ, a t̀m e : σ
Γ t̀m e : ∀a.σ

TmGen

Γ t̀m e : ∀a.σ
Γ t̀y τ

Γ t̀m e : [τ/a]σ
TmInst

(x : σ) ∈ Γ
Γ t̀m x : σ

TmVar

Figure 3.4: Typing Rules for HM, Extension of Figure 2.3

a language like STLC is trivial, but the language is too limiting to be usable in
practice. On the other side of the spectrum, full type inference for an expressive
language like System F has been proven to be undecidable. This is the main
reason behind the success of the HM algorithm, as it strikes a great balance,
providing decidable inference for a highly expressive language.

Striking this balance thus means making a small restriction on the System F
language. While HM does support type abstraction, it only allows these forall
abstractions on front of the type. Figure 3.3 shows the updated grammar for
the language, which shows this new distinction between types. Polytypes or
type schemes σ allow for type abstraction, while monotypes τ are the simple
types from Section 2.3.

Figure 3.4 presents a declarative specification of the HM typing system. The
actual type inference algorithm, Algorithm W is out of scope for this text, and
can be found in [59]. Note that this specification is no longer syntax directed,
and allows for generalisation (TmGen) and instantiation (TmInst) of polytypes
when needed. Also note that, since both function arguments and results are
restricted to monotypes, TmInst might have to applied before rules TmAbs and
TmApp. Type well-formedness operates identically to the System F relation
(Figure 3.2), but is now split in separate relations for monotypes and polytypes.
The relation is omitted due to space constraints.

Chapter 4

Type Instantiation

This idea that there is generality
in the specific is of far-reaching
importance.

Gödel, Escher, Bach
Douglas R. Hofstadter

4.1 Introduction

Programmers naturally wish to get the greatest possible utility from their work.
They thus embrace polymorphism: the idea that one function can work with
potentially many types. A simple example is const :: ∀ a b. a → b → a, which
returns its first argument, ignoring its second. The question then becomes:
what concrete types should const work with at a given call site? For example,
if we say const True ’x’, then a compiler needs to figure out that a should
become Bool and b should become Char . The process of taking a type variable
and substituting in a concrete type is called instantiation. Choosing a correct
instantiation is important; for const, the choice of a 7→ Bool means that the
return type of const True ’x’ is Bool . A context expecting a different type
would lead to a type error.

In the above example, the choices for a and b in the type of const were inferred.
Haskell, among other languages, also gives programmers the opportunity to
specify the instantiation for these arguments [24]. For example, we might say

15

16 TYPE INSTANTIATION

const @Bool @Char True ’x’ (choosing the instantiations for both a and b)
or const @Bool True ’x’ (still allowing inference for b). However, once we
start allowing user-directed instantiation, many thorny design issues arise. For
example, will let f = const in f @Bool True ’x’ be accepted?

Our concerns are rooted in concrete design questions in Haskell, as embodied
by the Glasgow Haskell Compiler (GHC). Specifically, as Haskell increasingly
has features in support of type-level programming, how should its instantiation
behave? Should instantiating a type like Int → ∀ a. a → a yield Int → α→ α
(where α is a unification variable), or should instantiation stop at the regular
argument of type Int, thus resulting in an unchanged type? This is a question of
the depth of instantiation. Suppose now f :: Int → ∀ a. a→ a. Should f 5 have
type ∀ a. a→ a or α→ α? This is a question of the eagerness of instantiation.
As we explore in Section 5.1, these questions have real impact on our users.

Unlike much type-system research, our goal is not simply to make a type-safe
and expressive language. Type-safe instantiation is well understood [e.g., 17, 79].
Instead, we wish to examine the stability of a design around instantiation.
Intuitively, a language is stable if small, seemingly-innocuous changes to the
source code of a program do not cause large changes to the program’s behaviour;
we expand on this definition in Section 5.1. We use stability as our metric for
evaluating instantiation schemes in GHC.

Though we apply stability as the mechanism of studying instantiation within
Haskell, we believe our approach is more widely applicable, both to other user-
facing design questions within Haskell and in the context of other languages.

4.2 Instantiation in GHC

Visible type application and variable specificity are fixed attributes of the designs
we are considering.

Visible type application Since GHC 8.0, Haskell has supported visible
instantiation of type variables, based on the order in which those variables
occur [24]. Given const :: ∀ a b. a → b → a, we can write const @Int @Bool ,
which instantiates the type variables, giving us an expression of type Int →
Bool → Int. If a user wants to visibly instantiate a later type parameter (say,
b) without choosing an earlier one, they can write @ to skip a parameter. The
expression const @ @Bool has type α→ Bool → α, for any type α.

INSTANTIATION IN GHC 17

Specificity Eisenberg et al. [24, Section 3.1] introduce the notion of type
variable specificity. The key idea is that quantified type variables are either
written by the user (these are called specified) or invented by the compiler (these
are called inferred). A specified variable is available for explicit instantiation
using, e.g., @Int; an inferred variable may not be explicitly instantiated.

To understand the need for this distinction, consider the following Haskell
program

myPair x y = (x , y)

We expect the compiler to infer a polymorphic type, but the programmer never
specified the order of the type variables. Allowing explicit type instantiation for
these compiler infered variables could thus result in fragile and hard to predict
behaviour.

Following GHC, we use braces to denote inferred variables. Thus, if we have
the program

id1 :: a→ a
id1 x = x
id2 x = x

then we would write that id1 ::∀ a. a→ a (with a specified a) and id2 ::∀ {a}. a→
a (with an inferred a). Accordingly, id1 @Int is a function of type Int → Int,
while id2 @Int is a type error.

4.2.1 Deep vs. Shallow Instantiation

The first aspect of instantiation we seek to vary is its depth, which type variables
get instantiated. Concretely, shallow instantiation affects only the type variables
bound before any explicit arguments. Deep instantiation, on the other hand,
also instantiates all variables bound after any number of explicit arguments. For
example, consider a function f :: ∀ a. a→ (∀ b. b → b)→ ∀ c. c → c . A shallow
instantiation of f ’s type instantiates only a, whereas deep instantiation also
affects c, despite c’s deep binding site. Neither instantiation flavour touches b
however, as b is not an argument of f .

Versions of GHC up to 8.10 perform deep instantiation, as originally introduced
by Peyton Jones et al. [73], but GHC 9.0 changes this design, as proposed by
Peyton Jones [70] and inspired by Serrano et al. [85]. In this chapter, we study
this change through the lens of stability.

18 TYPE INSTANTIATION

4.2.2 Eager vs. Lazy Instantiation

Our work also studies the eagerness of instantiation, which determines
the location in the code where instantiation happens. Eager instantiation
immediately instantiates a polymorphic type variable as soon as it is mentioned.
In contrast, lazy instantiation holds off instantiation as long as possible until
instantiation is necessary in order to, say, allow a variable to be applied to an
argument.

For example, consider these functions:

pair :: ∀ a. a→ ∀ b. b → (a, b)
pair x y = (x , y)
myPairX x = pair x

What type do we expect to infer for myPairX? With eager instantiation, the
type of a polymorphic expression is instantiated as soon as it occurs. Thus,
pair x will have a type β → (α, β), assuming we have guessed x :: α. (We use
Greek letters to denote unification variables.) With neither α nor β constrained,
we will generalise both, and infer ∀ {a} {b}. a → b → (a, b) for myPairX .
Crucially, this type is different than the type of pair .

Let us now replay this process with lazy instantiation. The variable pair has
type ∀ a. a→ ∀ b. b → (a, b). In order to apply pair of that type to x , we must
instantiate the first quantified type variable a to a fresh unification variable α,
yielding the type α→ ∀ b. b → (α, b). This is indeed a function type, so we can
consume the argument x , yielding pair x :: ∀ b. b → (α, b). We have now type-
checked the expression pair x , and thus we take the parameter x into account
and generalise this type to produce the inferred type myPairX :: ∀ {a}. a →
∀ b. b → (a, b). This is the same as the type given for pair , modulo the specificity
of a.

As we have seen, thus, the choice of eager or lazy instantiation can change the
inferred types of definitions. In a language that allows visible instantiation
of type variables, the difference between these types is user-visible. With
lazy instantiation, myPairX True @Char ’x’ is accepted, whereas with eager
instantiation, it would be rejected.

Chapter 5

Meta Theory: Stability

5.1 Stability

We have described stability as a measure of how small transformations—call
them similarities—in user-written code might drastically change the behaviour
of a program. This section lays out the specific similarities we will consider with
respect to our instantiation flavours. There are naturally many transformations
one might think of applying to a source program. We have chosen ones that
relate best to instantiation; others (e.g. does a function behave differently
in curried form as opposed to uncurried form?) do not distinguish among
our flavours and are thus less interesting in our concrete context. We include
examples demonstrating each of these, showing how instantiation can become
muddled. While these examples are described in terms of types inferred for
definitions that have no top-level signature, many of the examples can easily be
adapted to include a signature. After presenting our formal model of Haskell
instantiation, we check our instantiation flavours against these similarities in
Section 5.3, with proofs in Appendix B.

We must first define what we mean by the “behaviour” of a program. We
consider two different notions of behaviour, both the compile time semantics
of a program (that is, whether the program is accepted and what types are
assigned to its variables) and its runtime semantics (that is, what the program
executes to, assuming it is still well typed). We write, for example, C+R⇐==⇒
to denote a similarity that we expect to respect both compile and runtime
semantics. Concretely, this means that applying the transformation preserves
both the type and the resulting value of the expression. Similarly, R⇐⇒ is one

19

20 META THEORY: STABILITY

that we expect only to respect runtime semantics, but may change compile time
semantics. Thirdly, C+R===⇒ denotes a one-directional similarity that we expect
to respect both compile and runtime semantics.

Similarity 1: Let-Inlining and Extraction

A key concern for us is around let -inlining and -extraction. That is, if we bind
an expression to a new variable and use that variable instead of the original
expression, does our program change meaning? Or if we inline a definition, does
our program change meaning? These notions are captured in Similarity 1:1

let x = e1 in e2
C+R⇐==⇒ [e1/x] e2

Example 1: myId The Haskell standard library defines id :: ∀ a. a → a as
the identity function. Suppose we made a synonym of this (using the implicit
top-level let of Haskell files), with the following:

myId = id

Note that there is no type signature. Even in this simple example, our choice
of instantiation eagerness changes the type we infer:

myId eager lazy
deep or shallow ∀ {a}. a→ a ∀ a. a→ a

Under eager instantiation, the mention of id is immediately instantiated,
and thus we must re-generalise in order to get a polymorphic type for myId .
Generalising always produces inferred variables, and so the inferred type for
myId starts with ∀ {a}, meaning that myId cannot be a drop-in replacement
for id , which might be used with explicit type instantiation. On the other hand,
lazy instantiation faithfully replicates the type of id and uses it as the type of
myId .

Example 2: myPair This problem gets even worse if the original function has
a non-prenex type, like our pair , above. Our definition is now:

myPair = pair

With this example, both design axes around instantiation matter:
1A language with a strict let construct will observe a runtime difference between a let

binding and its expansion, but this similarity would still hold with respect to type-checking.

STABILITY 21

myPair eager lazy
deep ∀ {a} {b}. a→ b → (a, b) ∀ a. a→ ∀ b. b → (a, b)
shallow ∀ {a}. a→ ∀ b. b → (a, b) ∀ a. a→ ∀ b. b → (a, b)

All we want is to define a simple synonym, and yet reasoning about the types
requires us to consider both depth and eagerness of instantiation.

Example 3: myPairX The myPairX example above acquires a new entangle-
ment once we account for specificity. We define myPairX with this:

myPairX x = pair x

We infer these types:

myPairX eager lazy
deep or shallow ∀ {a} {b}. a→ b → (a, b) ∀ {a}. a→ ∀ b. b → (a, b)

Unsurprisingly, the generalised variables end up as inferred, instead of specified.

Similarity 2: Signature Property

The second similarity annotates a let binding with the inferred type σ of the
bound expression e1. We expect this similarity to be one-directional, as dropping
a type annotation may indeed change the compile time semantics of a program,
as we hope programmers expect.

f πi = ei
i C+R===⇒ f : σ; f πi = ei

i
, where σ is the inferred type of f

where f πi = ei
i denotes a declaration for f , consisting of i equations, with

patterns πi and definitions ei . The syntax is explained in greater detail in
Section 5.2.

Example 4: infer Though not yet implemented, we consider a version of
Haskell that includes the ability to abstract over type variables, the subject of
an approved proposal for GHC [22]. With this addition, we can imagine writing
infer :

infer = λ @a (x :: a)→ x

We would infer these types:

22 META THEORY: STABILITY

infer eager lazy
deep or shallow ∀ {a}. a→ a ∀ a. a→ a

Note that the eager variant will infer a type containing an inferred quantified
variable {a}. this is because the expression λ @a (x :: a) → x is instantly
instantiated; it is then let-generalised to get the type in the table above.

If we change our program to include these types as annotations, the eager type,
with its inferred variable, will be rejected. The problem is that we cannot check
an abstraction λ @a→ . . . against an expected type ∀ {a}. . . .: the whole point
of having an inferred specificity is to prevent such behaviour, as an inferred
variable should not correspond to either abstractions or applications in the
term.

Similarity 3: Type Signatures

Changing a type signature should not affect runtime semantics—except in the
case of type classes (or other feature that interrupts parametricity). Because our
work elides type classes, we can state this similarity quite generally; more fleshed-
out settings would require a caveat around the lack of type-class constraints.

f : σ1; f πi = ei
i R⇐⇒ f : σ2; f πi = ei

i

Example 5: swizzle Suppose we have this function defined2:

undef :: ∀ a. Int → a→ a
undef = undefined

Now, we write a synonym but with a slightly different type:

swizzle :: Int → ∀ a. a→ a
swizzle = undef

Shockingly, undef and swizzle have different runtime behaviour: forcing undef
diverges (unsurprisingly), but forcing swizzle has no effect. The reason is that
the definition of swizzle is not as simple as it looks. In the System-F-based
core language used within GHC, we have swizzle = λ(n :: Int)→ Λ(a :: Type)→
undef @a n. Accordingly, swizzle is a function, which is already a value3.

2This example is inspired by Peyton Jones [70].
3Similarly to swizzle, the definition of undef gets translated into Λ(a :: Type) →

undefined @(Int → a → a). However, this is not a value as GHC evaluates underneath
the Λ binder. The evaluation relation can be found in Appendix A.2.

STABILITY 23

Under shallow instantiation, swizzle would simply be rejected, as its type is
different than undef ’s. The only way swizzle can be accepted is if it is deeply
skolemised (see Application in Section 5.2), a necessary consequence of deep
instantiation.

swizzle eager or lazy
deep converges
shallow rejected

Similarity 4: Pattern-Inlining and Extraction

The fourth similarity represents changing variable patterns (written to the left
of the = in a function definition) into λ-binders (written on the right of the =),
and vice versa. Here, we assume the patterns π contain only (expression and
type) variables. The three-place wrap relation is unsurprising. It denotes that
wrapping the patterns π around the expression e1 in lambda binders results in
e′1. Its definition can be found in Appendix A.1.

let x π = e1 in e2
C+R⇐==⇒ let x = e′1 in e2

where wrap (π; e1 e′1)

Example 6: infer2 , again Returning to the infer example, we might imagine
moving the abstraction to the left of the =, yielding:

infer2 @a (x :: a) = x

Under all instantiation schemes, infer2 will be assigned the type ∀ a. a → a.
Accordingly, under eager instantiation, the choice of whether to bind the
variables before the = or afterwards matters.

Similarity 5: Single vs. Multiple Equations

Our language model includes the ability to define a function by specifying
multiple equations. The type inference algorithm in GHC differentiates between
single and multiple equation declarations (see Section 5.3), and we do not want
this distinction to affect types. While normally new equations for a function
would vary the patterns compared to existing equations, we simply repeat the
existing equation twice; after all, the particular choice of (well-typed) pattern
should not affect compile time semantics at all.

f π = e C⇐⇒ f π = e, f π = e

24 META THEORY: STABILITY

Example 7: unitId1 and unitId2 Consider these two definitions:

unitId1 () = id
unitId2 () = id
unitId2 () = id

Both of these functions ignore their input and return the polymorphic identity
function. Let us look at their types:

eager lazy
unitId1 deep or shallow ∀ {a}. ()→ a→ a ()→ ∀ a. a→ a
unitId2 deep or shallow ∀ {a}. ()→ a→ a ∀ {a}. ()→ a→ a

The lazy case for UnitId1 is the odd one out: we see that the definition of
unitId1 has type ∀ a. a → a, do not instantiate it, and then prepend the ()
parameter. In the eager case, we see that both definitions instantiate id and
then re-generalise.

However, the most interesting case is the treatment of unitId2 under lazy
instantiation. The reason the type of unitId2 here differs from that of unitId1
is that the pattern-match forces the instantiation of id . As each branch of a
multiple-branch pattern-match must result in the same type, we have to seek
the most general type that is still less general than each branch’s type. Pattern
matching thus performs an instantiation step (regardless of eagerness), in order
to find this common type.

In the scenario of unitId2 , however, this causes trouble: the match instantiates
id , and then the type of unitId2 is re-generalised. This causes unitId2 to have a
different inferred type than unitId1 , leading to an instability.

Similarity 6: η-Expansion

And lastly, we want η-expansion not to affect types. (This change can reasonably
affect runtime behaviour, so we would never want to assert that η-expansion
maintains runtime semantics.)

e C⇐⇒ λx.e x, where e has a function type

Example 8: eta Consider these two definitions, where id :: ∀ a. a→ a:

noEta = id
eta = λx → id x

STABILITY 25

where we take x to be an unused variable. The two right-hand sides should
have identical meaning, as eta is simply the η-expansion of noEta. Yet, under
lazy instantiation, these two will have different types:

eager lazy
noEta deep or shallow ∀ {a}. a→ a ∀ a. a→ a
eta deep or shallow ∀ {a}. a→ a ∀ {a}. a→ a

The problem is that the η-expansion instantiates the occurrence of id in
eta, despite the lazy instantiation strategy. Under eager instantiation, the
instantiation happens regardless.

5.1.1 Stability

The examples in this section show that the choice of instantiation scheme
matters—and that no individual choice is clearly the best. To summarise, each
of our possible schemes runs into trouble with some example; this table lists
the numbers of the examples that witness a problem:

eager lazy
deep 1, 2, 3, 4, 5, 6 5, 7, 8
shallow 1, 2, 3, 4, 6 7, 8

At this point, the best choice is unclear. Indeed, these examples are essentially
where we started our exploration of this issue—with failures in each quadrant
of this table, how should we design instantiation in GHC?

To understand this better, Section 5.2 presents a formalisation of GHC’s type-
checking algorithm, parameterised over the choice of depth and eagerness.
Section 5.3 then presents properties derived from the similarities of this
section and checks which variants of our type system uphold which properties.
The conclusion becomes clear: lazy, shallow instantiation respects the most
similarities.

We now fix the definition of stability we will work toward in this chapter:

Definition (Stability). A language is considered stable when all of the program
similarities above are respected.

We note here that the idea of judging a language by its robustness in the face of
small transformations is not new; see, for example, Le Botlan and Rémy [53] or

26 META THEORY: STABILITY

δ ::= S | D Depth
ε ::= E | L Eagerness
τ ::= a | τ1 → τ2 | T τ Monotype
ρ ::= τ | σ → φδ Instantiated type
σ ::= ρ | ∀ a.σ | ∀ {a}.σ | σ1 → σ2 Type scheme
φδ ::= ρ (δ = D) | σ (δ = S) Instantiated result
ηε ::= ρ (ε = E) | σ (ε = L) Synthesised type
e ::= h arg | λx.e | Λa.e | let decl in e Expression
h ::= x | K | e : σ | e Application head
arg ::= e | @σ Application argument
decl ::= x : σ; x πi = ei

i | x πi = ei
i Declaration

π ::= x | K π | @σ Pattern
Σ ::= • | Σ,T a | Σ,K : a;σ; T Static context
Γ,∆ ::= Σ | Γ, x : σ | Γ, a Context
ψ ::= τ | @a Argument descriptor

Figure 5.1: Mixed Polymorphic λ-Calculus (MPLC) Syntax

Schrijvers et al. [83], who also consider a similar property. However, we believe
ours is the first work to focus on it as the primary criterion of evaluation.

Our goal in this work is not to eliminate instability, which would likely be too
limiting, leaving us potentially with either the Hindley-Milner implicit type
system or a System F explicit one. Both are unsatisfactory. Instead, our goal is
to make the consideration of stability a key guiding principle in language design.
The rest of this chapter uses the lens of stability to examine design choices
around ordered explicit type instantiation. We hope that this treatment serves
as an exemplar for other language design tasks and provides a way to translate
vague notions of an “intuitive” design into concrete language properties that
can be proved or disproved. Furthermore, we believe that instantiation is an
interesting subject of study, as any language with polymorphism must consider
these issues, making them less esoteric than they might first appear.

5.2 The Mixed Polymorphic λ-Calculus

In order to assess the stability of our different designs, this section develops a
polymorphic, stratified λ-calculus with both implicit and explicit polymorphism.
We call it the Mixed Polymorphic λ-calculus, or MPLC. Our formalisation
(based on Eisenberg et al. [24] and Serrano et al. [85]) features explicit type

THE MIXED POLYMORPHIC λ-CALCULUS 27

instantiation and abstraction, as well as type variable specificity. In order
to support visible type application, even when instantiating eagerly, we must
consider all the arguments to a function before doing our instantiation, lest
some arguments be type arguments. Furthermore, type signatures are allowed
in the calculus, and the bidirectional type system [76] permits higher-rank [64]
functions. Some other features, such as local let declarations defining functions
with multiple equations, are added to support some of the similarities we wish
to study.

We have built this system to support flexibility in both of our axes of instantiation
scheme design. That is, the calculus is parameterised over choices of instantiation
depth and eagerness. In this way, our calculus is essentially a family of type
systems: choose your design, and you can instantiate our rules accordingly.

5.2.1 Syntax

The syntax for MPLC is shown in Figure 5.1. We define two meta parameters
δ and ε denoting the depth and eagerness of instantiation respectively. In the
remainder of this chapter, grammar and relations which are affected by one of
these parameters will be annotated as such. A good example of this are types
φδ and ηε, as explained below.

Keeping all the moving pieces straight can be challenging. We thus offer
some mnemonics to help the reader: In the remainder of the chapter, aspects
pertaining to eager instantiation are highlighted in emerald, while lazy features
are highlighted in lavender. Similarly, instantiation under the shallow scheme
is drawn using a striped line, as in Γ ` σ inst S

99999K ρ.

Types Our presentation of the MPLC contains several different type categories,
used to constrain type inference. Monotypes τ represent simple ground types
without any polymorphism, while type schemes σ can be polymorphic, including
under arrows. In contrast, instantiated types ρ cannot have any top-level
polymorphism. However, depending on the depth δ of instantiation, a ρ-type
may or may not feature nested foralls on the right of function arrows. This
dependency on the depth δ of type instantiation is denoted using an instantiated
result type φδ on the right of the function arrow. Instantiating shallowly, φS
is a type scheme σ, but deep instantiation sees φD as an instantiated type ρ.
This makes sense: Int→ ∀ a.a→ a is a fully instantiated type under shallow
instantiation, but not under deep. We also have synthesised types ηε to denote
the output of the type synthesis judgement Γ ` e ⇒ ηε, which infers a type
from an expression. The shape of this type depends on the eagerness ε of

28 META THEORY: STABILITY

type instantiation: under lazy instantiation (L), inference can produce full
type schemes σ; but under eager instantiation (E), synthesised types ηε are
always instantiated types ρ: any top-level quantified variable would have been
instantiated away.

Finally, an argument descriptor ψ represents a type synthesised from analysing
a function argument pattern. Descriptors are assembled into type schemes σ
with the type (ψ;σ0 σ) judgement, in Figure 5.5.

Expressions Expressions e are mostly standard; we explain the less common
forms here.

As inspired by Serrano et al. [85], applications are modelled as applying a
head h to a (maximally long) list of arguments arg. The main idea is that
under eager instantiation, type instantiation for the head is postponed until
it has been applied to its arguments. A head h is thus defined to be either a
variable x, a data constructor K , an annotated expression e : σ or a simple
expression e. This last form will not be typed with a type scheme under eager
instantiation—that is, we will not be able to use explicit instantiation—but is
required to enable application of a lambda expression. As we feature both term
and type application, an argument arg is defined to be either an expression e
or a type argument @σ.

Our syntax additionally includes explicit abstractions over type variables, written
with Λ. Though the design of this feature (inspired by Eisenberg et al. [25,
Appendix B]) is straightforward in our system, its inclusion drives some of the
challenge of maintaining stability.

Lastly, let -expressions are modelled on the syntax of Haskell. These contain
a single (non-recursive) declaration decl, which may optionally have a type
signature x : σ, followed by the definition x πi = ei

i . The patterns π on the left
of the equals sign can each be either a simple variable x , type @σ or a saturated
data constructor K π.

Contexts Typing contexts Γ are entirely standard, storing both the term
variables x with their types and the type variables a in scope; these type
variables may appear in both terms (as the calculus features explicit type
application) and types. The type constructors and data constructors are stored
in a static context Σ, which forms the basis of typing contexts Γ. This static
context contains the data type definitions by storing both type constructors
T a and data constructors K : a;σ; T . Data constructor types contain the list
of quantified variables a, the argument types σ, and the resulting type T ; when

THE MIXED POLYMORPHIC λ-CALCULUS 29

Fig. 5.2 Γ ` e ⇒ ηε Synthesise type ηε for e
Fig. 5.2 Γ ` e ⇐ σ Check e against type σ
Fig. 5.2 Γ `H h ⇒ σ Synthesise type σ for head h
Fig. 5.2 Γ `A arg ⇐ σ ⇒ σ′ Check arg against σ, resulting in type σ′
Fig. 5.3 Γ ` decl ⇒ Γ′ Extend context with a decl.
Fig. 5.4 Γ `P π ⇒ ψ; ∆ Synthesise types ψ for patterns π,

binding context ∆
Fig. 5.4 Γ `P π ⇐ σ ⇒ σ′; ∆ Check π against σ, with

residual type σ′, binding ∆
Fig. 5.5 Γ ` σ inst δ−−−−→ ρ Instantiate σ to ρ
Fig. 5.5 Γ ` σ skol δ−−−−→ ρ; Γ′ Skolemise σ to ρ, binding Γ′
App. A.1 bindersδ(σ) = a; ρ Extract type var. binders a

and residual ρ from σ
App. A.1 wrap (π; e1 e2) Bind patterns π in e1 to get e2

Table 5.1: Relation Overview

K : a;σ; T , then the use of K in an expression would have type ∀ a.σ → T a,
abusing syntax slightly to write a list of types σ to the left of an arrow.

5.2.2 Type system overview

Table 5.1 provides a high-level overview of the different typing judgements for
the MPLC. The detailed rules can be found in Figures 5.2–5.5. The starting
place to understand our rules is in Figure 5.2. These judgements implement a
bidirectional type system, fairly standard with the exception of their treatment
of a list of arguments all at once4.

Understanding this aspect of the system hinges on rule Tm-InfApp, which
synthesises the type of the head h and uses its type to check the arguments
arg. The argument-checking judgement Γ `A arg ⇐ σ ⇒ σ′ (inspired by
Dunfield and Krishnaswami [21]) uses the function’s type σ to learn what type
is expected of each argument; after checking all arguments, the judgement
produces a residual type σ′. The judgement’s rules walk down the list, checking
term arguments (rule Arg-App), implicitly instantiating specified variables
where necessary (rule Arg-Inst, which spots a term-level argument e but does
not consume it), uses type arguments for instantiation (rule Arg-TyApp), and
eagerly instantiates inferred type arguments (rule Arg-InfInst).

4This is a well-known technique to reduce the number of traversals through the applications,
known as spine form [14].

30 META THEORY: STABILITY

Γ `H h ⇒ σ (Head Type Synthesis)

H-Var
x : σ ∈ Γ
Γ `H x ⇒ σ

H-Con
K : a ; σ ; T ∈ Γ

Γ `H K ⇒ ∀ a.σ → T a

H-Ann
Γ ` e ⇐ σ

Γ `H e : σ ⇒ σ

H-Inf
Γ ` e ⇒ ηε

Γ `H e ⇒ ηε

Γ ` e ⇒ ηε (Term Type Synthesis)

Tm-InfAbs
Γ, x : τ1 ` e ⇒ ηε2

Γ ` λx.e ⇒ τ1 → ηε2

Tm-InfApp
Γ `H h ⇒ σ

Γ `A arg ⇐ σ ⇒ σ′

Γ ` σ′ inst δ−−−−→ ηε

Γ ` h arg ⇒ ηε

Tm-InfLet
Γ ` decl ⇒ Γ′
Γ′ ` e ⇒ ηε

Γ ` let decl in e ⇒ ηε

Tm-InfTyAbs
Γ, a ` e ⇒ ηε1

Γ ` ∀ a.ηε1 inst δ−−−−→ ηε2
Γ ` Λa.e ⇒ ηε2

Γ ` e ⇐ σ (Term Type Checking)

Tm-CheckAbs
Γ ` σ skol S

99999K σ1 → σ2; Γ1
Γ1, x : σ1 ` e ⇐ σ2

Γ ` λx.e ⇐ σ

Tm-CheckLet
Γ ` decl ⇒ Γ′

Γ′ ` e ⇐ σ

Γ ` let decl in e ⇐ σ

Tm-CheckInf
Γ ` σ skol δ−−−−→ ρ; Γ1

Γ1 ` e ⇒ ηε

Γ1 ` ηε inst δ−−−−→ ρ
e 6= λ,Λ, let
Γ ` e ⇐ σ

Tm-CheckTyAbs
σ = ∀ {a}.∀ a.σ′
Γ, a, a ` e ⇐ σ′

Γ ` Λa.e ⇐ σ

Figure 5.2: Term Typing for Mixed Polymorphic λ-Calculus

THE MIXED POLYMORPHIC λ-CALCULUS 31

Γ `A arg ⇐ σ ⇒ σ′ (Argument Type Checking)

Arg-Empty

Γ `A • ⇐ σ ⇒ σ

Arg-App
Γ ` e ⇐ σ1

Γ `A arg ⇐ σ2 ⇒ σ′

Γ `A e, arg ⇐ σ1 → σ2 ⇒ σ′

Arg-TyApp
Γ `A arg ⇐ [σ1/a]σ2 ⇒ σ3

Γ `A @σ1, arg ⇐ ∀ a.σ2 ⇒ σ3

Arg-Inst
Γ `A e, arg ⇐ σ′2 ⇒ σ3

σ′2 = [τ1/a]σ2

Γ `A e, arg ⇐ ∀ a.σ2 ⇒ σ3

Arg-InfInst
σ = ∀ {a}.σ2

Γ `A arg ⇐ σ′2 ⇒ σ3
σ′2 = [τ1/a]σ2

Γ `A arg ⇐ σ ⇒ σ3

Γ ` decl ⇒ Γ′ (Declaration Checking)

Decl-NoAnnSingle
Γ `P π ⇒ ψ; ∆
Γ,∆ ` e ⇒ ηε

type (ψ; ηε σ) a = fv (σ) \ dom (Γ)
Γ ` x π = e ⇒ Γ, x : ∀ {a}.σ

Decl-NoAnnMulti
j > 1 Γ `P πj ⇒ ψ; ∆j

j

Γ,∆j ` ej ⇒ ηεj
j

Γ,∆j ` ηεj inst δ−−−−→ ρ
j

type (ψ; ρ σ)
a = fv (σ) \ dom (Γ) σ′ = ∀ {a}.σ

Γ ` x πj = ej
j ⇒ Γ, x : σ′

Decl-Ann
Γ `P πj ⇐ σ ⇒ σ′j ; ∆j

j
Γ,∆j ` ej ⇐ σ′j

j

Γ ` x : σ; x πj = ej
j ⇒ Γ, x : σ

Figure 5.3: Argument and Declaration Typing for Mixed Polymorphic λ-Calculus

32 META THEORY: STABILITY

Γ `P π ⇒ ψ; ∆ (Pattern Synthesis)

Pat-InfEmpty

Γ `P • ⇒ •; •

Pat-InfVar
Γ, x : τ1 `P π ⇒ ψ; ∆

Γ `P x, π ⇒ τ1, ψ; x : τ1,∆

Pat-InfCon
K : a0 ; σ0 ; T ∈ Γ

Γ `P π ⇐ [σ1, τ0/a0] (σ0 → T a0)⇒ T τ ; ∆1
Γ,∆1 `P π′ ⇒ ψ; ∆2

Γ `P (K @σ1 π), π′ ⇒ T τ , ψ; ∆1,∆2

Pat-InfTyVar
Γ, a `P π ⇒ ψ; ∆

Γ `P @a, π ⇒ @a, ψ; a,∆

Γ `P π ⇐ σ ⇒ σ′; ∆ (Pattern Checking)

Pat-CheckEmpty

Γ `P • ⇐ σ ⇒ σ; •

Pat-CheckVar
Γ, x : σ1 `P π ⇐ σ2 ⇒ σ′; ∆

Γ `P x, π ⇐ σ1 → σ2 ⇒ σ′; x : σ1,∆

Pat-CheckCon
K : a0 ; σ0 ; T ∈ Γ Γ ` σ1

inst δ−−−−→ ρ1
Γ `P π ⇐ [σ1, τ0/a0] (σ0 → T a0)⇒ ρ1; ∆1

Γ,∆1 `P π′ ⇐ σ2 ⇒ σ′2; ∆2

Γ `P (K @σ1 π), π′ ⇐ σ1 → σ2 ⇒ σ′2; ∆1,∆2

Pat-CheckForall
Γ, a `P π ⇐ σ ⇒ σ′; ∆
π 6= · and π 6= @σ, π′

Γ `P π ⇐ ∀ a.σ ⇒ σ′; a,∆

Pat-CheckTyVar
Γ, a `P π ⇐ [a/b]σ1 ⇒ σ2; ∆

Γ `P @a, π ⇐ ∀ b.σ1 ⇒ σ2; a,∆

Pat-CheckInfForall
Γ, a `P π ⇐ σ ⇒ σ′; ∆ π 6= ·
Γ `P π ⇐ ∀{a}.σ ⇒ σ′; a,∆

Figure 5.4: Pattern Typing for Mixed Polymorphic λ-Calculus

THE MIXED POLYMORPHIC λ-CALCULUS 33

Γ ` σ inst δ−−−−→ ρ (Type instantiation)

Inst-Inst
bindersδ(σ) = a; ρ
Γ ` σ inst δ−−−−→[τ/a] ρ

Γ ` σ skol δ−−−−→ ρ; Γ′ (Type skolemisation)

Skol-Skol
bindersδ(σ) = a; ρ
Γ ` σ skol δ−−−−→ ρ; Γ, a

type (ψ;σ σ′) (Telescope Type Construction)

Type-Empty

type (•;σ σ)

Type-Var
type (ψ;σ2 σ

′
2)

type (τ1, ψ;σ2 τ1 → σ′2)

Type-TyVar
type (ψ;σ σ′)

type (@a, ψ;σ ∀ a.σ′)

Figure 5.5: Type Instantiation and Skolemisation

Our type system also includes let -declarations, which allow for the definition of
functions, with or without type signatures, and supporting multiple equations
defined by pattern-matching. Checking declarations and dealing with patterns
is accomplished by the judgements in Figures 5.3 and 5.4, respectively, although
the details may be skipped on a first reading: we include these rules for
completeness and as the basis of our stability-oriented evaluation (Section 5.3).
These rules do not directly offer insight into our treatment of instantiation.

Instead, the interesting aspects of our formulation are in the instantiation and
skolemisation judgements.

5.2.3 Instantiation and Skolemisation

When we are type-checking the application of a polymorphic function, we
must instantiate its type variables: this changes a function id :: ∀ a. a → a
into id :: τ → τ , where τ is any monotype. On the other hand, when we are
type-checking the body of a polymorphic definition, we must skolemise its type

34 META THEORY: STABILITY

variables: this changes a definition (λx → x) :: ∀ a. a → a so that we assign
x to have type a, where a is a skolem constant—a fresh type, unequal to any
other. These constants are bound in the context returned from the skolemisation
judgement.

Naturally, the behaviour of both instantiation and skolemisation depend on the
instantiation depth; see Figure 5.5. Both rule Inst-Inst and rule Skol-Skol
use the binders helper function: bindersδ(σ) = a; ρ extracts out bound type
variables a and a residual type ρ from a polytype σ. The depth, though, is key:
the shallow (S) version of our type system, binders gathers only type variables
bound at the top, while the deep (D) version looks to the right past arrows.
As examples, we have bindersS(∀ a.a → ∀ b.b → b) = a; a → ∀ b.b → b and
bindersD(∀ a.a→ ∀ b.b→ b) = a, b; a→ b→ b. The full definition (inspired by
Peyton Jones et al. [73, Section 4.6.2]) is in Appendix A.1.

Some usages of these relations happen only for certain choices of instantiation
flavour. For example, see rule Tm-InfApp. We see the last premise
instantiates the result of the application—but its emerald colour tells us that
this instantiation happens only under the eager flavour5. Indeed, this particular
use of instantiation is the essence of eager instantiation: even after a function has
been applied to all of its arguments, the eager scheme continues to instantiate.
Similarly, rule Tm-InfTyAbs instantiates eagerly in the eager flavour.

The lazy counterpart to the eager instantiation in rule Tm-InfApp is the
instantiation in rule Tm-CheckInf. This rule is the catch-all case in the
checking judgement, and it is used when we are checking an application against
an expected type, as in the expression f a b c :: T Int Bool . In this example, if
f a b c still has a polymorphic type, then we will need to instantiate it in order
to check the type against the monomorphic T Int Bool . This extra instantiation
would always be redundant in the eager flavour (the application is instantiated
eagerly when inferring its type) but is vital in the lazy flavour.

Several other rules interact with instantiation in interesting ways:

λ-expressions Rule Tm-CheckAbs checks a λ-expression against an expected
type σ. However, this expected type may be a polytype. We thus must first
skolemise it, revealing a function type σ1 → σ2 underneath (if this is not
possible, type checking fails). In order to support explicit type abstraction
inside a lambda binder λx.Λa.e, rule Tm-CheckAbs never skolemises under an
arrow: note the fixed S visible in the rule. As an example, this is necessary in

5We can also spot this fact by examining the metavariables. Instantiation takes us from
a σ-type to a ρ-type, but the result in rule Tm-InfApp is a ηε-type: a ρ-type in the eager
flavour, but a σ-type in the lazy flavour.

EVALUATION 35

order to accept (λx @b (y :: b)→ y) :: ∀ a. a → ∀ b. b → b, where it would be
disastrous to deeply skolemise the expected type when examining the outer λ.

Declarations without a type annotation Rule Decl-NoAnnMulti is used
for synthesising a type for a multiple-equation function definition that is not
given a type signature. When we have multiple equations for a function, we
might imagine synthesising different polytypes for each equation. We could then
imagine trying to find some type that each equation’s type could instantiate
to, while still retaining as much polymorphism as possible. This would seem
to be hard for users to predict, and hard for a compiler to implement. Our
type system here follows GHC in instantiating the types of all equations to
be a monotype, which is then re-generalised. This extra instantiation is not
necessary under eager instantiation, which is why it is coloured in lavender.

For a single equation (rule Decl-NoAnnSingle), synthesising the original
polytype, without instantiation and regeneralisation is straightforward, and so
that is what we do (also following GHC).

5.3 Evaluation

This section evaluates the impact of the type instantiation flavour on the stability
of the programming language. To this end, we define a set of eleven properties,
based on the informal definition of stability from Section 5.1. Every property is
analysed against the four instantiation flavours, the results of which are shown
in Table 5.2, which also references the proof appendix for each of the properties,
in the column labeled App.

We do not investigate the type safety of our formalism, as the MPLC is a subset
of System F. We can thus be confident that programs in our language can be
assigned a sensible runtime semantics without going wrong.

5.3.1 Contextual Equivalence

Following the approach of GHC, rather than providing an operational semantics
of our type system directly, we instead define an elaboration of the surface
language presented in this chapter to explicit System F, our core language.
It is important to remark that elaborating deep instantiation into this core
language involves semantics-changing η-expansion. This allows us to understand
the behaviour of Example 5, swizzle, which demonstrates a change in runtime

36 META THEORY: STABILITY

E L
Sim. Property Phase App. S D S D
1 1 Let inlining C B.1 3 3 3 3

2 Let extraction C B.1 7 7 3 3
3 R B.3 3 7 3 7

2 4 Signature prop. C 7 7 7 7
4b restricted B.4 7 7 3 3
5 R B.4 3 7 3 7

3 6 Type signatures R B.4 3 7 3 7
4 7 Pattern inlining C B.5 7 7 3 3

8 R B.5 3 7 3 3
9 Pattern extraction C B.5 7 7 3 3

5 10 Single/multi C B.6 3 3 7 7
6 11 η-expansion C 7 7 7 7

11b restricted B.7 7 3 7 7

Table 5.2: Property Overview

semantics arising from a type signature. This change is caused by η-expansion,
observable only in the core language.

The definition of this core language and the elaboration from MPLC to core
are in Appendix A.2. The meta variable e refers to core terms, and denotes
elaboration. In the core language, η-expansion is expressed through the use of
an expression wrapper ṫ, an expression with a hole, which retypes the expression
that gets filled in. The full details can be found in Appendix A.2. We now
provide an intuitive definition of contextual equivalence in order to describe
what it means for runtime semantics to remain unchanged.

Definition 1 (Contextual Equivalence). Two core expressions e1 and e2 are
contextually equivalent, written e1 ' e2, if there does not exist a context that
can distinguish them. That is, e1 and e2 behave identically in all contexts.

Here, we understand a context to be a core expression with a hole, similar to
an expression wrapper, which instantiates the free variables of the expression
that gets filled in. More concretely, the expression built by inserting e1 and e2
to the context should either both evaluate to the same value, or both diverge.
A formal definition of contextual equivalence can be found in Appendix B.2.

EVALUATION 37

5.3.2 Properties

let -inlining and extraction We begin by analysing Similarity 1, which expands
to the three properties described in this subsection.

Property 1 (Let Inlining is Type Preserving).

• Γ ` let x = e1 in e2 ⇒ ηε ⊃ Γ ` [e1/x] e2 ⇒ ηε

• Γ ` let x = e1 in e2 ⇐ σ ⊃ Γ ` [e1/x] e2 ⇐ σ

Property 2 (Let Extraction is Type Preserving).

• Γ ` [e1/x] e2 ⇒ ηε2 ∧ Γ ` e1 ⇒ ηε1 ⊃ Γ ` let x = e1 in e2 ⇒ ηε2

• Γ ` [e1/x] e2 ⇐ σ2 ∧ Γ ` e1 ⇒ ηε1 ⊃ Γ ` let x = e1 in e2 ⇐ σ2

Property 3 (Let Inlining is Runtime Semantics Preserving).

• Γ ` let x = e1 in e2 ⇒ ηε e1 ∧ Γ ` [e1/x] e2 ⇒ ηε e2 ⊃ e1 ' e2

• Γ ` let x = e1 in e2 ⇐ σ e1 ∧ Γ ` [e1/x] e2 ⇐ σ e2 ⊃ e1 ' e2

As an example for why Property 2 does not hold under eager instantiation,
consider id@Int. Extracting the id function into a new let -binder fails to type
check, because id will be instantiated and then re-generalised. This means that
explicit type instantiation can no longer work on the extracted definition.

The runtime semantics properties (both these and later ones) struggle under
deep instantiation. This is demonstrated by Example 5, swizzle, where we see
that non-prenex quantification can cause η-expansion during elaboration and
thus change runtime semantics.

Signature Property Similarity 2 gives rise to these properties about signatures.

Property 4 (Signature Property is Type Preserving).
Γ ` x πi = ei

i ⇒ Γ′ ∧ x : σ ∈ Γ′ ⊃ Γ ` x : σ; x πi = ei
i ⇒ Γ′

As an example of how this goes wrong under eager instantiation, consider the
definition x = Λa.λy.(y : a). Annotating x with its inferred type ∀ {a}.a→ a is
rejected, because rule Tm-CheckTyAbs requires a specified quantified variable,
not an inferred one.

38 META THEORY: STABILITY

However, similarly to eager evaluation, even lazy instantiation needs to
instantiate the types at some point. In order to type a multi-equation declaration,
a single type needs to be constructed that subsumes the types of every branch.
In our type system, rule Decl-NoAnnMulti simplifies this process by first
instantiating every branch type (following the example set by GHC), thus
breaking Property 4. We thus introduce a simplified version of this property,
limited to single equation declarations. This raises a possible avenue of future
work: parameterising the type system over the handling of multi-equation
declarations.

Property 4b (Signature Property is Type Preserving (Single Equation)).
Γ ` x π = e ⇒ Γ′ ∧ x : σ ∈ Γ′ ⊃ Γ ` x : σ; x π = e ⇒ Γ′

Property 5 (Signature Property is Runtime Semantics Preserving).
Γ ` x πi = ei

i ⇒ Γ′ x : σ = e1
∧ Γ ` x : σ; x πi = ei

i ⇒ Γ′ x : σ = e2 ⊃ e1 ' e2

Type Signatures Similarity 3 gives rise to the following property about runtime
semantics.

Property 6 (Type Signatures are Runtime Semantics Preserving).
Γ ` x : σ1; x πi = ei

i ⇒ Γ1 x : σ1 = e1
∧ Γ ` x : σ2; x πi = ei

i ⇒ Γ1 x : σ2 = e2
∧ Γ ` σ1

inst δ−−−−→ ρ ṫ1 ∧ Γ ` σ2
inst δ−−−−→ ρ ṫ2

⊃ ṫ1[e1] ' ṫ2[e2]

Consider let x : ∀ a.Int → a → a; x = undefined in x ‘eq‘ (), which diverges.
Yet under deep instantiation, this version terminates: let x : Int → ∀ a.a →
a; x = undefined in x ‘eq‘ (). Under shallow instantiation, the second program is
rejected, because undefined cannot be instantiated to the type Int→ ∀ a.a→ a,
as that would be impredicative. You can find the typing rules for undefined
and eq in Appendix A.2.1.

Pattern Inlining and Extraction The properties in this section come from
Similarity 4. Like in that similarity, we assume that the patterns are just
variables (either implicit type variables or explicit term variables).

Property 7 (Pattern Inlining is Type Preserving).
Γ ` x π = e1 ⇒ Γ′ ∧ wrap (π; e1 e2) ⊃ Γ ` x = e2 ⇒ Γ′

The failure of pattern inlining under eager instantiation will feel similar: if
we take id@a x = x : a, we will infer a type ∀ a.a → a. Yet if we write

EVALUATION 39

id = Λa.λx.(x : a), then eager instantiation will give us the different type
∀ {a}.a→ a.

Property 8 (Pattern Inlining / Extraction is Runtime Semantics Preserving).
Γ ` x π = e1 ⇒ Γ′ x : σ = e1 ∧ wrap (π; e1 e2)
∧ Γ ` x = e2 ⇒ Γ′ x : σ = e2 ⊃ e1 ' e2

Property 9 (Pattern Extraction is Type Preserving).
Γ ` x = e2 ⇒ Γ′ ∧ wrap (π; e1 e2) ⊃ Γ ` x π = e1 ⇒ Γ′

Single vs. multiple equations Similarity 5 says that there should be no
observable change between the case for a single equation and multiple
(redundant) equations with the same right-hand side. That gets formulated into
the following property.

Property 10 (Single/multiple Equations is Type Preserving).
Γ ` x π = e ⇒ Γ, x : σ ⊃ Γ ` x π = e, x π = e ⇒ Γ′

This property favours the otherwise-unloved eager flavour. Imagine f = pair .
Under eager instantiation, this definition is accepted as type synthesis produces
an instantiated type. Yet if we simply duplicate this equation under lazy
instantiation (realistic scenarios would vary the patterns on the left-hand side,
but duplication is simpler to state and addresses the property we want), then
rule Decl-NoAnnMulti will reject as it requires the type to be instantiated.

η-expansion Similarity 6 leads to the following property.

Property 11 (η-expansion is Type Preserving).

• Γ ` e ⇒ ηε ∧ numargs(ηε) = n ⊃ Γ ` λxn.e xn ⇒ ηε

• Γ ` e ⇐ σ ∧ numargs(ρ) = n ⊃ Γ ` λxn.e xn ⇐ σ

Here, xn represents n variables. We use numargs(σ) to count the number of
explicit arguments an expression can take, possibly instantiating any intervening
implicit arguments. A formal definition can be found in Figure B.2 in the
appendix. However, in synthesis mode this property fails for every flavour: ηε
might be a function type σ1 → σ2 taking a type scheme σ1 as an argument,
while we only synthesise monotype arguments. We thus introduce a restricted
version of Property 11, with the additional premise that ηε can not contain any
binders to the left of an arrow.

Property 11b (η-expansion is Type Preserving (Monotype Restriction)).

40 META THEORY: STABILITY

• Γ ` e ⇒ ηε ∧ numargs(ηε) = n ∧ Γ ` ηε inst δ−−−−→ τ
⊃ Γ ` λxn.e xn ⇒ ηε

• Γ ` e ⇐ σ ∧ numargs(ρ) = n ⊃ Γ ` λxn.e xn ⇐ σ

This (restricted) property fails for all but the eager/deep flavour as η-expansion
forces other flavours to instantiate arguments they otherwise would not have.

5.3.3 Conclusion

A brief inspection of Table 5.2 suggests how we should proceed: choose lazy,
shallow instantiation. While this configuration does not respect all properties,
it is the clear winner—even more so when we consider that Property 11b (one
of only two that favour another mode) must be artificially restricted in order
for any of our flavours to support the property.

We should note here that we authors were surprised by this result. This work
arose from the practical challenge of designing instantiation in GHC. After
considerable debate among the authors of GHC, we were unable to remain
comfortable with any one decision—as we see here, no choice is perfect, and so
any suggestion was met with counter-examples showing how that suggestion
was incorrect. Yet we had a hunch that eager instantiation was the right
design. We thus formulated the similarities of Section 5.1 and went about
building a formalisation and proving properties. Crucially, we did not select
the similarities to favour a particular result, though we did choose to avoid
reasonable similarities that would not show any difference between instantiation
flavours. At an early stage of this work, we continued to believe that eager
instantiation was superior. It was only through careful analysis, guided by
our proofs and counter-examples, that we realised that lazy instantiation was
winning. We are now convinced by our own analysis.

5.4 Instantiation in GHC

Given the connection between this work and GHC, we now turn to examine
some practicalities of how lazy instantiation might impact the implementation.

5.4.1 Eagerness

GHC used eager instantiation from the beginning, echoing Damas and Milner
[17]. However, the GHC 8 series, which contains support for explicit type

INSTANTIATION IN GHC 41

application, implements an uneasy truce, sometimes using lazy instantiation (as
advocated by Eisenberg et al. [24]), and sometimes eager. In contrast, GHC 9.0
uses eager instantiation everywhere. This change was made for practical reasons:
eager instantiation simplifies the code somewhat. If we went back to using lazy
instantiation, the recent experience in going from lazy to eager suggests we will
have to combat these challenges:

Displaying inferred types The types inferred for functions are more exotic
with lazy instantiation. For example, defining f = λ → id would infer
f :: ∀ {a}. a → ∀ b. b → b. These types, which could be reported by tools
(including GHCi), might be confusing for users.

Monomorphism restriction Eager instantiation makes the monomorphism
restriction easier to implement, because relevant constraints are instantiated.

The monomorphism restriction is a peculiarity of Haskell, introduced to avoid
unexpected runtime evaluation6. It potentially applies whenever a variable is
defined without a type annotation and without any arguments to the left of the
=: such a definition is not allowed to infer a type constraint.

Eager instantiation is helpful in implementing the monomorphism restriction,
as the implementation of let-generalisation can look for unsolved constraints
and default the type if necessary. With lazy instantiation, on the other hand,
we would have to infer the type and then make a check to see whether it
is constrained, instantiating it if necessary. Of course, the monomorphism
restriction itself introduces instability in the language (note that plus and (+)
have different types), and so perhaps revisiting this design choice is worthwhile.

Type application with un-annotated variables For simplicity, we want all
variables without type signatures not to work with explicit type instantiation.
([24, Section 3.1] expands on this point.) Eager instantiation accomplishes this,
because variables without type signatures would get their polymorphism via
re-generalisation. On the other hand, lazy instantiation would mean that some
user-written variables might remain in a variable’s type, like in the type of f ,
just above.

Yet even with eager instantiation, if instantiation is shallow, we can still get the
possibility of visible type application on un-annotated variables: the specified
variables might simply be hiding under a visible argument. Consider myPair
from Example 2: under eager shallow instantiation, it gets assigned the type

6The full description is in the Haskell Report, Section 4.5.5 [55].

42 META THEORY: STABILITY

∀ {a}. a → ∀ b. b → (a, b). This allows for visible type application despite the
lack of a signature: myPair True @Char .

5.4.2 Depth

From the introduction of support for higher-rank types in GHC 6.8, GHC has
done deep instantiation, as outlined by Peyton Jones et al. [73], the paper
describing the higher-rank types feature. However, deep instantiation has never
respected the runtime semantics of a program; Peyton Jones [70] has the details.
In addition, deep instantiation is required in order to support covariance of result
types in the type subsumption judgement ([73, Figure 7]). This subsumption
judgement, though, weakens the ability to do impredicative type inference, as
described by Serrano et al. [84] and Serrano et al. [85]. GHC has thus, for
GHC 9.0, changed to use shallow subsumption and shallow instantiation.

5.4.3 The situation today: Quick Look impredicativity has
arrived

A recent innovation within GHC (due for release in the next version, GHC 9.2)
is the implementation of the Quick Look algorithm for impredicative type
inference [85]. The design of that algorithm walks a delicate balance between
expressiveness and stability. It introduces new instabilities: for example, if
f x y requires impredicative instantiation, (let unused = 5 in f) x y will fail.
Given that users who opt into impredicative type inference are choosing to
lose stability properties, we deemed it more important to study type inference
without impredicativity in analysing stability. While our formulation of the
inference algorithm is easily integrated with the Quick Look algorithm, we leave
an analysis of the stability of the combination as future work.

5.5 Instabilities around instantiation beyond Haskell

The concept of stability is important in languages that have a mix of implicit and
explicit features—a very common combination, appearing in Coq, Agda, Idris,
modern Haskell, C++, Java, C#, Scala, F#, and Rust, among others. This
section walks through how a mixing of implicit and explicit features in Idris7

and Agda8 causes instability, alongside the features of Haskell we describe in the
7We work with Idris 2, as available from https://github.com/idris-lang/Idris2, at

commit a7d5a9a7fdfbc3e7ee8995a07b90e6a454209cd8.
8We work with Agda 2.6.0.1.

https://github.com/idris-lang/Idris2

INSTABILITIES AROUND INSTANTIATION BEYOND HASKELL 43

main chapter. We use these languages to show how the issues we describe are
likely going to arise in any language mixing implicit and explicit features—and
how stability is a worthwhile metric in examining these features—not to critique
these languages in particular.

5.5.1 Explicit Instantiation

Our example languages feature explicit instantiation of implicit arguments,
allowing the programmer to manually instantiate a polymorphic type, for
example. Explicit instantiation broadly comes in two flavours: ordered or
named parameters.

5.5.2 Idris

Idris supports named parameters. If we define const :{a, b :Type} → a→ b → a
(this syntax is the Idris equivalent of the Haskell type ∀ a b. a → b → a), then
we can write const {b = Bool } to instantiate only the second type parameter
or const {a = Int } {b = Bool } to instantiate both. Order does not matter;
const {b = Bool } {a = Int } works as well as the previous example. Named
parameters may be easier to read than ordered parameters and are robust to
the addition of new type variables.

Idris’s approach suffers from an instability inherent with named parameters.
Unlike Haskell, the order of quantified variables does not matter. Yet now, the
choice of names of the parameters naturally does matter. Thus const :c → d → c
(taking advantage of the possibility of omitting explicit quantification in Idris)
has a different interface than const : a→ b → a, despite the fact that the type
variables scope over only the type signature they appear in.

5.5.3 Agda

Agda accepts both ordered and named parameters. After defining const : {a b :
Set } → a→ b → a, we can write expressions like const { Int } (instantiating only
a), const {b = Bool }, or const { } {Bool }. Despite using named parameters,
order does matter: we cannot instantiate earlier parameters after later ones.
Naming is useful for skipping parameters that the user does not wish to
instantiate. Because Agda requires explicit quantification of variables used
in types (except as allowed for in implicit generalisation, below), the ordering
of variables must be fixed by the programmer. However, like Idris, Agda suffers
from the fact that the choice of name of these local variables leaks to clients.

44 META THEORY: STABILITY

5.5.4 Explicit Abstraction

Binding implicit variables in named function definitions If we sometimes
want to explicitly instantiate an implicit argument, we will also sometimes want
to explicitly abstract over an implicit argument. A classic example of why this
is useful is in the replicate function for length-indexed vectors, here written in
Idris:

replicate : {n : Nat } → a→ Vect n a
replicate {n = Z } = []
replicate {n = S } x = x :: replicate x

Because a length-indexed vector Vect includes its length in its type, we need
not always pass the desired length of a vector into the replicate function: type
inference can figure it out. We thus decide here to make the n : Nat parameter
to be implicit, putting it in braces. However, in the definition of replicate, we
must pattern-match on the length to decide what to return. The solution is to
use an explicit pattern, in braces, to match against the argument n.

Idris and Agda both support explicit abstraction in parallel to their support
of explicit instantiation: when writing equations for a function, the user can
use braces to denote the abstraction over an implicit parameter. Idris requires
such parameters to be named, while Agda supports both named and ordered
parameters, just as the languages do for instantiation. The challenges around
stability are the same here as they are for explicit instantiation.

Haskell has no implemented feature analogous to this. Its closest support is that
for scoped type variables, where a type variable introduced in a type signature
becomes available in a function body. For example:

const :: ∀ a b. a→ b → a
const x y = (x :: a)

The ∀ a b brings a and b into scope both in the type signature and in the
function body. This feature in Haskell means that, like in Idris and Agda,
changing the name of an apparently local variable in a type signature may affect
code beyond that type signature. It also means that the top-level ∀ in a type
signature is treated specially. For example, neither of the following examples
are accepted by GHC:

const1 :: ∀.∀ a b. a→ b → a
const1 x y = (x :: a)
const2 :: (∀ a b. a→ b → a)
const2 x y = (x :: a)

INSTABILITIES AROUND INSTANTIATION BEYOND HASKELL 45

In const1, the vacuous ∀. (which is, generally, allowed) stops the scoped-type
variables mechanism from bringing a into scope; in const2, the parentheses
around the type serve the same function. Once again, we see how Haskell
is unstable: programmers might reasonably think that syntax like ∀ a b. is
shorthand for ∀ a.∀ b. or that outermost parentheses would be redundant, yet
neither of these facts is true.

Binding implicit variables in an anonymous function Sometimes, binding a
type variable only in a function declaration is not expressive enough, however—
we might want to do this in an anonymous function in the middle of some other
expression.

Here is a (contrived) example of this in Agda, where 3 allows for prefix type
annotations:

3 : (A : Set)→ A→ A
A 3 x = x
ChurchBool : Set1
ChurchBool = {A : Set } → A→ A→ A
churchBoolToBit : ChurchBool → N
churchBoolToBit b = b 1 0
one : N
one = churchBoolToBit (λ{A} x1 x2 → A 3 x1)

Here, we bind the implicit variable A in the argument to churchBoolToBit. (Less
contrived examples are possible; see the Motivation section of Eisenberg [22].)

Binding an implicit variable in a λ-expression is subtler than doing it in a
function clause. Idris does not support this feature at all, requiring a named
function to bind an implicit variable. Agda supports this feature, as written
above, but with caveats: the construct only works sometimes. For example, the
following is rejected:

id : {A : Set } → A→ A
id = λ{A} x → A 3 x

The fact that this example is rejected, but id {A} x = A 3 x is accepted
is another example of apparent instability—we might naïvely expect that
writing a function with an explicit λ and using patterns to the left of an = are
equivalent. Another interesting aspect of binding an implicit variable in a λ-
abstraction is that the name of the variable is utterly arbitrary: instead of writing
(λ{A} x1 x2 → A 3 x1), we can write (λ{anything = A} x1 x2 → A 3 x1).
This is an attempt to use Agda’s support for named implicits, but the name

46 META THEORY: STABILITY

can be, well, anything . This would appear to be a concession to the fact that
the proper name for this variable, A as written in the definition of ChurchBool ,
can be arbitrarily far away from the usage of the name, so Agda is liberal in
accepting any replacement for it.

An accepted proposal [22] adds this feature to Haskell, though it has not
been implemented as of this writing. That proposal describes that the feature
would be available only when we are checking a term against a known type,
taking advantage of GHC’s bidirectional type system [24, 73]. One of the
motivations that inspired this work was to figure out whether we could relax
this restriction. After all, it would seem plausible that we should accept a
definition like id = λ @a (x :: a)→ a without a type signature. (Here, the @a
syntax binds a to an otherwise-implicit type argument.) It will turn out that,
in the end, we can do this only when we instantiate lazily—see Section 5.3.

5.5.5 Implicit Generalisation

All three languages support some form of implicit generalisation, despite the
fact that the designers of Haskell famously declared that let should not be
generalised [94] and that both Idris and Agda require type signatures on all
declarations.

Haskell Haskell’s let-generalisation is the most active, as type signatures are
optional.9 Suppose we have defined const x y = x , without a signature. What
type do we infer? It could be ∀ a b. a → b → a or ∀ b a. a → b → a. This
choice matters, because it affects the meaning of explicit type instantiations. A
natural reaction is to suggest choosing the former inferred type, following the
left-to-right scheme described above. However, in a language with a type system
as rich as Haskell’s, this guideline does not always work. Haskell supports type
synonyms (which can reorder the occurrence of variables), class constraints
(whose ordering is arbitrary) [95], functional dependencies (which mean that a
type variable might be mentioned only in constraints and not in the main body of
a type) [46], and arbitrary type-level computation through type families [15, 23].

9Though not relevant for our analysis, some readers may want the details: Without any
language extensions enabled, all declarations without signatures are generalised, meaning
that defining id x = x will give id the type ∀ a. a → a. With the MonoLocalBinds extension
enabled, which is activated by either of GADTs or TypeFamilies, local definitions that capture
variables from an outer scope are not generalised—this is the effect of the dictum that let
should not be generalised. As an example, the g in f x = let g y = (y , x) in (g ’a’, g True)
is not generalised, because its body mentions the captured x . Accordingly, f is rejected, as
it uses g at two different types (Char and Bool). Adding a type signature to g can fix the
problem.

INSTABILITIES AROUND INSTANTIATION BEYOND HASKELL 47

With all of these features potentially in play, it is unclear how to order the type
variables. Thus, in a concession to language stability, Haskell brutally forbids
explicit type instantiation on any function whose type is inferred; we discuss
the precise mechanism in the next section.

Since GHC 8.0, Haskell allows dependency within type signatures [96], meaning
that the straightforward left-to-right ordering of variables—even in a user-written
type signature—might not be well-scoped. As a simple example, consider
tr :: TypeRep (a :: k), where TypeRep :: ∀ k. k → Type allows runtime type
representation and is part of GHC’s standard library. A naive left-to-right
extraction of type variables would yield ∀ a k.TypeRep (a :: k), which is ill-
scoped when we consider that a depends on k. Instead, we must reorder
to ∀ k a.TypeRep (a :: k). In order to support stability when instantiating
explicitly, GHC thus defines a concrete sorting algorithm, called “ScopedSort”,
that reorders the variables; it has become part of GHC’s user-facing specification.
Any change to this algorithm may break user programs, and it is specified in
GHC’s user manual.

Idris Idris’s support for implicit generalisation is harder to trigger; see
Appendix 5.6 for an example of how to do it. The problem that arises in
Idris is predictable: if the compiler performs the quantification, then it must
choose the name of the quantified type variable. How will clients know what
this name is, necessary in order to instantiate the parameter? They cannot.
Accordingly, in order to support stability, Idris uses a special name for generalised
variables: the variable name itself includes braces (for example, it might be
{k : 265}) and thus can never be parsed10.

Agda Recent versions of Agda support a new variable keyword11. Here is an
example of it in action:

variable
A : Set
l1 l2 : List A

The declaration says that an out-of-scope use of, say, A is a hint to Agda
to implicitly quantify over A : Set. The order of declarations in a variable
block is significant: note that l1 and l2 depend on A. However, because
explicit instantiation by order is possible in Agda, we must specify the order

10Idris 1 does not use an exotic name, but still prevents explicit instantiation, using a
mechanism similar to Haskell’s specificity mechanism.

11See https://agda.readthedocs.io/en/v2.6.0.1/language/generalization-of-
declared-variables.html in the Agda manual for an description of the feature.

https://downloads.haskell.org/ghc/latest/docs/html/users_guide/glasgow_exts.html#index-20
https://agda.readthedocs.io/en/v2.6.0.1/language/generalization-of-declared-variables.html
https://agda.readthedocs.io/en/v2.6.0.1/language/generalization-of-declared-variables.html

48 META THEORY: STABILITY

of quantification when Agda does generalisation. Often, this order is derived
directly from the variable block—but not always. Consider this (contrived)
declaration:

property : length l2 + length l1 ≡ length l1 + length l2

What is the full, elaborated type of property? Note that the two lists l1 and l2
can have different element types A. The Agda manual calls this nested implicit
generalisation, and it specifies an algorithm—similar to GHC’s ScopedSort—to
specify the ordering of variables. Indeed it must offer this specification, as
leaving this part out would lead to instability; that is, it would lead to the
inability for a client of property to know how to order their type instantiations.

5.6 Example of Implicit Generalisation in Idris

It is easy to believe that a language that requires type signatures on all definitions
will not have implicit generalisation. However, Idris does allow generalisation
to creep in, with just the right definitions.

We start with this:

data Proxy : {k : Type} → k → Type where
P : Proxy a

The datatype Proxy here is polymorphic; its one explicit argument can be of
any type.

Now, we define poly :

poly : Proxy a
poly = P

We have not given an explicit type to the type variable a in poly ’s type. Because
Proxy ’s argument can be of any type, a’s type is unconstrained. Idris generalises
this type, giving poly the type {k : Type} → {a : k } → Proxy a.

At a use site of poly , we must then distinguish between the possibility of
instantiating the user-written a and the possibility of instantiating the compiler-
generated k. This is done by giving the k variable an unusual name, {k:446}
in our running Idris session.

RELATED WORK 49

5.7 Related Work

The type systems in this work build most directly from Peyton Jones et al. [73],
Eisenberg et al. [24], and Serrano et al. [85]. Each of these papers adds new
capabilities to Haskell, and each also decreases the stability of the language.
While these papers do consider properties we would consider to be components
of stability, stability is not a key criterion in those authors’ evaluation. By
contrast, our work focuses squarely on stability as a believable proxy for the
quality of the user experience.

Many other works on designing type inference algorithms also introduce stability
properties, but these properties exist among others—such as completeness—and
do not seem to guide the design of the algorithm. We do call out one such
work, that by Schrijvers et al. [83], which revolves around implicit programming
systems, and describes a property they call stability. In the context of that
work, stability is about Haskell’s class-instance selection mechanism: we would
like the choice of instance to remain stable under substitutions. That is, if
f ::C a⇒ a→ Int is called at an argument of type Maybe b (for a type variable
b), the instance selected for C (Maybe b) should be the same as the one that
would be selected if f were called on an argument of type Maybe Int. After all
Maybe b can be substituted to become Maybe Int; perhaps a small change to
the program would indeed cause this substitution, and we would not want a
change in runtime behaviour. Accordingly, the stability property, as used by
Schrijvers et al. [83], is what we would also call a stability property, but it is
much narrower than the definition we give the term.

In comparison to these other papers on type systems and type inference, the
angle of this work is somewhat different: we are not introducing a new language
or type system feature, proving a language type safe, or proving an inference
algorithm sound and complete to its declarative specification. Instead, we
introduce the concept of stability as a new metric for evaluating (new or existing)
type systems, and then apply this metric to a system featuring both implicit
and explicit instantiation. Because of this novel, and somewhat unconventional
topic, we are unable to find further related work.

5.8 Scientific Output

This chapter introduces the concept of stability, and constructs the MPLC to
evaluate the different design decisions discussed in Chapter 4.

The material found in this chapter is largely taken from the following publication:

50 META THEORY: STABILITY

Gert-Jan Bottu and Richard A. Eisenberg. 2021. Seeking
stability by being lazy and shallow: lazy and shallow instantiation
is user friendly. In Proceedings of the 14th ACM SIGPLAN
International Symposium on Haskell (Haskell 2021). Associa-
tion for Computing Machinery, New York, NY, USA, 85–97.
DOI:https://doi.org/10.1145/3471874.3472985

This work was largely performed while the auther of this thesis was interning
at Tweag, under the supervision of Richard Eisenberg. The contributions of the
different authors are as follows:

• The author of this thesis worked on all aspects of the chapter, including
designing the typing rules, writing all of the proofs, and composing the
text.

• Richard Eisenberg organized and guided this project, critiqued the typing
rules, provided GHC/Haskell expertise, and substantially contributed to
writing.

Part II

Ad-hoc Polymorphism

51

Chapter 6

Type Classes

Throughout Part II of this thesis, we will use no less than five different
calculi. As a guide to the reader, we present these languages in
different colours, and thus encourage the reader to view / print this
text in colour. Chapter 6 presents our source language λTC (marked in
blue), with a translation to the target language F{} (marked in yellow).
Chapter 7 introduces a third language FD, as an intermediate step in
this translation. This language will thus be marked in green. Chapter 8
defines quantified class constraints as a new language extension. We will
mark this extension with a ⇒ and by adding a red colour, transforming
λTC into λ⇒TC (marked in purple) and FD into F⇒D (marked in red).
These relations are shown in Figure 6.1, where an arrow represents a
translation.

λTC FD F{}

λ⇒TC F⇒D

Figure 6.1: Overview of the different calculi of Part II.

52

INTRODUCTION 53

6.1 Introduction

Type classes were initially introduced in Haskell [69] by Wadler and Blott
[95] to make ad-hoc overloading less ad hoc, and they have since become
one of Haskell’s core abstraction features. Moreover, their resounding success
has spread far beyond Haskell: several languages have adopted them (e.g.,
Mercury [35], Coq [87], PureScript [26], Lean [18]), and they have inspired
various alternative language features (e.g., Scala’s implicits [56, 65], Rust’s
traits [62], C++’s concepts [31], Agda’s instance arguments [19]).

Type classes have also received a lot of attention from researchers with
many proposals for extensions and improvements, including functional
dependencies [46], associated types [15], quantified constraints [11] among
other extensions.

As described in the original work by Wadler and Blott [95], this thesis text
employs an indirect, elaboration-based approach for giving meaning to programs
with type classes. Indeed, the meaning of such programs is commonly given in
terms of their translation to a core language [32], like System F, the meaning of
which is defined in the form of an operational semantics. In this translation
process, type classes are elaborated into explicitly passed function dictionaries.

6.2 Overview

This section provides some background on dictionary-passing elaboration of
type class resolution. We then briefly introduce our calculi. Throughout the
section we use Haskell-like syntax as the source language for examples, and to
simplify our informal discussion we use the same syntax without type classes as
the target language.

6.2.1 Dictionary-Passing Elaboration

The dynamic semantics for type classes are not expressed directly but rather by
type-directed elaboration into a simpler language without type classes such as
System F. Thus the dynamic semantics of type classes are given indirectly as
the dynamic semantics of their elaborated forms.

Basic Elaboration. Consider the small program with type classes in Example 1.
We declare a type class Eq and instances for the Int and pair types. The function

54 TYPE CLASSES

class Eq a where
(==) :: a→ a→ Bool

instance Eq Int where
(==) = primEqInt

instance (Eq a,Eq b)⇒ Eq (a, b) where
(x1 , y1) ==(x2 , y2) = x1 == x2 && y1 == y2

refl :: Eq a ⇒ a→ Bool
refl x = x == x
main :: Bool
main = refl (5, 42)

Example 1: Program with type classes.

refl trivially tests whether an expression is equivalent to itself, which is called
in main.

The dictionary-passing elaboration translates this program into a System F-
like core language that does not feature type classes. The main idea of the
elaboration is to map a type class declaration onto a datatype that contains
the method implementations, a so-called (function) dictionary.

data EqD a = EqD {(==) :: a→ a→ Bool }

Then simple instances give rise to dictionary values:

eqInt :: EqD Int
eqInt = EqD {(==) = primEqInt }

Instances with a non-empty context are translated to functions that take context
dictionaries to the instance dictionary.

eqPair :: (EqD a,EqD b)→ Eq (a, b)
eqPair (da, db) =
EqD {(==) = λ(x1 , y1) (x2 , y2)→ (==) da x1 x2 &&(==) db y1 y2 }

Functions with qualified types, like refl , are translated to functions that take
explicit dictionaries as arguments.

refl :: EqD a→ a→ Bool
refl d x = (==) d x x

Finally, calls to functions with a qualified type are mapped to calls that explicitly
pass the appropriate dictionary.

OVERVIEW 55

class Base a where
base :: a→ Bool

class Base a⇒ Sub1 a where
sub1 :: a→ Bool

test1 :: Sub1 a ⇒ a→ Bool
test1 x = sub1 x && base x

Example 2: Program with superclasses.

main :: Bool
main = refl (eqPair eqInt eqInt) (5, 42)

Elaboration of Superclasses. Superclasses require a small extension to the
above elaboration scheme. Consider the small program in Example 2 where
Sub1 is a subclass of Base. The function test1 has Sub1 a in the context and
calls sub1 and base in its definition.

The standard approach to encode superclass is to embed the superclass dictionary
in that of the subclass. For this case, Sub1D a contains a field super1 that
points to the superclass:

data BaseD a = BaseD {base :: a→ Bool }
data Sub1D a = Sub1D {super1 :: BaseD a
, sub1 :: a→ Bool }

This way we can extract the superclass from the subclass when needed. The
function test1 is then encoded as:

test1 :: Sub1 a→ a→ Bool
test1 d x = sub1 d x && base (super1 d) x

Resolution. Calls to functions with a qualified type generate type class
constraints. The process for checking whether these constraints can be satisfied,
is known as resolution. For the sake of dictionary-passing elaboration, this
resolution process is augmented with the construction of the appropriate
dictionary that witnesses the satisfiability of the constraint.

56 TYPE CLASSES

6.2.2 Alternatives

Morris [60] presents a specialization-based approach to type Haskell type classes.
Rather than expressing the semantics of the program through elaboration into
a more explicit target language, the paper represents a class as a type-indexed
collection of all its ground instance types. The main advantage of this approach
is that it makes reasoning over classes and properties of the type system easier,
as it avoids a translation step.

However, this work sticks to the classic elaboration-based semantics for type
classes, as it more closely relates to GHC, the de facto Haskell compiler. A
specialization-based approach would likely simplify a proof for coherence of
type class resolution (Chapter 7), as it makes the uniqueness of instances more
explicit. However, an additional proof would have to be included to claim that
this approach is equivalent to the familiar elaboration-based approach.

6.3 Source Language λTC

This section presents our source language λTC, a basic calculus which only
supports features that are essential for type class resolution.

Consequently, the language is strongly normalizing, and thus does not support
recursive let expressions, mutual recursion or recursive methods. This calculus
will form the basis for a formal proof of coherence of the type class resolution
mechanism in Chapter 7. This is a sensible choice, as recursion does not affect
the fundamentals of the coherence proof. The proof could include recursion
through step indexing [3], a well-known technique, but this would significantly
clutter the proof. Recursion is discussed in more detail in Section 7.6.

Furthermore, two notable design decisions were made in the support of
superclasses in λTC. Firstly, similar to GHC, λTC derives all possible superclass
constraints from their subclass constraints in advance, instead of deriving them
“just-in-time” during resolution. The advantage of this approach is that it
streamlines the actual resolution process.

Secondly, similar to Coq [87] and unlike Wadler and Blott [95], we pass superclass
dictionaries alongside their subclass dictionaries, i.e., in a flattened form, instead
of nesting them inside their subclass dictionaries. This design decision was
taken to considerably simplify the coherence proof in Chapter 7. Neither our
type class resolution mechanism, nor the intermediate language FD (Section 7.4)
need to have any support for superclasses and can treat them as regular local
constraints. As it is not too difficult to see that both approaches are isomorphic,

SOURCE LANGUAGE λTC 57

τ ::= Bool | a | τ1 → τ2 monotype
ρ ::= τ | Q⇒ ρ qualified type
σ ::= ρ | ∀a.σ type scheme

Q ::= TC τ class constraint
C ::= ∀a.Q⇒ Q constraint scheme

e ::= True | False | x | m | λx.e | e1 e2 term
| let x : σ = e1 in e2 | e :: τ

pgm ::= e | cls; pgm | inst; pgm λTC program
cls ::= class TC i a⇒ TC awhere {m : σ} class decl.
inst ::= instance Q⇒ TC τ where {m = e} instance decl.

Γ ::= • | Γ, x : σ | Γ, a | Γ, δ : Q typing environment
ΓC ::= • | ΓC ,m : TC i a⇒ TC a : σ class environment
P ::= • | P , (D : C).m 7→ Γ : e program context
M ::= [•] | λx.M |M e | eM |M :: τ evaluation context

| let x : σ = M in e | let x : σ = e in M

Figure 6.2: λTC syntax

flattening the superclasses does not impact the coherence of resolution. A more
structured representation would give rise to additional complexity, but would
not alter the essence of the proof.

Syntax. Figure 6.2 presents the, mostly standard, syntax. Programs consist
of a number of class (with superclasses) and instance declarations, and an
expression. For the sake of simplicity and well-foundedness, the declarations
are ordered and can only refer to previous declarations.

Following Jones [42]’s qualified types framework, we distinguish between three
sorts of types: monotypes τ , qualified types ρ which include constraints, and
type schemes σ which include type abstractions. Constraints differentiate
between full constraint schemes C and simple class constraints Q. Observe
that we allow flexible contexts in the qualified types; they are not restricted to
constraints on type variables.

The definition of expressions e is standard, but with a few notable exceptions.
Firstly, the language differentiates syntactically between regular variables x and
method names m, which are introduced in class declarations. Secondly, type

58 TYPE CLASSES

annotations e :: τ allow the programmer to manually assign a monotype to an
expression. This is useful for resolving ambiguity—see the Typing paragraph
below. Finally, let bindings include type annotations with a type scheme σ,
allowing the programmer to introduce local constraints—also discussed in the
Typing paragraph. Note that we use Haskell syntax for class and instance
declarations.

There are three λTC environments: two global ones and one local environment.
Firstly, the global class environment ΓC stores all class declarations. Each entry
in ΓC contains the method name m, any superclasses TC i a, the class TC a
itself and the corresponding method type σ.

Secondly, the global program context P contains all instance declarations. Each
entry in P consists of a unique dictionary constructor D, its corresponding
constraint C, the method name m and its implementation e, together with
the context Γ under which e should be interpreted. This context contains the
local axioms available in this instance declaration, as well as any axioms which
explicitly annotate the method type signature.

Thirdly, the local typing environment Γ, besides containing the default term
and type variables x and a, also stores any local axioms Q. As opposed to the
program context P , Γ does not contain any type class instances. Instead, the
(local) axioms are associated with a dictionary variable δ. Sections 7.4 and 7.4.1
explain the use of these dictionaries.

Typing. Our type system features two design choices to eliminate the possibility
of ambiguous type schemes. This decision will simplify the discussion of
coherence in Chapter 7, as it allows us to focus on the coherence of type
class resolution, by making our proof orthogonal to ambiguous type schemes,
the source of ambiguity which has already been studied by Jones [40]. We thus
side-step an already solved problem and focus on tackling the full problem of
resolution coherence.

Firstly, we require type signatures to be unambiguous (Figure 6.4, right-hand
side) to make sure that all newly introduced type variables are bound in the
head of the type (the remaining monotype after dropping all type and constraint
abstractions). This prevents ambiguous expressions such as:

let f : ∀ a.Eq a ⇒ Int → Int -- ambiguous
= λx ◦ x + 1 in f 42

Secondly, we use a bidirectional type system rather than a fully declarative one.
A bidirectional type system distinguishes between two typing modes: inference

SOURCE LANGUAGE λTC 59

and check mode. The former synthesizes a type from the given expression, while
the latter checks whether a given expression is of a given type. Special in our
setting is that variables can only be typed in check mode, to ensure that only
a single instantiation exists. This avoids the ambiguity that can arise when
instantiating type variables in inference mode. Consider the following example:

let y : ∀ a.Eq a ⇒ a→ a = . . .
in const 1 y

where const x is the constant function, which evaluates to x for any input. The
instantiation of y ’s type scheme is not uniquely determined by the context in
which it is used. In a declarative type system or in inference mode, this ambiguity
would result in multiple distinct typings and corresponding elaborations. While
this ambiguity is harmless, it is not the focus of this work. Hence, to focus
exclusively on the resolution, we use a bidirectional type system with check
mode for variables to eliminate this irrelevant source of ambiguity.

Figure 6.3 1 shows selected typing rules. The full set of rules can be found in
Section 2.2 of the appendix. We ignore the red (elaboration-related) parts for now
and explain them in detail in Section 6.4.1. The judgments P ; ΓC ; Γ `tm e⇒ τ
and P ; ΓC ; Γ `tm e ⇐ τ denote inferring a monotype τ for expression e and
checking e to have a monotype τ respectively, in environments P , ΓC and Γ.
Note that the constraint and type well-formedness relations `Q and `ty are
omitted, as they are standard well-scopedness checks. They can be found in
Section 2.1 of the appendix.

Through a let binding (rule sTm-infT-let), the programmer provides a type
scheme for a variable, thus potentially introducing local constraints. As
explained above, the unambiguity check from Figure 6.4 (right-hand side)
requires the provided type scheme to be unambiguous. In order to flatten the
superclasses, the rule takes the closure over the superclass relation (left-hand
side of Figure 6.4) of the user provided constraints Qi . It then adds the resulting
set of constraints Qk to the typing environment, under which to typecheck e1.
Finally, the type of e2 is inferred under the extended environment.

Rule sTm-checkT-meth types a method call m in check mode, like regular
variables, to avoid any ambiguity in the instantiation of the type variables in
the method’s type scheme. This includes both the type variable a from the
class and any additional free variables aj in the method type. Furthermore, the
rules uses the unambig-relation to avoid ambiguity in the method type scheme
itself, by requiring that both sets of type variables have to occur in the head of
the method type. The rule also checks that all required constraints Qi from the
method type can be entailed.

1Note that lists, such as τ i , are denoted by overlines, whereas collections of predicates are
annotated by their range. For instance, (ΓC ; Γ `ty τ i σi , ∀i) iterates over i.

60 TYPE CLASSES

P ; ΓC ; Γ `tm e⇒ τ e (λTC Term Inference)

sTm-infT-let
x /∈ dom(Γ) unambig(∀aj .Qi ⇒ τ1)

closure(ΓC ;Qi) = Qk (ΓC ; Γ `Q Qk σk , ∀k)
ΓC ; Γ `ty ∀aj .Qk ⇒ τ1 ∀aj .σk → σ δk fresh

P ; ΓC ; Γ, aj , δk : Qk `tm e1 ⇐ τ1 e1
P ; ΓC ; Γ, x : ∀aj .Qk ⇒ τ1 `tm e2 ⇒ τ2 e2

P ; ΓC ; Γ `tm let x : ∀aj .Qi ⇒ τ1 = e1 in e2 ⇒ τ2

 let x : ∀aj .σk → σ1 = Λaj .λ δk : σk
k
.e1 in e2

P ; ΓC ; Γ `tm e⇐ τ e (λTC Term Checking)

sTm-checkT-meth
(m : Q′k ⇒ TC a : ∀aj .Qi ⇒ τ ′) ∈ ΓC

unambig(∀aj , a.Qi ⇒ τ ′) P ; ΓC ; Γ � [TC τ] e
ΓC ; Γ `ty τ σ (P ; ΓC ; Γ � [[τ j/aj][τ/a]Qi] ei , ∀i)

(ΓC ; Γ `ty τ j σj , ∀j) `ctx P ; ΓC ; Γ Γ
P ; ΓC ; Γ `tm m⇐ [τ j/aj][τ/a]τ ′ e.mσj ei

Figure 6.3: λTC typing, selected rules

The instance typing rule can be found in Figure 6.6. The relation P ; ΓC `inst
inst : P ′ denotes that an instance declaration inst results in a λTC program
context P ′, while being typed under environments P and ΓC . The unambig-
relation for constraints (Figure 6.4, bottom right), similarly to the unambig-
relation for types, checks that all free type variables bk in the instance context
occur in the instance type τ as well, in order to avoid ambiguity. Like in the
sTm-infT-let rule explained above, the superclasses of the instance context Qp
are flattened into additional local constraints Qq and added to the environment.
The superclasses Q′i of the instantiated type class are then checked to be entailed
under this extended environment. The rule checks that no overlapping instance
declarations D′ have been defined. Finally, the program context is extended
with the new instance axiom D, consisting of a constraint scheme that requires
the full set of local constraints Qq.

Type Class Resolution. The type class resolution rules can be found in
Figure 6.5, where P ; ΓC ; Γ � [Q] denotes that a class constraint Q is entailed

SOURCE LANGUAGE λTC 61

closure(ΓC ;Qi) = Qj (Superclass Closure)

sClosure-empty

closure(ΓC ; •) = •

sClosure-TC
TC a = head(C)

(m : Cm ⇒ TC a : σ) ∈ ΓC
closure(ΓC ;Ci , Cm) = Cj

closure(ΓC ;Ci , C) = Cj , C

unambig(σ) (Unambiguity for Type Schemes)

sUnambig-scheme
aj ∈ fv(τ)

unambig(∀aj .Ci ⇒ τ)

unambig(C) (Unambiguity for Constraints)

sUnambig-constraint
aj ∈ fv(τ)

unambig(∀aj .Ci ⇒ TC τ)

Figure 6.4: Closure and unambiguity relations

under the environments P , ΓC and Γ. A wanted constraint Q can either be
resolved using a locally available constraint δ (sEntailT-local) or through
a global instance declaration D (sEntailT-inst). The former is entirely
straightforward. The latter is more involved as an instance D may have an
instance context Q′i , which has to be recursively resolved. Before resolving the
context, the type variables aj are instantiated with the corresponding concrete
types τ j , originating from the wanted constraint Q.

Note that the type class resolution mechanism does not require any specific
support for superclasses, as these have all been flattened into regular local
constraints.

62 TYPE CLASSES

P ; ΓC ; Γ � [Q] e (Constraint Entailment)

sEntailT-local
(δ : Q) ∈ Γ `ctx P ; ΓC ; Γ Γ

P ; ΓC ; Γ � [Q] δ

sEntailT-inst
P = P 1, (D : ∀aj .Q

′
i ⇒ Q′).m 7→ Γ′ : e, P 2

Γ′ = •, aj , δi : Q′i , bk , δy : Qy Q = [τ j/aj]Q′
P 1; ΓC ; Γ′ `tm e⇒ τ e `ctx P ; ΓC ; Γ Γ

(ΓC ; Γ `ty τ j σj , ∀j) (ΓC ; •, aj `Q Q′i σ′i , ∀i)
(ΓC ; •, aj , bk `Q Qy σ′′y , ∀y) (P ; ΓC ; Γ � [[τ j/aj]Q′i] ei , ∀i)

P ; ΓC ; Γ � [Q] (Λaj .λ δ
′
i : σ′i

i
.{m = Λbk .λ δy : σ′′y

y
.e})σj ei

Figure 6.5: λTC constraint entailment

P ; ΓC `inst inst : P ′ (Instance Decl Typing)

sInstT-inst
(m : Q′i ⇒ TC a : ∀aj .Q

′
y ⇒ τ1) ∈ ΓC bk = fv(τ)

ΓC ; •, bk `ty τ σ closure(ΓC ;Qp) = Qq
unambig(∀bk .Qq ⇒ TC τ) (ΓC ; •, bk `Q Qq σq , ∀q)

D fresh δq fresh δ
′
y fresh

(P ; ΓC ; •, bk , δq : Qq � [[τ/a]Q′i] ei , ∀i)
Γ′ = •, bk , δq : Qq, aj , δ

′
y : [τ/a]Q′y P ; ΓC ; Γ′ `tm e⇐ [τ/a]τ1 e

(D′ : ∀b′m.Q
′
n ⇒ TC τ2).m′ 7→ Γ′′ : e′ /∈ P

where [τ ′m/b
′
m]τ2 = [τ ′k/bk]τ P ′ = (D : ∀bk .Qq ⇒ TC τ).m 7→ Γ′ : e

P ; ΓC `inst instance Qp ⇒ TC τ where {m = e} : P ′

Figure 6.6: λTC instance declaration typing

TARGET LANGUAGE F{} 63

σ ::= Bool | a | ∀a.σ | σ1 → σ2 | {mi : σi
i<n } F{} type

e ::= True | False | x | λx : σ.e | e1 e2 | Λa.e | e σ F{} term
| {mi = ei

i<n } | e.m | let x : σ = e1 in e2
Γ ::= • | Γ, a | Γ, x : σ F{} context

Figure 6.7: Target language syntax

6.4 Target Language F{}

This section covers our target language F{}, and the elaboration from λTC to
F{}.

The target language is System F with records, which we consider a reasonable
subcalculus of those used by Haskell compilers. Its syntax is shown in Figure 6.7.
We omit its standard typing rules and call-by-name operational semantics and
refer the reader to Pierce [75, Chapter 23], or Section 5 of the appendix.

6.4.1 Elaboration from λTC to F{}

The red aspects in Figure 6.3 denote the elaboration of λTC terms to F{}. We
have adopted the convention that any red F{} types are the elaborated forms
of their identically named blue λTC counterparts. This elaboration maps most
λTC forms on identical F{} terms, with the exception of a few notable cases:
(a) The interesting aspect of elaborating let expressions (sTm-infT-let) is
that, as mentioned previously, superclasses are flattened into additional local
constraints. The elaborated expression thus explicitly requires both the type
variables and the full closure of the local constraints. (b) As opposed to λTC,
dictionary and type application are made explicit in F{}. When elaborating
variables x and method references m (sTm-checkT-meth), all previously
substituted types τ j are now explicitly applied, together with the dictionary
expressions ei . Furthermore, method names m are elaborated to F{} record
labels m and therefore cannot appear by themselves, but must be applied to a
record expression e, which originates from resolving the class constraint.

Type class resolution (Figure 6.5) of a λTC constraint Q results in a F{}
expression e. When resolving the wanted constraint using a locally available
constraint δ (sEntailT-local), this results in a regular term variable δ (which
keeps the name of its λTC counterpart for readability). On the other hand, when
resolving with the use of a global instance declaration D (sEntailT-inst),
a record expression is constructed, containing the method name m and its

64 TYPE CLASSES

corresponding implementation e. This method implementation now explicitly
abstracts over the type variables bk and term variables δy originating from
the method types’s class constraints Qy, which annotate the class declaration.
Furthermore, the record expression is nested in abstractions over the type
variables aj and term variables δ′i arising from the corresponding instance
constraints Q′i . These abstractions are immediately instantiated by applying
(a) the types σj needed for matching the wanted constraint Q to the instance
declaration Q′ and (b) the expressions ei constructed by resolving the instance
context constraints Q′i .

Example 1 λTC to F{}. Typing the Example 1 program results in the following
environments:

ΓC = (==) : Eq a : a→ a→ Bool

P = (D1 : Eq Int).(==) 7→ • : primEqInt

, (D2 : ∀a, b.Eq a⇒ Eq b⇒ Eq (a, b)).(==) 7→ a, b, δ1 : Eq a, δ2 : Eq b :

λ(x1, y1).λ(x2, y2). (&&) ((==)x1 x2) ((==) y1 y2)

The Eq class straightforwardly gets stored in the class environment ΓC .
Instances are stored in the λTC program context P (containing the dictionary
constructor, the corresponding constraint, the method implementation and the
environment under which to interpret this expression). Storing the instance
declaration for Eq Int is clear-cut. The instance for tuples on the other hand is
somewhat more complex, since it requires an instance context, containing the
local constraints Eq a and Eq b. These constraints are made explicit, that is,
the corresponding dictionaries are required by the elaborated implementation.

TARGET LANGUAGE F{} 65

Elaborating the λTC expression results in the following F{} expression:

let refl: ∀a.{(==) : a→ a→ Bool} → a→ Bool

= Λa.λδ3 : {(==) : a→ a→ Bool}.λx : a.δ3.(==)xx

in let main: Bool

= refl (Int, Int)

(Λa.Λb.λδ4 : {(==) : a→ a→ Bool}.

λδ5 : {(==) : b→ b→ Bool}.

{(==) = λ(x1, y1) : (a, b).λ(x2, y2) : (a, b).

(&&) (δ4.(==)x1 x2) (δ5.(==) y1 y2)})

Int Int {(==) = primEqInt} {(==) = primEqInt} (5, 42)

in main

Note that the Eq a constraint is made explicit in the implementation of
refl, by abstracting over the constraint (elaborated to F{} as the record type
{(==) : a→ a→ Bool}, which stores the method name and its corresponding
type) with the use of the record variable δ3. When this function is called in
main, both the type and the dictionary variable are instantiated. The latter is
performed by (recursively) constructing a dictionary expression, using the type
class resolution mechanism, as explained above in Section 6.4.1.

Example 2 λTC to F{}. Below is the environment generated by typing the
Example 2 program (including the Section 7.2.2 extension), which features
superclasses.

ΓC = base : Base a : a→ Bool

, sub1 : Base a⇒ Sub1 a : a→ Bool

, sub2 : Base a⇒ Sub2 a : a→ Bool

The class environment ΓC contains three classes, two of which have superclasses.
However, since the example does not contain any instance declarations, the
resulting program context P is empty.

For space reasons, we focus solely on elaborating test2 , which results in the
following F{} expression:

66 TYPE CLASSES

let test2: ∀a.{base : a→ Bool} → {sub1 : a→ Bool}

→ {base : a→ Bool} → {sub2 : a→ Bool} → a→ Bool

= Λa.λδ1 : {base : a→ Bool}.λδ2 : {sub1 : a→ Bool}.

λδ3 : {base : a→ Bool}.λδ4 : {sub2 : a→ Bool}.λx : a. δ1.base x

in True

Note that the λTC expression requires two local constraints: Sub1 a and
Sub2 a. However, after flattening the superclasses and adding them to the local
constraints, the elaborated F{} expression requires (the elaborated form of) the
Base a, Sub1 a, Base a and Sub2 a constraints. Notice the duplicate Base a
entry. Either of these two entries can be used for calling the method base.
We have arbitrarily selected the first here. The next section proves that both
options are equivalent and can be used interchangeably.

Chapter 7

Meta Theory: Coherence

“Seeing, contrary to popular
wisdom, isn’t believing. It’s where
belief stops, because it isn’t
needed any more.”

Pyramids
Terry Pratchett

7.1 Introduction

Given the extensive attention that type classes have received, it may be surprising
that the metatheory of their elaboration-based semantics [32] has not yet been
exhaustively studied. In particular, as far as we know, while there have been
many informal arguments, the formal notion of coherence has never been proven.
Reynolds [80] has defined coherence as follows:

“When a programming language has a sufficiently rich type structure,
there can be more than one proof of the same typing judgment;
potentially this can lead to semantic ambiguity since the semantics
of a typed language is a function of such proofs. When no such
ambiguity arises, we say that the language is coherent.”

Type classes give rise to two main (potential) sources of incoherence. The first
source are ambiguous type schemes, such as that of the function foo:

67

68 META THEORY: COHERENCE

foo :: (Show a,Read a)⇒ String → String
foo s = show (read s)

The type scheme of foo requires that the type with which a will be instantiated
must have Show and Read instances. This restriction alone is too permissive,
because the type part (String → String) of foo’s type scheme is not sufficient
for a deterministic instantiation of a from the calling context. a can thus be
instantiated arbitrarily to any type with Show and Read instances. Yet, the
choice of type may lead to a different behavior of show and read , and thus of foo
as a whole. For instance, foo "1" yields "1" when a is instantiated to Int, and
"1.0" when it is instantiated to Float. To rule out this source of incoherence,
Jones [40] requires type schemes to be unambiguous and has formally proven
that, for his system, this guarantees coherence.

The second source of ambiguity arises from the type class resolution mechanism
itself. Such mechanisms check whether a particular type class constraint
holds. Usually, they are styled after resolution-based proof search in logic,
where type class instances act as Horn clauses and type scheme constraints
as additional facts. Generally, this process is nondeterministic, but languages
like Haskell, Mercury or PureScript contain it by requiring that type class
instances do not overlap with each other or with locally given constraints.
Nevertheless, superclasses remain as a source of nondeterminism; indeed, a
superclass constraint can be resolved through any of its subclass constraints.
Hence, in the presence of superclasses, type class resolution should properly be
considered as a potential source for incoherence. Moreover, overlap between
locally wanted constraints and global instances is often allowed (e.g., through
GHC’s FlexibleContexts pragma), but a formal argument for its harmlessness is
also lacking. Jones [40] considered neither of these aspects and simply assumed
the coherence of resolution as a given. Morris [60] side-steps these issues with a
denotational semantics that is disconnected from the original elaboration-based
semantics and its implementations (e.g., Hugs and GHC).

This chapter aims to fill this gap in the metatheory of programming languages
featuring type classes, including industrial grade languages such as Haskell, by
formally establishing that elaboration-based type class resolution is coherent in
the presence of superclasses and flexible contexts. The proof of this property
is considerably complicated by the indirect, elaboration-based approach that
is used to give meaning to programs with type classes. These dictionaries can,
however, often be constructed in more than one way, resulting in multiple
possible translations for a single program. The problem is that different
translations of the same source program actually may have different meanings in
the core language. The reason for this discrepancy is that the core language is
more expressive than the source language and admits programs — that cannot
be expressed in the source language — in which the different dictionaries can

INTRODUCTION 69

be distinguished.

We solve this problem with a new two-step approach that splits the problem into
two subproblems. The midway point is an intermediate language that makes
type class dictionaries explicit, but—inspired by fully abstract compilation—
cannot distinguish between different elaborations from the same source language
term [1]. We use a logical-relations approach to show that the nondeterministic
elaboration from the source language to this intermediate language is coherent.
Showing coherence for the elaboration from the intermediate language to the
target language is much simpler, because we can formulate it in a deterministic
fashion.

In summary, the contributions of this work are:

• We present a simple calculus λTC with full-blown type class resolution (incl.
superclasses), which isolates nondeterministic resolution. Furthermore,
we present an elaboration from λTC to the target language F{}, System
F with records, which are used to encode dictionaries.

• We present an intermediate language FD with explicit dictionary-passing.
This language enforces the uniqueness of dictionaries, which captures the
intention of type class instances. We study its metatheory, and define a
logical relation to prove contextual equivalence.

• We present elaborations from λTC to FD and from FD to F{}, and prove
that a direct translation from λTC to F{} can always be decomposed into
an equivalent translation through FD.

• We prove coherence of the elaboration between λTC and FD, using logical
relations.

• We prove that coherence is also preserved through the elaboration from
FD to F{}. As a consequence, by combining this with the previous result,
we prove that the elaboration between λTC and F{} is coherent. The
latter coherence result implies coherence of elaboration-based type class
resolution in the presence of superclasses and flexible contexts.

The full formalization and coherence proof are provided in the accompanying 122-
page appendix, which can be found at https://arxiv.org/pdf/1907.00844.
pdf. We will refer to this document as the coherence proof appendix.

The purpose of our work is twofold: 1) To develop a proof technique to establish
coherence of type class resolution. Because this result is achieved on a minimal
calculus, this work becomes a basis for researchers investigating type class
extensions and larger languages, as well as their impact on coherence. 2) To

https://arxiv.org/pdf/1907.00844.pdf
https://arxiv.org/pdf/1907.00844.pdf

70 META THEORY: COHERENCE

present a formal proof of coherence for language designers considering to adopt
type classes. In doing so, we show that the informally trivial argument for the
coherence of type class resolution is surprisingly hard to formalize.

7.2 Overview

This section provides some background on dictionary-passing elaboration of
type class resolution and discusses the potential nondeterminism introduced by
superclasses and local constraints. We then briefly introduce our calculi and
discuss the key ideas of the coherence proof. Throughout the section we use
Haskell-like syntax as the source language for examples, and to simplify our
informal discussion we use the same syntax without type classes as the target
language.

7.2.1 Dictionary-Passing Elaboration

A program is coherent if it has exactly one meaning — i.e., its semantics is
unambiguously determined. For type classes this is not as straightforward as it
seems, because their dynamic semantics are not expressed directly but rather
by type-directed elaboration into a simpler language without type classes such
as System F. Thus the dynamic semantics of type classes are given indirectly
as the dynamic semantics of their elaborated forms.

7.2.2 Nondeterminism and Coherence

For Haskell’98 programs there is usually only one way to construct a dictionary
for a type class constraint. Yet, in the presence of superclasses, there may be
multiple ways. Suppose we extend Example 2 with an additional subclass and
the following function:

class Base a⇒ Sub2 a where
sub2 :: a→ Bool

test2 :: (Sub1 a,Sub2 a)⇒ a→ Bool
test2 x = base x

There are two possible ways to resolve the Base a constraint that arises from
the call to base in function test2 , resulting in the following two translations: we
can either establish the desired constraint as the superclass of the given Sub1 a
constraint or as the superclass of the given Sub2 a constraint.

OVERVIEW 71

test2a, test2b :: (Sub1D a,Sub2D a)→ a→ Bool
test2a (d1 , d2) x = base (super1 d1) x
test2b (d1 , d2) x = base (super2 d2) x

Fortunately, this nondeterminism is harmless because the difference between the
two elaborations cannot be observed. Indeed, for any given type A, Haskell’98
only allows a single instance Base A, and it does not matter whether we access
its dictionary directly or through one of its subclass instances. More generally,
this suggests that type class resolution in Haskell’98 is coherent.

If we relax the Haskell’98 non-overlap condition for locally given constraints
and adopt flexible contexts (allowing for arbitrary types in class constraints,
rather than simple type variables), another source of nondeterminism arises.
Consider:

isZero :: Eq Int ⇒ Int → Bool
isZero n = n== 0

There are two ways to resolve the wanted Eq Int constraint that arises from the
use of (==). Either we use the global Eq Int constraint (in isZero1), or we use
the locally given Eq Int constraint, passed as argument d (in isZero2):

isZero1 , isZero2 :: EqD Int → Int → Bool
isZero1 d n = (==) eqInt n 0
isZero2 d n = (==) d n 0

Haskell’98 does not allow the Eq Int constraint in isZero’s signature, which
overlaps with the global Eq Int instance; it only allows constraints on type
variables in function signatures. This prevents the above nondeterminism in the
elaboration. Yet, the nondeterminism is, once more, harmless; there is no way
that the supplied dictionary d can be anything other than the global instance’s
dictionary eqInt. Informally, resolution remains coherent in the presence of
flexible contexts.

7.2.3 Contextual Difference

While it is easy to provide an informal argument for the coherence of type
class resolution, formally establishing the property is much harder. The
indirect, elaboration-based attribution of a dynamic semantics in particular
is a complicating factor, since it requires us to reason about two languages
simultaneously. Unfortunately, there is another factor that further complicates
the proof: different elaborations of the same source program can actually be

72 META THEORY: COHERENCE

distinguished in the target language. Consider, for instance, the target program
below:

discern :: ((Sub1D (),Sub2D ())→ ()→ Bool)→ Bool
discern f =
let b1 = BaseD {base = λ()→ True}

b2 = BaseD {base = λ()→ False}
d1 = Sub1D {super1 = b1 }
d2 = Sub2D {super2 = b2 }

in f (d1 , d2) ()

We find that discern test2a evaluates to True and discern test2b evaluates to
False. Hence, since discern can differentiate between them, test2a and test2b
clearly do not have the same meaning in the target language.

The dictionaries for Sub1 () and Sub2 () have different implementations for their
Base () superclass. The source language would never allow this, but the target
language has no notion of type classes and happily admits discern’s violation of
source language rules.

The problem is that the target language is more expressive than the source
language. While test2a and test2b cannot be distinguished in any program
context that arises from the source language, we can write target programs like
discern that are not the image of any source program and thus do not have to
play by the source language rules.

7.2.4 Our Approach to Proving Coherence

To avoid the problem with contextual difference in the target language, we
employ a novel two-step approach. We prove that any elaboration from a source
language program into a dictionary-passing encoding in the target language,
can be decomposed in two separate elaborations through an intermediate
language. We thus obtain two simpler problems for proving coherence of type
class resolution.

The source language, λTC (presented in blue), features full-fledged type class
resolution, and simplifies term typing with a bidirectional type system (a
technique popularized by Pierce and Turner [76]) to not distract from the main
objective of coherent resolution.

The intermediate language, FD (presented in green), is an extension of System F
that explicitly passes type class dictionaries, and preserves the source language
invariant that there is at most one such dictionary value for any combination of

OVERVIEW 73

class and type. We show FD is type-safe and strongly normalizing, and define a
logical relation that captures the contextual equivalence of two FD terms.

The target language, F{} (presented in red), is a different variant of System F
without direct support for type class dictionaries; instead it features records,
which can be used to encode dictionaries, but does not enforce uniqueness of
instances.

The different calculi are presented in Figure 7.1, where the edges denote possible
elaborations.

λTC
(Fig. 6.2)

FD
(Fig. 7.2)

F{}
(Fig. 6.7)

Thm. 1

Thm. 14 Thm. 9

Figure 7.1: The different calculi with elaborations

The coherence proof consists of two main parts:

Coherent Elaboration from λTC to FD. Our elaboration from λTC into
FD is nondeterministic, but type preserving. Furthermore, we show that
any two FD elaborations of the same λTC term are logically related,
and prove that this logical relation implies contextual equivalence. This
establishes that the elaboration from λTC to FD is coherent.

Deterministic Elaboration from FD to F{}. Because of the syntactic simi-
larity between FD and F{}, the elaboration from the former into the latter
is a more straightforward affair. In addition to being type preserving, it
is also deterministic, and preserves contextual equivalence.

These results are easily combined to show the coherence of the elaboration from
λTC to F{}, which implies coherence of elaboration-based type class resolution.
The full proofs can be found in the coherence proof appendix. Note that the
proofs depend on a number of standard boilerplate conjectures (e.g., substitution
lemmas), which can be found in Sections J.1 and K.1 of the coherence proof
appendix.

74 META THEORY: COHERENCE

7.3 Coherence

This section provides an outline for our coherence proof, and defines the required
notions. We first provide a definition of contextual equivalence [61], which
captures that two expressions have the same meaning.

7.3.1 Contextual Equivalence

In order to formally discuss the concept of contextual equivalence, we first define
the notion of an expression context.

Expression Contexts. An expression context M is an expression with a single
hole, for which another expression e can be filled in, denoted as M [e]. The
syntax can be found in Figure 6.2.

The typing judgment for an expression contextM is of the formM : (P ; ΓC ; Γ⇒
τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M . This means that for any expression e such that
P ; ΓC ; Γ `tm e ⇒ τ e, we have P ; ΓC ; Γ′ `tm M [e] ⇒ τ ′ e′. Following
regular λTC term typing, context typing spans all combinations of type
inference and checking mode: M : (P ; ΓC ; Γ ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M ,
M : (P ; ΓC ; Γ ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M and M : (P ; ΓC ; Γ ⇐ τ) 7→
(P ; ΓC ; Γ′ ⇐ τ ′) M .

For example, the simplest expression context is the empty context [•] :
(P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ⇒ τ) [•].

Now we can formally define contextual equivalence. Note that the small step
operational semantics can be found in Section E.4 of the coherence proof
appendix. The environment and type well-formedness judgments can be found
in Sections B.4 and B.1 of the appendix respectively.

Definition 2 (Kleene Equivalence).
Two F{} expressions e1 and e2 are Kleene equivalent, written e1 ' e2,
if there exists a value v such that e1 −→∗ v, and e2 −→∗ v.

Definition 3 (Contextual Equivalence).
Two expressions Γ `tm e1 : σ and Γ `tm e2 : σ,
where `ctx P ; ΓC ; Γ Γ and ΓC ; Γ `ty τ σ,
are contextually equivalent, written P ; ΓC ; Γ ` e1 'ctx e2 : τ ,
if forall M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; • ⇒ Bool) M1
and M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; • ⇒ Bool) M2
implies M1[e1] 'M2[e2].

INTERMEDIATE LANGUAGE FD 75

The definition is adapted from Harper [33, Chapter 46]. Intuitively,
contextual equivalence means that two open expressions are observationally
indistinguishable, when used in any program that instantiates the expressions’
free variables.

7.3.2 Coherence

We can now make a first attempt to prove that different translations of the same
source program are contextually equivalent. The program typing judgment can
be found in Section B.2 of the coherence proof appendix.

Theorem 1 (Coherence).
If •; • `pgm pgm : τ ;P 1; ΓC1 e1 and •; • `pgm pgm : τ ;P 2; ΓC2 e2
then ΓC1 = ΓC2, P 1 = P 2 and P 1; ΓC1; • ` e1 'ctx e2 : τ .

We first set out to prove the simpler variant, which only considers expressions 1.

Theorem 2 (Expression Coherence).
If P ; ΓC ; Γ `tm e⇒ τ e1 and P ; ΓC ; Γ `tm e⇒ τ e2
then P ; ΓC ; Γ ` e1 'ctx e2 : τ .

The main requirement which makes type class resolution coherent is that type
class instances do not overlap. However, since F{} uses records to encode
dictionaries, the F{} language does not enforce this crucial uniqueness property.
In order to prove Theorem 1, we introduce an additional intermediate language
FD, which captures the invariant that type class instances do not overlap, and
makes it explicit.

7.4 Intermediate Language FD

This section presents our intermediate language FD. The language is modeled
with three main goals in mind: (a) FD should explicitly pass type class
dictionaries, which are implicit in λTC; (b) the FD type system should
capture the uniqueness of dictionaries, thus enforcing the elaboration from
λTC to preserve full abstraction; and (c) FD expressions should elaborate

1Theorem 2 also has a type checking mode counterpart, which has been omitted here for
space reasons.

76 META THEORY: COHERENCE

σ, τ ::= . . . | Q⇒ σ type
Q ::= TC σ class constraint
C ::= ∀a.Q⇒ Q constraint

d ::= δ | Dσ d dictionary
dv ::= Dσ dv dictionary value
e ::= . . . | λδ : Q.e | e d | d.m expression

Γ ::= • | Γ, x : σ | Γ, a | Γ, δ : Q typing environment
ΓC ::= • | ΓC ,m : TC a : σ class environment
Σ ::= • | Σ, (D : C).m 7→ e method environment

Figure 7.2: FD, selected syntax

straightforwardly and deterministically to the target language F{} (System F
with records, see Section 6.4).

To this end, FD is an extension of System F, with built-in support for dictionaries.
These dictionaries differ from those commonly used in Haskell compilers in that
they are special constants rather than a record of method implementations.
A separate global map Σ from dictionaries to method implementations gives
access to the latter. Note that this setup does not allow programs to introduce
new (and possibly overlapping) dictionaries dynamically. All dictionaries have
to be provided upfront, where uniqueness is easily enforced.

Syntax. Figure 7.2 shows selected syntax of FD; the basic System F constructs
are omitted and can be found in Section A.2 of the coherence proof appendix.

FD introduces a new syntactic sort of dictionaries d that can either be a
dictionary variable δ or a dictionary constructor D. A dictionary constructor
has a number (possibly zero) of type and dictionary parameters and always
appears in fully-applied form. Each constructor corresponds to a unique
instance declaration, and is mapped to its method implementation by the
global environment Σ.

Expressions have explicit application and abstraction forms for dictionaries.
Furthermore, similarly to F{}, method names can no longer be used on their
own. Instead, they have to be applied explicitly to a dictionary, in the form
d.m.

FD types σ or τ are identical to the well-known System F types, with the
addition of a special function type Q⇒ σ for dictionary abstractions.

INTERMEDIATE LANGUAGE FD 77

Similarly to λTC, FD features two global and a single local environment Γ. The
latter is similar to the λTC typing environment Γ. However, there are notable
differences between the global environments. The FD class environment ΓC does
not contain any superclass information. The reason for this is that, as previously
mentioned in Section 6.3, superclass constraints in the source language λTC
are flattened into local constraints, and stored in the typing environment Γ.
The analog to the λTC program context P is the FD method environment
Σ, storing information about all dictionary constructors D. Each constructor
corresponds to a unique instance declaration, and stores the accompanying
method implementations.

Typing. Figure 7.3 (left-hand side) shows selected typing rules for FD
expressions. The red parts can be safely ignored for now, as they will be
explained in detail in Section 7.4.2. The judgment Σ; ΓC ; Γ `tm e : σ expresses
that the FD term e of type σ is well-typed under environments Σ, ΓC and
Γ. As shown by rule iTm-method, the type of a method variable applied
to a dictionary is simply the corresponding method type (as stored in the
static class environment), where the type variable has been substituted for the
corresponding dictionary type.

Figure 7.5 shows the typing rules for dictionaries. The relation Σ; ΓC ; Γ `d d : Q
denotes that dictionary d of dictionary type Q is well-formed under environments
Σ, ΓC and Γ. Similarly to regular term variables x (iTm-var), the type of
a dictionary variable δ (D-var) is obtained from the typing environment
Γ. The type of a dictionary constructor D (D-con), on the other hand, is
obtained by finding the corresponding entry in the method environment Σ and
substituting any types σj applied to it in the corresponding class constraint
TC σq. All applied dictionaries di have to be well-typed with the corresponding
constraint. Finally, the corresponding method implementation has to be well-
typed in the reduced method environment Σ1, which only contains the instances
declared before D. As mentioned in Section 6.3, this reduced environment
disallows recursive method implementations, as this would significantly clutter
the coherence proof while, as a feature, recursion is completely orthogonal to
the desired property.

Non-Overlapping Instances. The main requirement for achieving coherence
of type class resolution, is that type class instances do not overlap. This
requirement is common in Haskell and is for example enforced in GHC (though
strongly discouraged, the OverlappingInstances pragma disables it). By storing
all method implementations (with their corresponding instances) in a single
environment Σ, this invariant can easily be made explicit.

78 META THEORY: COHERENCE

Σ; ΓC ; Γ `tm e : σ e (FD Term Typing)

iTm-method
Σ; ΓC ; Γ `d d : TC σ e

(m : TC a : σ′) ∈ ΓC
Σ; ΓC ; Γ `tm d.m : [σ/a]σ′ e.m

iTm-constrI
Σ; ΓC ; Γ, δ : Q `tm e : σ e

ΓC ; Γ `Q Q σ

Σ; ΓC ; Γ `tm λδ : Q.e : Q⇒ σ λδ : σ.e

iTm-constrE
Σ; ΓC ; Γ `tm e : Q⇒ σ e1

Σ; ΓC ; Γ `d d : Q e2

Σ; ΓC ; Γ `tm e d : σ e1 e2

ΓC ; Γ `Q Q σ (Constr. Well-Formedness)

iQ-TC
ΓC ; Γ `ty σ σ

ΓC = ΓC1,m : TC a : σ′,ΓC2
ΓC1; •, a `ty σ′ σ′

ΓC ; Γ `Q TC σ [σ/a]{m : σ′}

Σ ` e −→ e′ (FD Evaluation)

iEval-DApp
Σ ` e −→ e′

Σ ` e d −→ e′ d

iEval-method
d −→ d′

Σ ` d.m −→ d′.m

iEval-DAppAbs

Σ ` (λδ : Q.e) d −→ [d/δ]e

Figure 7.3: FD typing and operational semantics, selected rules

INTERMEDIATE LANGUAGE FD 79

`ctx Σ; ΓC ; Γ (FD Environment Well-Formedness)

iCtx-MEnv
unambig(∀aj .Qi ⇒ TC σ) ΓC ; • `C ∀aj .Qi ⇒ TC σ σ
(m : TC a : σ′) ∈ ΓC Σ; ΓC ; • `tm e : ∀aj .Qi ⇒ [σ/a]σ′ e

D /∈ dom(Σ) (D′ : ∀a′m.Q
′
n ⇒ TC σ′).m′ 7→ e′ /∈ Σ

where[σj/aj]σ = [σ′m/a′m]σ′ `ctx Σ; ΓC ; Γ
`ctx Σ, (D : ∀aj .Qi ⇒ TC σ).m 7→ e; ΓC ; Γ

Figure 7.4: FD environment well-formedness, selected rules

Σ; ΓC ; Γ `d d : Q e (Dictionary Typing)

D-var
(δ : Q) ∈ Γ `ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `d δ : Q δ

D-con
(D : ∀aj .Qi ⇒ TC σq).m 7→ Λaj .λδi : Qi .e ∈ Σ

(ΓC ; •, aj `Q Qi σ′i , ∀i) (ΓC ; Γ `ty σj σj , ∀j)
Σ1; ΓC ; •, aj , δi : Qi `tm e : [σq/a]σm e

(Σ; ΓC ; Γ `d di : [σj/aj]Qi ei , ∀i)
Σ = Σ1, (D : ∀aj .Qi ⇒ TC σq).m 7→ Λaj .λδi : Qi .e,Σ2

Σ; ΓC ; Γ `d Dσj di : TC [σj/aj]σq (Λaj .λ δi : σ′i
i
.{m = e})σj ei

Figure 7.5: FD dictionary typing

80 META THEORY: COHERENCE

Figure 7.4 shows the environment well-formedness condition `ctx Σ; ΓC ; Γ for
the method environment. Besides stating well-scopedness, it denotes that the
method environment Σ cannot contain a second instance, for which the head of
the constraint overlaps with TC σ, up to renaming. This key property will be
exploited in our coherence proof.

Operational Semantics. As FD is an extension of System F, its call-by-name
operational semantics are mostly standard. The non-standard rules can be
found in Figure 7.3 (bottom right), where Σ ` e −→ e′ denotes expression e
evaluating to e′ in a single step, under method environment Σ.

The evaluation rules for dictionary application (iEval-DApp and iEval-
DAppAbs) are identical to those for term and type application. More interesting,
however, is the evaluation for methods (iEval-method). A method name
applied to a dictionary evaluates in one step to the method implementation, as
stored in the environment Σ.

Metatheory. FD is type safe. That is, the common progress and preservation
properties hold:

Theorem 3 (Progress).
If Σ; ΓC ; • `tm e : σ, then either e is a value, or there exists e′ such that
Σ ` e −→ e′.

Theorem 4 (Preservation).
If Σ; ΓC ; Γ `tm e : σ, and Σ ` e −→ e′, then Σ; ΓC ; Γ `tm e′ : σ.

Analogously to λTC, FD rejects recursive expressions (including mutual
recursion and recursive methods). This allows for a normalizing language,
that is, any well-typed expression evaluates to a value, after a finite number
of steps. The reason for working with a normalizing language is explained
in Section C.1. Note that since the small step operational semantics are
deterministic, normalization implies strong normalization.

Theorem 5 (Strong Normalization).
If Σ; ΓC ; • `tm e : σ then all possible evaluation derivations for e terminate :
∃v : Σ ` e −→∗ v.

INTERMEDIATE LANGUAGE FD 81

P ; ΓC ; Γ `Mtm e⇐ τ e (Source Term Checking)

sTm-check-meth
(m : Q′k ⇒ TC a : ∀aj .Qi ⇒ τ ′) ∈ ΓC unambig(∀aj , a.Qi ⇒ τ ′)

P ; ΓC ; Γ �M [TC τ] d ΓC ; Γ `Mty τ σ

(P ; ΓC ; Γ �M [[τ j/aj][τ/a]Qi] di , ∀i)
(ΓC ; Γ `Mty τ j σj , ∀j) `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ

P ; ΓC ; Γ `Mtm m⇐ [τ j/aj][τ/a]τ ′ d.m τ j di

Figure 7.6: λTC typing with elaboration to FD, selected rules

The proof follows the familiar structure for proving normalization using logical
relations, as presented by Ahmed [4], and can be found in Section K.4 of the
coherence proof appendix.

7.4.1 Elaboration from λTC to FD

The green aspects in Figure 7.6 denote the elaboration of λTC terms to FD.
Similarly to the elaboration from λTC to F{}, we have adopted the convention
that any green FD types or constraints are the elaborated forms of their
identically named blue λTC counterparts. This elaboration works analogously
to the elaboration from λTC to F{}, as shown in Figure 6.3. The full set of
rules can be found in Section C.2 of the coherence proof appendix.

The only notable case is sTm-check-meth, where the entailment relation
for solving the type class constraint TC τ now results in a dictionary d. As
explained at the start of Section 7.4, unlike F{}, FD differentiates syntactically
between dictionaries and normal expressions.

Type class resolution (Figure 7.7) of a λTC constraint Q results in a FD
dictionary d. When using a locally available constraint to resolve the wanted
constraint (sEntail-local), the corresponding dictionary variable δ is returned.
On the other hand, when resolving using a global instance declaration (sEntail-
inst), a dictionary is constructed by taking the corresponding constructor D
and applying (a) the types σj needed for matching the wanted constraint to
the instance declaration and (b) the dictionaries di , constructed by resolving
the instance context constraints.

Metatheory. We discuss the coherence of the elaboration from λTC to FD in
detail in Section 7.5, and mention here that it is type preserving:

82 META THEORY: COHERENCE

P ; ΓC ; Γ �M [Q] d (Constraint Entailment)

sEntail-local
(δ : Q) ∈ Γ `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ

P ; ΓC ; Γ �M [Q] δ

sEntail-inst
P = P 1, (D : ∀aj .Qi ⇒ Q′).m 7→ Γ′ : e, P 2

Γ′ = •, aj , δi : Qi , bk , δy : Qy Q = [τ j/aj]Q′
(ΓC ; Γ `Mty τ j σj , ∀j) `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ

(P ; ΓC ; Γ �M [[τ j/aj]Qi] di , ∀i)
P ; ΓC ; Γ �M [Q] Dσj di

Figure 7.7: λTC constraint entailment with elaboration to FD

Theorem 6 (Typing Preservation - Expressions).
If P ; ΓC ; Γ `Mtm e⇒ τ e, and `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ,
and ΓC ; Γ `Mty τ σ, then Σ; ΓC ; Γ `tm e : σ.

The same theorem holds for check mode, but is omitted for space reasons. The
full proofs can be found in Section J.3 of the coherence proof appendix.

Example 1 λTC to FD. Elaborating the λTC environments that originate from
Example 1, results in the following FD environments:

ΓC = (==) : Eq a : a→ a→ Bool

Σ = (D1 : Eq Int).(==) 7→ primEqInt

, (D2 : ∀a, b.Eq a⇒ Eq b⇒ Eq (a, b)).(==) 7→

Λa.Λb.λδ1 : Eq a.λδ2 : Eq b.

λ(x1, y1) : (a, b).λ(x2, y2) : (a, b).(&&) (δ1.(==)x1 x2) (δ2.(==) y1 y2)

Note that both the class environment ΓC and the program context Σ
are largely direct translations of their λTC counterparts. One notable

INTERMEDIATE LANGUAGE FD 83

difference is the fact that the environment Γ under which to interpret the λTC
method implementation is now explicitly abstracted over in the FD method
implementation. Consider for instance the case of D2, where the variables a, b,
δ1 and δ2, which in λTC are implicitly provided by the typing environment, are
now explicit in the term level.

Elaborating the λTC expression results in the following FD expression:

let refl : ∀a.Eq a⇒ a→ Bool

= Λa.λδ3 : Eq a.λx : a.δ3.(==)xx

in let main : Bool

= refl (Int, Int) (D2 Int IntD1D1) (5, 42)

in main

Unlike the corresponding F{} expression, shown in Section 6.4.1, records
storing the method types and implementations do not need to be passed around
explicitly. In FD, they are replaced by class constraints and dictionaries,
respectively. The construction of these dictionaries through type class resolution
is shown in Figure 7.7.

Example 2 λTC to FD. Elaborating Example 2, including the extension from
Section 7.2.2, results in the following FD class environment (since no instance
declarations exist, the method environment Σ remains empty):

ΓC = base : Base a : a→ Bool

, sub1 : Sub1 a : a→ Bool

, sub2 : Sub2 a : a→ Bool

The FD class environment no longer needs to store superclasses, as these are
all flattened into additional local constraints during elaboration.

Similarly to Section 6.4.1, we focus solely on elaborating test2 , which results in
the following FD expression:

84 META THEORY: COHERENCE

let test2: ∀a.Base a⇒ Sub1 a⇒ Base a⇒ Sub2 a⇒ a→ Bool

= Λa.λδ1 : Base a.λδ2 : Sub1 a.λδ3 : Base a.λδ4 : Sub2 a.

λx : a.δ1.base x

in True

The only difference with the F{} elaboration is that we now use class constraints
instead of passing around a record type (storing the method types).

7.4.2 Elaboration from FD to F{}

As both FD and F{} are extensions of System F, the elaboration from former
to latter is mostly trivial, leaving common features unchanged. The mapping
of FD dictionaries into F{} records, however, is non-trivial. Briefly, dictionary
types are elaborated into record types, as shown in Figure 7.3 (top right),
and dictionaries into record expressions, possibly nested within type and term
abstractions and applications, as shown in Figure 7.5.

In particular, a dictionary type, TC , which corresponds to a unique entry
(m : TC a : σ′) in the class environment ΓC , elaborates to a record type whose
field has the same name as the dictionary type’s method name, m, and the
type of that field is determined by the elaboration of σ′. A TC σ dictionary
elaborates to a record expression which is surrounded, firstly, by abstractions
over type and term variables that arise from the method type’s class constraints
and, secondly, by type and term applications that properly instantiate those
abstractions.

Metatheory. The following theorems confirm that the FD-to-F{} elaboration
is indeed appropriate.

The first theorem states that a well-typed FD expression always elaborates to a
F{} expression that is also well-typed in the translated context.

Theorem 7 (Type Preservation).
If Σ; ΓC ; Γ `tm e : σ e,
then there are unique Γ and σ such that Γ `tm e : σ,
where ΓC ; Γ `ty σ σ and ΓC ; Γ Γ.

Secondly, and more importantly, the dynamic semantics is also preserved by
the elaboration.

COHERENCE REVISITED 85

Theorem 8 (Semantic Preservation).
If Σ; ΓC ; • `tm e : σ e and Σ ` e −→∗ v
then there exists a v such that Σ; ΓC ; • `tm v : σ v and e ' v.

Thirdly, the elaboration is entirely deterministic.

Theorem 9 (Determinism).
If Σ; ΓC ; Γ `tm e : σ e1 and Σ; ΓC ; Γ `tm e : σ e2, then e1 = e2.

7.4.3 Elaboration Decomposition

An elaboration from λTC to F{} can always be decomposed into two elaborations
through FD. This intuition is formalized in Theorems 10 and 11 respectively.

Theorem 10 (Elaboration Equivalence - Expressions).
If P ; ΓC ; Γ `tm e⇒ τ e and `ctx P ; ΓC ; Γ Γ
then P ; ΓC ; Γ `Mtm e⇒ τ e and Σ; ΓC ; Γ `tm e : σ e
where `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ and ΓC ; Γ Γ and ΓC ; Γ `Mty τ σ.

Theorem 11 (Elaboration Equivalence - Dictionaries).
If P ; ΓC ; Γ � [Q] e and `ctx P ; ΓC ; Γ Γ
then P ; ΓC ; Γ �M [Q] d and Σ; ΓC ; Γ `d d : Q e
where `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ and ΓC ; Γ Γ.

Theorem 10 also has a type checking mode counterpart, which has been omitted
for space reasons. The full proofs can be found in Section L of the coherence
proof appendix.

7.5 Coherence Revisited

As mentioned previously in Section 7.3, the invariant that type class instances
do not overlap is crucial in proving Theorem 1. This uniqueness property is
made explicit in FD. Our proof thus proceeds by elaborating the λTC expression
to two possibly different FD expressions and subsequently elaborating these FD

86 META THEORY: COHERENCE

expressions to F{} expressions. Consequently, the proof is split in two main
steps. The first part is the most involved, where we use a technique based on
logical relations to prove that any two FD expressions originating from the
same λTC expression are contextually equivalent. The second part proves that
the elaboration from FD to F{} is contextual equivalence preserving. This
step follows straightforwardly from the fact that the FD-to-F{} elaboration
is deterministic. Together, these prove that the elaboration from λTC to F{}
through FD is coherent. Theorem 2 follows from this result, together with
Theorem 10.

The remainder of this section explains the techniques we used to prove Theorem 1
in detail.

7.5.1 Coherent Elaboration from λTC to FD

Logical Relations.

Logical relations [77, 89, 92] are key to proving contextual equivalence. In our
type system, the logical relation for expressions is mostly standard, though the
relation for dictionaries is novel.

Dictionaries. The logical relation over two open dictionaries is defined by
means of an auxiliary relation on closed dictionaries. We define this value
relation for closed dictionaries as follows. Note that from now on, we will omit
elaborations when they are entirely irrelevant. The appendix uses the same
convention.

Definition 4 (Value Relation for Dictionaries).
The dictionary values Dσj dv1 i and Dσj dv2 i are in the value relation,
defined as:

(Σ1 : Dσj dv1 i ,Σ2 : Dσj dv2 i) ∈ VJQKΓC ,

((Σ1 : dv1 i ,Σ2 : dv2 i) ∈ VJ[σj/aj]QiK
ΓC , ∀i)

∧ Σ1; ΓC ; • `d Dσj dv1 i : R(Q) ∧ Σ2; ΓC ; • `d Dσj dv2 i : R(Q),

where (D : ∀aj .Qi ⇒ Q′).m 7→ e1 ∈ Σ1 ∧Q = [σj/aj]Q′

The value relation is indexed by the dictionary type Q. We require both
dictionaries to be well-typed, and their dictionary arguments to be in the value

COHERENCE REVISITED 87

relation as well. The relation has four additional parameters: the contexts Σ1
and Σ2, which annotate the dictionaries, the class environment ΓC , used in the
well-typing condition, and the type substitution R.

In order to define logical equivalence between open dictionaries, we substitute
all free variables with closed terms, thus reducing them to closed dictionary
values. Three kinds of variables exist (term variables x, type variables a and
dictionary variables δ). This results in three separate semantic interpretations
of the typing context Γ. The type substitution R ∈ FJΓKΓC maps all type
variables a ∈ Γ onto closed types. φ ∈ GJΓKΣ1,Σ2,ΓC

R maps each term variable
x ∈ Γ to two expressions e1 and e2 that are in the expression value relation (see
Definition 6), and γ ∈ HJΓKΣ1,Σ2,ΓC

R maps each dictionary variable δ ∈ Γ to two
logically related dictionary values. We use φ1 and φ2 to denote the substitution
for the first and second expression, respectively.

Definition 5 (Logical Equivalence for Dictionaries).
Two dictionaries d1 and d2 are logically equivalent, defined as:

ΓC ; Γ ` Σ1 : d1 'log Σ2 : d2 : Q ,

∀R ∈ FJΓKΓC , φ ∈ GJΓKΣ1,Σ2,ΓC

R , γ ∈ HJΓKΣ1,Σ2,ΓC

R :

(Σ1 : γ1(R(d1)),Σ2 : γ2(R(d2))) ∈ VJQKΓC

Two dictionaries d1 and d2 are logically equivalent if any substitution of their free
variables (with related expressions / dictionaries) results in related dictionary
values.

Expressions. The value relation for expressions is mostly standard, with two
notable deviations. Firstly, the relation is defined over two different method
environments Σ1 and Σ2. Hence, both expressions are annotated with their
respective environment. Secondly, the dictionary abstraction case is novel.

88 META THEORY: COHERENCE

Definition 6 (Value Relation for Expressions).
Two values v1 and v2 are in the value relation, defined as:

(Σ1 : True,Σ2 : True) ∈ VJBoolKΓC

R

(Σ1 : False,Σ2 : False) ∈ VJBoolKΓC

R

(Σ1 : v1,Σ2 : v2) ∈ VJaKΓC

R ,

(a 7→ (σ, r)) ∈ R ∧ (v1, v2) ∈ r

∧ Σ1; ΓC ; • `tm v1 : σ ∧ Σ2; ΓC ; • `tm v2 : σ

(Σ1 : λx : σ1.e1,Σ2 : λx : σ1.e2) ∈ VJσ1 → σ2KΓC

R ,

Σ1; ΓC ; • `tm λx : σ.e1 : R(σ1 → σ2)

∧ Σ2; ΓC ; • `tm λx : σ.e2 : R(σ1 → σ2)

∧ ∀(Σ1 : e3,Σ2 : e4) ∈ EJσ1KΓC

R :

(Σ1 : (λx : σ.e1) e3,Σ2 : (λx : σ.e2) e4) ∈ EJσ2KΓC

R

(Σ1 : λδ : Q.e1,Σ2 : λδ : Q.e2) ∈ VJQ⇒ σKΓC

R ,

Σ1; ΓC ; • `tm λδ : Q.e1 : R(Q⇒ σ) ∧ Σ2; ΓC ; • `tm λδ : Q.e2 : R(Q⇒ σ)

∧ ∀(Σ1 : dv1,Σ2 : dv2) ∈ VJQKΓC :

(Σ1 : (λδ : Q.e1) dv1,Σ2 : (λδ : Q.e2) dv2) ∈ EJσKΓC

R

(Σ1 : Λa.e1,Σ2 : Λa.e2) ∈ VJ∀a.σKΓC

R ,

Σ1; ΓC ; • `tm Λa.e1 : R(∀a.σ) ∧ Σ2; ΓC ; • `tm Λa.e2 : R(∀a.σ)

∧ ∀σ′,∀r ∈ Rel[σ′] : ΓC ; • `ty σ′ ⇒

(Σ1 : (Λa.e1)σ′,Σ2 : (Λa.e2)σ′) ∈ EJσKΓC

R,a 7→(σ′,r)

Consider the interesting case of dictionary abstraction. The relation requires
the terms to be well-typed, and the applications for all related input dictionaries
to be in the expression relation E . The definition of this E relation is as follows:

COHERENCE REVISITED 89

Definition 7 (Expression Relation).
Two expressions e1 and e2 are in the expression relation, defined as:

(Σ1 : e1,Σ2 : e2) ∈ EJσKΓC

R , Σ1; ΓC ; • `tm e1 : R(σ) ∧ Σ2; ΓC ; • `tm e2 : R(σ)

∧ ∃v1, v2,Σ1 ` e1 −→∗ v1,Σ2 ` e2 −→∗ v2, (Σ1 : v1,Σ2 : v2) ∈ VJσKΓC

R

In this definition, expressions are reduced to values and those values must
be in the value relation. This is well-defined because FD is strongly
normalizing (Theorem 5).

Section 7.6 discusses how the logical relations can be adapted to support non-
terminating expressions.

Finally, we can give the definition of logical equivalence for open expressions:

Definition 8 (Logical Equivalence for Expressions).
Two expressions e1 and e2 are logically equivalent, defined as:

ΓC ; Γ ` Σ1 : e1 'log Σ2 : e2 : σ ,

∀R ∈ FJΓKΓC , φ ∈ GJΓKΣ1,Σ2,ΓC

R , γ ∈ HJΓKΣ1,Σ2,ΓC

R :

(Σ1 : γ1(φ1(R(e1))),Σ2 : γ2(φ2(R(e2)))) ∈ EJσKΓC

R

We also provide a definition of logical equivalence for contexts:

Definition 9 (Logical Equivalence for Contexts).
Two contexts M1 and M2 are logically equivalent, defined as:

Σ1 : M1 'log Σ2 : M2 : (ΓC ; Γ⇒ σ) 7→ (ΓC ; Γ′ ⇒ σ′) ,

∀e1, e2 : ΓC ; Γ ` Σ1 : e1 'log Σ2 : e2 : σ ⇒

ΓC ; Γ′ ` Σ1 : M1[e1] 'log Σ2 : M2[e2] : σ′

Proof of λTC-to-FD Coherence.

With the above definitions we are ready to formally state the metatheory and
establish the coherence theorems from λTC to FD.

90 META THEORY: COHERENCE

Design Principle of FD. We emphasize that FD captures the intention of type
class instances. Theorem 12 states that any two dictionary values for the same
constraint are logically related:

Theorem 12 (Value Relation for Dictionary Values).
If Σ1; ΓC ; • `d dv1 : Q and Σ2; ΓC ; • `d dv2 : Q and ΓC ` Σ1 'log Σ2
then (Σ1 : dv1,Σ2 : dv2) ∈ VJQKΓC .

Note that two environments Σ1 and Σ2 are logically equivalent under ΓC ,
written ΓC ` Σ1 'log Σ2, when they contain the same dictionary constructors
and the corresponding method implementations are logically equivalent. The
full definition can be found in Section G.3 of the coherence proof appendix.

Coherent Resolution. We now prove that constraint resolution is semantically
coherent, that is, if multiple resolutions of the same constraint exist, they are
logically equivalent.

Theorem 13 (Logical Coherence of Dictionary Resolution).
If P ; ΓC ; Γ �M [Q] d1 and P ; ΓC ; Γ �M [Q] d2
and `Mctx P ; ΓC ; Γ Σ1; ΓC ; Γ and `Mctx P ; ΓC ; Γ Σ2; ΓC ; Γ
then ΓC ; Γ ` Σ1 : d1 'log Σ2 : d2 : Q where ΓC ; Γ `MQ Q Q.

Coherent Elaboration. Furthermore, in order to prove that the elaboration
from λTCto FDis coherent, we show that all elaborations of the same expression
are logically equivalent 2.

Theorem 14 (Logical Coherence of Expression Elaboration).
If P ; ΓC ; Γ `Mtm e⇒ τ e1 and P ; ΓC ; Γ `Mtm e⇒ τ e2
and `Mctx P ; ΓC ; Γ Σ1; ΓC ; Γ and `Mctx P ; ΓC ; Γ Σ2; ΓC ; Γ
then ΓC ; Γ ` Σ1 : e1 'log Σ2 : e2 : σ where ΓC ; Γ `Mty τ σ.

Contextual Equivalence. We prove that all logically equivalent expressions
are contextually equivalent. Together with Theorem 14, this shows coherence
of the λTC-to-FD elaboration.

2Theorem 14 also has a type checking mode counterpart, which has been omitted here for
space reasons.

COHERENCE REVISITED 91

We first provide a formal definition of contextual equivalence for FD expressions.
Kleene equivalence for FD is defined similarly to Definition 2 and can be found
in Section I.1 of the coherence proof appendix.

Definition 10 (Contextual Equivalence for FD Expressions).
Two expressions Σ1; ΓC ; Γ `tm e1 : σ and Σ2; ΓC ; Γ `tm e2 : σ,
are contextually equivalent, written ΓC ; Γ ` Σ1 : e1 'ctx Σ2 : e2 : σ,
if forall M1 : (Σ1; ΓC ; Γ⇒ σ) 7→ (Σ1; ΓC ; • ⇒ Bool)
and forall M2 : (Σ2; ΓC ; Γ⇒ σ) 7→ (Σ2; ΓC ; • ⇒ Bool)
where Σ1 : M1 'log Σ2 : M2 : (ΓC ; Γ⇒ σ) 7→ (ΓC ; • ⇒ Bool),
we have that Σ1 : M1[e1] ' Σ2 : M2[e2].

Theorem 15 (Logical Equivalence implies Contextual Equivalence).
If ΓC ; Γ ` Σ1 : e1 'log Σ2 : e2 : σ then ΓC ; Γ ` Σ1 : e1 'ctx Σ2 : e2 : σ.

7.5.2 Deterministic Elaboration from FD to F{}

Contextual Equivalence.

Similarly to expressions, the elaboration from a λTC contextM to a F{} context
M can always be decomposed into two elaborations, through a FD context M .
The syntax and typing judgments can be found in Sections A and F of the
coherence proof appendix, respectively.

We now formally define contextual equivalence for F{} expressions through FD
contexts.

Definition 11 (Contextual Equivalence in FD Context).
Two expressions Γ `tm e1 : σ and Γ `tm e2 : σ,
where `ctx P ; ΓC ; Γ Γ and ΓC ; Γ `ty τ σ,
are contextually equivalent, written ΓC ; Γ ` Σ1 : e1 'ctx Σ2 : e2 : σ,
if forall M1 : (Σ1; ΓC ; Γ⇒ σ) 7→ (Σ1; ΓC ; • ⇒ Bool) M1
and forall M2 : (Σ2; ΓC ; Γ⇒ σ) 7→ (Σ2; ΓC ; • ⇒ Bool) M2
where Σ1 : M1 'log Σ2 : M2 : (ΓC ; Γ⇒ σ) 7→ (ΓC ; • ⇒ Bool),
we have that M1[e1] 'M2[e2],
where `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ and ΓC ; Γ Γ
and ΓC ; Γ `Mty τ σ and ΓC ; Γ `ty σ σ.

92 META THEORY: COHERENCE

Proof of FD-to-F{} Coherence.

We continue by proving that contextual equivalence is preserved by the
elaboration from FD to F{}:

Theorem 16 (Elaboration preserves Contextual Equivalence).
If ΓC ; Γ ` Σ1 : e1 'ctx Σ2 : e2 : σ
and Σ1; ΓC ; Γ `tm e1 : σ e1 and Σ2; ΓC ; Γ `tm e2 : σ e2
and ΓC ; Γ Γ then ΓC ; Γ ` Σ1 : e1 'ctx Σ2 : e2 : σ.

Proof of λTC-to-F{} Coherence.

Finally, in order to link back to Theorem 2 (which has no notion of FD), we prove
that contextual equivalence with FD contexts implies contextual equivalence
with λTC contexts:

Theorem 17 (Contextual Equivalence in FD implies Contextual Equivalence
in λTC).
If ΓC ; Γ ` Σ1 : e1 'ctx Σ2 : e2 : σ
and `Mctx P ; ΓC ; Γ Σ1; ΓC ; Γ and `Mctx P ; ΓC ; Γ Σ2; ΓC ; Γ
and ΓC ; Γ `Mty τ σ then P ; ΓC ; Γ ` e1 'ctx e2 : τ .

For clarity, we restate coherence Theorems 2 and 1:

Theorem 2 (Expression Coherence - Restated).
If P ; ΓC ; Γ `tm e⇒ τ e1 and P ; ΓC ; Γ `tm e⇒ τ e2
then P ; ΓC ; Γ ` e1 'ctx e2 : τ .

Theorem 2 follows by combining Theorems 10, 14, 15, 16 and 17.

Theorem 1 (Coherence - Restated).
If •; • `pgm pgm : τ ;P 1; ΓC1 e1 and •; • `pgm pgm : τ ;P 2; ΓC2 e2
then ΓC1 = ΓC2, P 1 = P 2 and P 1; ΓC1; • ` e1 'ctx e2 : τ .

Finally, we show that Theorem 1 follows from Theorem 2. The full proofs can
be found in Section M of the coherence proof appendix.

DISCUSSION OF POSSIBLE EXTENSIONS 93

7.6 Discussion of Possible Extensions

As the goal of this work was to find a proof technique to formally establish
coherence for type class resolution, a stripped down source calculus was employed
in order not to clutter the proof. This section provides a brief discussion of
extending our coherence proof to support several mainstream language features.

Ambiguous Type Schemes. As mentioned previously, our work is orthogonal
to ambiguous type schemes, which have already been extensively studied by
Jones [40]. We believe our work and the proof by Jones can be combined,
which would then relax the restriction of bidirectional type checking, and prove
coherence for both ambiguous type schemes and type class resolution.

General Recursion. Recursion is an important feature, present in any real
world programming language. It is important to note that, while λTC does not
feature recursion on the expression level (as it does not affect the essence of the
coherence proof), type class resolution itself is recursive. Dictionary values are
constructed dynamically from a statically given set of dictionary constructors
(one constructor per type class instance). The system can thus recursively
generate an arbitrary number of dictionaries from a finite set of instances.

Our logical relations can be adapted to support general recursion, through well-
known techniques, such as step indexing [3]. While this results in a significantly
longer and more cluttered proof, we do not anticipate any major complications.

Multi-Parameter Type Classes. Just like regular type class instances, multi-
parameter instances (as supported by GHC) are subject to the no-overlap rule.
Hence, they respect our main assumption. They may indeed give rise to more
ambiguity, but this is the kind of ambiguity that is studied by Jones [40], not the
kind that shows up during resolution. Note that functional dependencies were
originally introduced by Jones [46] as a way to resolve the ambiguity caused by
multi-parameter instances.

Dependent Types. Dependently typed languages, e.g., Agda [19] and Idris [12],
include language features that are inspired by type classes. Proving resolution
coherence in a dependently typed setting requires significant extension of our
calculi, as dependent types collapse the term and type levels into a single
level and thus enable more powerful type signatures for classes and instances.
Furthermore, our logical relation needs to be extended to support dependent

94 META THEORY: COHERENCE

types [6] as well. Fortunately, the essence of our proof strategy still applies.
That is, the intermediate language incorporates separate binding structures
for dictionaries, and enforces the uniqueness of dictionaries. We thus believe a
non-trivial extension of our proof methodology can be used to prove coherence
for type class resolution in the setting of dependently typed languages.

Non-overlapping Instances. Our work is built on top of the assumption that
type class instances do not overlap. This is enforced during the type checking of
instance declarations, and made explicit in the intermediate language. Whether a
constraint is entailed directly from an instance, through user provided constraints
in a type annotation, or through local evidence, is not actually relevant, as all
evidence ultimately has to originate from a non-overlapping instance declaration.

Therefore, our work can be extended to include features where the assump-
tion holds true. This includes, among others, GADT’s [72], implication
constraints [11], type constructors, higher kinded types and constraint kinds [68],
e.g., Bottu et al. [11] informally discuss the coherence of implication constraints
based on the same assumption. These features are all included in GHC.

Modules. Modules, as supported by GHC, pose an interesting challenge, as
they are known to cause a form of ambiguity.3 GHC does not statically check
the uniqueness of instances across modules, thus indirectly allowing users to
write overlapping instances, as long as no ambiguity arises during resolution.
Adapting our global uniqueness assumption to accommodate this additional
freedom remains an interesting challenge.

Laziness. The operational semantics of the FD and F{} calculi in this work
are given through standard call-by-name semantics, in order to approximate
Haskell’s laziness. The system can easily be adapted to either call-by-value or
call-by-need, with little impact on the proofs.

It is important to note though, that while expressions are evaluated lazily, type
class resolution itself is eager, and constructs the full dictionaries at compile
time. This complicates supporting certain GHC features that rely on laziness,
like cyclic and infinite dictionaries. They could be supported through loop
detection and deferring the construction of dictionaries to runtime, but these
would nonetheless pose a significant challenge.

3http://blog.ezyang.com/2014/07/type-classes-confluence-coherence-global-
uniqueness/

http://blog.ezyang.com/2014/07/type-classes-confluence-coherence-global-uniqueness/
http://blog.ezyang.com/2014/07/type-classes-confluence-coherence-global-uniqueness/

RELATED WORK 95

7.7 Related Work

Type Classes. Jones [40, 42] formally proves coherence for the framework of
qualified types, which generalizes from type classes to arbitrary evidence-backed
type constraints. He focuses on nondeterminism in the typing derivation, and
assumes that resolution is coherent.

Morris [60] presents an alternative, denotational semantics for type classes
(without superclasses) that avoids elaboration and instead interprets qualified
type schemes as the set of denotations of all its monomorphic instantiations
that satisfy the qualifiers. The nondeterminism of resolution does not affect
these semantics.

Kahl and Scheffczyk [48] present named type class instances that are not used
during resolution, but can be explicitly passed to functions. Nevertheless, they
violate the uniqueness of instances, and give rise to incoherence of the form
illustrated by our discern function in Section 7.2.3.

Unlike most other languages with type classes (such as Haskell, Mercury or
PureScript) Coq [87] does not enforce the non-overlapping instances condition.
Consequently, coherence does not hold for type class resolution in Coq. The
reason for this alternative design choice is twofold: (a) Since Coq’s type system
is more complex than that found in regular programming languages, it is
not always possible to decide whether two instances overlap [52, Chapter 2:
Typeclasses]. (b) Type class members in Coq are often proofs and, unlike for
expressions, users are often indifferent to coherence in the presence of proofs
(even though from a semantic point of view, Coq differentiates between them).
This concept is known as “proof irrelevance” [28], that is, as long as at least
one proof exists, the concrete choice between these proofs is irrelevant. Users
can deal with this lack of coherence by either assigning priorities to overlapping
instances, or by manually curating the instance database and locally removing
specific instances.

Winant and Devriese [98] introduce explicit dictionary application to the
Haskell language, and prove coherence for this extended system. Their proof is
parametric in the constraint entailment judgment and thus assumes that the
constraint solver produces “canonical” evidence. They proceed by introducing a
disjointness condition to explicitly applied dictionaries, in order to ensure that
coherence is preserved by their extension. This work proves their aforementioned
assumption, by establishing coherence for type class resolution.

Dreyer et al. [20] blend ML modules with Haskell type class resolution. Unlike
Haskell, they feature multiple global (or outer) scopes; instances within one
such global scope must not overlap. Moreover, global instances are shadowed by

96 META THEORY: COHERENCE

those given through type signatures. While their language has been formalized,
no formal proof of coherence is given.

Implicits. Cochis [83] is a calculus with highly expressive implicit resolution,
including local instances. It achieves coherence by imposing restrictions on the
implicit context and enforcing a deterministic resolution process. This allows
for a much simpler coherence proof.

OCaml’s modular implicits [97] do not enforce uniqueness of “instances” but
dynamically ensure coherence by rejecting programs where there are multiple
possible resolution derivations. This approach has not been formalized yet.

Other. Reynolds [80] introduced the notion of coherence in the context of the
Forsythe language’s intersection types; he proved coherence directly in terms of
the denotational semantics of the language.

In contrast, Bi et al. [7, 8] consider a setting where subtyping for intersection
types is elaborated to coercions. Inspired by Biernacki and Polesiuk [9], they
use an approach based on contextual equivalence and logical relations, which
has inspired us in turn. However, they do not create an intermediate language
to avoid the problem of a more expressive target language. This leads to a
notion of contextual equivalence that straddles two languages and complicates
their proofs.

7.8 Scientific Output

This chapter has presented a formal proof that type class resolution is coherent by
means of logical relations and an intermediate language with explicit dictionaries.

The material found in this chapter is largely taken from the following publication:

Gert-Jan Bottu, Ningning Xie, Koar Marntirosian, and Tom
Schrijvers. 2019. Coherence of type class resolution. Proc. ACM
Program. Lang. 3, ICFP, Article 91 (August 2019), 28 pages.
DOI:https://doi.org/10.1145/3341695

In this work, the contributions of the different authors are as follows:

• The specification of the λTC, FD and F{} calculi are developed by the
author of this thesis, Tom Schrijvers, and later on Ningning Xie.

SCIENTIFIC OUTPUT 97

• The coherence proof is mainly written by the author of this thesis, Tom
Schrijvers, and later on Ningning Xie.

• The elaboration from FD to F{}, as well as the related theorems (Section N
in the coherence proof Appendix) are largely written by Koar Marntirosian.

• Proofreading the proof appendix was shared work between the author of
this thesis, Koar Marntirosian and Ningning Xie.

Chapter 8

Extension: Quantified
Constraints

“It’s still magic even if you know
how it’s done.”

A Hat Full of Sky
Terry Pratchett

8.1 Introduction

Over the years type classes have been the subject of many language extensions
that increase their expressive power and enable new applications. Examples
of such extensions include: multi-parameter type classes [47]; functional
dependencies [46]; or associated types [15]. Several of these implemented
extensions were inspired by the analogy between type classes and predicates
in Horn clauses. Yet, Horn clauses have their limitations. As a small side-
product of their work on derivable type classes, Hinze and Peyton Jones [38]
have proposed to raise the expressive power of type classes to essentially the
universal fragment of Hereditiary Harrop logic [34] with what they call quantified
class constraints. Their motivation was to deal with higher-kinded types which
seemed to require instance declarations that were impossible to express in the
type-class system of Haskell at that time.

99

100 EXTENSION: QUANTIFIED CONSTRAINTS

Unfortunately, Hinze and Peyton Jones never did elaborate on quantified class
constraints. Later, Lämmel and Peyton Jones [50] found a workaround for
the particular problem of the derivable type classes work that did not involve
quantified class constraints. Nevertheless the idea of quantified class constraints
has whet the appetite of many researchers and developers. GHC ticket #28931,
requesting for quantified class constraints, was opened in 2008 and is still open
today. Commenting on this ticket in 2009, Peyton Jones states that “their lack
is clearly a wart, and one that may become more pressing”, yet clarifies in 2014
that “(t)he trouble is that I don’t know how to do type inference in the presence
of polymorphic constraints.” In 2010, 10 years after the original idea, Hinze
[36] rues that the feature has not been implemented yet. As recently as 2016,
Chauhan et al. [16] regret that “Haskell does not allow the use of universally
quantified constraints” and now in 2017 Spivey [88] has to use pseudo-Haskell
when modeling with quantified class constraints. While various workarounds
have been proposed and are used in practice [49, 82, 93], none has stopped the
clamor for proper quantified class constraints.

This work finally elaborates the original idea of quantified class constraints into
a fully fledged language design.

Specifically, the contributions of this work are:

• We provide an overview of the two main advantages of quantified class
constraints (Section 8.2):

1. they provide a natural way to express more of a type class’s
specification, and

2. they enable terminating type class resolution for a larger class of
applications.

• We elaborate the type system sketch of Hinze and Peyton Jones [38]
for quantified type class constraints into a full-fledged formalization
(Section 8.3). Our formalization borrows the idea of focusing from
Cochis [83], a calculus for Scala-style implicits [66, 67], and adapts
it to the Haskell setting. We account for two notable differences: a global
set of non-overlapping instances and support for superclasses.

• We present a type inference algorithm that conservatively extends that of
Haskell 98 (Section 8.4) and comes with a dictionary-passing elaboration
into System F (Section 8.5).

• We discuss the termination conditions on a system with quantified class
constraints (Section 8.6).

1https://ghc.haskell.org/trac/ghc/ticket/2893

https://ghc.haskell.org/trac/ghc/ticket/2893

MOTIVATION 101

• We provide a prototype implementation, which incorporates higher-kinded
datatypes and accepts all2 examples in this work, at https://github.
com/gkaracha/quantcs-impl.

8.2 Motivation

This section illustrates the expressive power afforded by quantified class
constraints to capture several requirements of type class instances more
succinctly, and to provide terminating resolution for a larger group of
applications.

8.2.1 Precise and Succinct Specifications

Monad Transformers Consider the MTL type class for monad transform-
ers [45]:

class Trans t where
lift :: Monad m⇒ m a→ (t m) a

What is not formally expressed in the above type class declaration, but implicitly
expected, is that for any type T that instantiates Trans there should also be a
Monad instance of the form:

instance Monad m⇒ Monad (T m) where . . .

Because the type checker is not told about this requirement, it will not accept
the following definition of monad transformer composition.

newtype (t1 ? t2) m a = C {runC :: t1 (t2 m) a}
instance (Trans t1 ,Trans t2)⇒ Trans (t1 ? t2) where
lift = C ◦ lift ◦ lift

The idea of this code is to lift from monad m to (t2 m) and then to lift from
(t2 m) to t1 (t2 m). However, the second lift is only valid if t2 m is a monad
and the type checker has no way of establishing that this fact holds for all
monad transformers t2 . Workarounds for this problem do exist in current
Haskell [39, 82, 93], but they clutter the code with heavy encodings.

Quantified class constraints allow us to state this requirement explicitly as part
of the Trans class declaration:

2except for the HFunctor example (Section 8.2.1), which needs higher-rank types [73].

https://github.com/gkaracha/quantcs-impl
https://github.com/gkaracha/quantcs-impl

102 EXTENSION: QUANTIFIED CONSTRAINTS

class (∀ m.Monad m⇒ Monad (t m))⇒ Trans t where
lift :: Monad m⇒ m a→ (t m) a

The instance for transformer composition t1 ∗ t2 now typechecks.

Second-Order Functors Another example can be found in the work of
Hinze [37]. He represents parameterized datatypes, like polymorphic lists
and trees, as the fixpoint Mu of a second-order functor :

data Mu h a = In {out :: h (Mu h) a}
data List2 f a = Nil | Cons a (f a)
type List = Mu List2

A second-order functor h is a type constructor that sends functors to
functors. This can be concisely expressed with the quantified class constraint
∀ f .Functor f ⇒ Functor (h f), for example in the Functor instance of Mu:

instance (∀ f .Functor f ⇒ Functor (h f))⇒ Functor (Mu h)
where fmap f (In x) = In (fmap f x)

Although this is Hinze’s preferred formulation he remarks that:

Unfortunately, the extension has not been implemented yet. It can be
simulated within Haskell 98 [93], but the resulting code is somewhat
clumsy.

Johann and Ghani use essentially the same data-generic representation, the
fixpoint of second-order functors, to represent so-called nested datatypes [10].
For instance, [36] represents perfect binary trees with the nested datatype

data Perfect a = Zero a | Succ (Perfect (a, a))

This can be expressed with the generic representation as Mu HPerf , the fixpoint
of the second-order functor HPerf , defined as

data HPerf f a = HZero a | HSucc (f (a, a))

Johann and Ghani’s notion of second-order functor differs slightly from Hinze’s.3
Ideally, their notion would be captured by the following class declaration:

class (∀ f .Functor f ⇒ Functor (h f))⇒ HFunctor h where
hfmap :: (Functor f ,Functor g)
⇒ (∀ x . f x → g x)→ (∀ x . h f x → h g x)

3It is more in line with the category theoretical notion of endofunctors over the category
of endofunctors.

MOTIVATION 103

Like in Hinze’s case, the quantified class constraint expresses that a second-
order functor takes first-order functors to first-order functors. Additionally,
second-order functors provide a second-order fmap, called hfmap, which replaces
f by g , to take values of type h f x to type h g x . Yet, in the absence of actual
support for quantified class constraints, Johann and Ghani provide the following
declaration instead:

class HFunctor h where
ffmap :: Functor f ⇒ (a→ b)→ (h f a → h f b)
hfmap :: (Functor f ,Functor g)
⇒ (∀ x . f x → g x)→ (∀ x . h f x → h g x)

In essence, they inline the fmap method provided by the quantified class
constraint in the HFunctor class. This is unfortunate because it duplicates
the Functor class’s functionality.

8.2.2 Terminating Corecursive Resolution

Quantified class constraints were first proposed by Hinze and Peyton Jones [38]
as a solution to a problem of diverging type class resolution. Consider their
generalized rose tree datatype

data GRose f a = GBranch a (f (GRose f a))

and its Show instance

instance (Show a,Show (f (GRose f a)))⇒ Show (GRose f a)
where show (GBranch x xs) = unwords [show x , “− “, show xs]

Notice the two constraints in the instance context which are due to the two show
invocations in the method definition. Standard recursive type class resolution
would diverge when faced with the constraint (Show (GRose [] Bool)). Indeed,
it would recursively resolve the instance context: Show Bool is easily dismissed,
but Show [GRose [] a] requires resolving Show (GRose [] Bool) again. Clearly
this process loops.

To solve this problem, Hinze and Peyton Jones proposed to write the GRose
instance with a quantified type class constraint as:

instance (Show a,∀ x .Show x ⇒ Show (f x))⇒ Show (GRose f a)
where show (GBranch x xs) = unwords [show x , “− “, show xs]

This would avoid the diverging loop in the type system extension they sketch,
because the two recursive resolvents, Show Bool and ∀ x .Show x ⇒ Show [x]
are readily discharged with the available Bool and [a] instances.

104 EXTENSION: QUANTIFIED CONSTRAINTS

When faced with the same looping issue in their Scrap Your Boilerplate work, [51]
implemented a different solution: cycle-aware constraint resolution. This
approach detects that a recursive resolvent is identical to one of its ancestors
and then ties the (co-)recursive knot at the level of the underlying type class
dictionaries.

Unfortunately, cycle-aware resolution is not a panacea. It only deals with a
particular class of diverging resolutions, those that cycle. The fixpoint of the
second-order functor HPerf presented above is beyond its capabilities.

instance (Show (h (Mu h) a))⇒ Show (Mu h a) where
show (In x) = show x

instance (Show a,Show (f (a, a)))⇒ Show (HPerf f a) where
show (HZero a) = “(Z“ ++ show a ++ “)“
show (HSucc xs) = “(S“ ++ show xs ++ “)“

Resolving Show (Mu HPerf Int) diverges without cycling back to the original
constraint due to the nestedness of the perfect tree type: In contrast, with
quantified type class constraints we can formulate the instances in a way that
resolution does terminate.

instance (Show a,
∀ f x . (Show x ,∀ y .Show y ⇒ Show (f y))⇒ Show (h f x))
⇒ Show (Mu h a) where show (In x) = show x

instance (Show a,∀ x .Show x ⇒ Show (f x))⇒ Show (HPerf f a) where
show (HZero a) = “(Z“ ++ show a ++ “)“
show (HSucc xs) = “(S“ ++ show xs ++ “)“

8.2.3 Summary

In summary, quantified type class constraints enable (1) expressing more of a
type class’s specification in a natural and succinct manner, and (2) terminating
type class resolution for a larger group of applications.

In the remainder of this chapter we provide a declarative type system for
a Haskell-like calculus with quantified class constraints (Section 8.3). Type
inference is shown in Section 8.4 and Section 8.5 provides an elaboration into
System F. Section 8.6 presents the conditions we require to ensure termination
in the presence of quantified class constraints. Finally, Section 8.7 discusses
related work and Section 8.9 concludes.

DECLARATIVE TYPE SYSTEM 105

pgm ::= e | cls; pgm | inst; pgm program
cls ::= class A⇒ TC a where { f :: σ } class decl.
inst ::= instance A⇒ TC τ where { f = e } instance decl.

e ::= x | λx.e | e1 e2 | let x = e1 in e2 term

τ ::= a | τ1 → τ2 monotype
ρ ::= τ | C ⇒ ρ qualified type
σ ::= ρ | ∀a.σ type scheme

A ::= • | A,C axiom set
C ::= Q | C1 ⇒ C2 | ∀a.C constraint
Q ::= TC τ class constraint

P ::= 〈AS ,AI ,AL〉 program theory

Figure 8.1: Source Syntax

8.3 Declarative Type System

This section provides the declarative type system specification for λ⇒TC, an
extension of λTC with quantified class constraints.

8.3.1 Syntax

Figure 8.1 presents the, mostly standard, syntax of our source language. A
program pgm consists of class declarations cls, instance declarations inst and a
top-level expression e. For simplicity, each class has a single parameter and a
single method.

Terms e comprise a λ-calculus extended with let-bindings. By convention, we
use f to denote a method name and x, y, z to denote any kind of term variable
name.

Types also appear in Figure 8.1. Like all extensions of the Damas-Milner
system [17] with qualified types [41], we discriminate between monotypes
τ , qualified types ρ and type schemes σ. Note that, to avoid clutter,
our formalization does not feature higher-kinded types, but our prototype
implementation does.

Our calculus differs from Haskell’98 in that it conservatively generalizes the

106 EXTENSION: QUANTIFIED CONSTRAINTS

P; Γ t̀m e : σ (Term Typing)

x /∈ dom(Γ) Γ t̀y τ1
P; Γ, x : τ1 t̀m e : τ2

P; Γ t̀m λx.e : τ1 → τ2
(→I)

P; Γ t̀m e1 : τ1 → τ2
P; Γ t̀m e2 : τ1

P; Γ t̀m e1 e2 : τ2
(→E)

x /∈ dom(Γ) P; Γ, x : τ t̀m e1 : τ P; Γ, x : τ t̀m e2 : σ
P; Γ t̀m (let x = e1 in e2) : σ

TmLet

(x : σ) ∈ Γ
P; Γ t̀m x : σ

TmVar

Γ c̀t C
P,L C ; Γ t̀m e : ρ

P; Γ t̀m e : C ⇒ ρ
(⇒I)

P; Γ t̀m e : C ⇒ ρ
P; Γ |= C

P; Γ t̀m e : ρ
(⇒E)

a /∈ Γ P; Γ, a t̀m e : σ
P; Γ t̀m e : ∀a.σ

(∀I)

P; Γ t̀m e : ∀a.σ
Γ t̀y τ

P; Γ t̀m e : [a 7→ τ]σ
(∀E)

Γ c̀ls cls : AS ; Γc (Class Declaration Typing)

Γ, a c̀t Ci Γ, a t̀y σ Γc = [f : ∀a.TC a⇒ σ]
Γ c̀ls class (C1, . . . ,Cn)⇒ TC a where { f :: σ } : [∀a.TC a⇒ Ci]; Γc

Class

P; Γ ìnst inst : AI (Class Instance Typing)

b = fv(τ) Γ, b àx A
class (C1, . . . ,Cn)⇒ TC a where { f :: σ }

P,L A; Γ, b |= [τ/a]Ci P,L A,L TC τ ; Γ, b t̀m e : [τ/a]σ
P; Γ ìnst instance A⇒ TC τ where { f = e } : [∀b.A⇒ TC τ]

Instance

Figure 8.2: Declarative Type System (Selected Rules)

DECLARATIVE TYPE SYSTEM 107

language of constraints. In Haskell’98 the constraints that can appear in type
signatures and in class and instance contexts are basic class constraints Q of
the form TC τ . As a consequence, the constraint schemes or axioms that are
derived from instances (and for superclasses) are Horn clauses of the form:

∀a.Q1 ∧ . . . ∧Qn ⇒ Q0

These axioms are similar to rank-1 polymorphic types in the sense that the
quantifiers (and the implication) only occur on the outside. We allow a
more general form of constraints C where, in analogy with higher-rank types,
quantifiers and implications occur in nested positions. This more expressive form
of constraints can occur in signatures and class/instance contexts. Consequently,
the syntactic sort C of constraints and axioms is one and the same.

Note that constraint schemes of the form ∀ā.(Q1 ∧ . . . ∧Qn)⇒ Q0, used in
earlier formalizations of type classes (e.g., Morris [60]), are not valid syntax
for our constraints C because we do not provide a notation for conjunction.
Yet, we can easily see the scheme notation as syntactic sugar for a curried
representation:

∀ā.(Q1 ∧ · · · ∧Qn)⇒ Q0 ≡ ∀ā.Q1 ⇒ (. . . (Qn ⇒ Q0) . . .)

We denote a list of C -constraints as A, short for axiom set as we use them to
represent, among others, axioms given through type class instances.

Finally, Figure 8.1 presents typing environments Γ, which are entirely standard,
and the program theory P. The latter is a triple of three axiom sets: the
superclass axioms AS , the instance axioms AI and local axioms AL. We use the
notation P,L C to denote that we extend the local component of the triple, and
similar notation for the other components. In earlier type class formalizations
these separate kinds of axioms are typically conflated into a single axiom set.
However, in this chapter it is convenient to distinguish them for accurately
stating the different restrictions imposed on them. Moreover, it is instructive
for contrasting with regular Haskell. In Haskell, the local constraints are basic
type class constraints Q only, while the instance and superclass axioms have
the more expressive Horn clause form. In contrast, in our setting all three
components support the same (and more general) form of Harrop formulae.

8.3.2 The Type System

Figure 8.2 presents the main judgments of our declarative type system for the
language of Figure 8.1, namely term typing and typing of class and instance
declarations.

108 EXTENSION: QUANTIFIED CONSTRAINTS

Type & Constraint Well-Scopedness The judgments for well-scopeness of
types, constraints and axiom sets are denoted Γ t̀y σ, Γ c̀t C and Γ àx

A respectively. Their definitions are straightforward and can be found in
Appendix A.4.

Term Typing Term typing takes the form P; Γ t̀m e : σ and can be read
as “under program theory P and typing environment Γ, expression e has type
σ”. The rules are almost literally those of Chakravarty et al. [15]. There
is only one difference, which is a simplification for the sake of convenience:
following Vytiniotis et al. [94] we have opted for recursive let-bindings that are
not generalized. Nevertheless, we generalize the type of top-level bindings (see
Appendix A.4).

Apart from that, there are no noticeable differences with conventional Haskell in
the typing rules. All the interesting differences are concentrated in the definition
of the constraint entailment judgment P; Γ |= C , which is used in the constraint
elimination Rule (⇒E). The definition of this auxiliary judgment is discussed
in detail in Section 8.3.3.

Class Declaration Typing Typing for class declarations takes the form Γ c̀ls

cls : AS ; Γc and is given by Rule Class, presented in Figure 8.2.

In addition to checking the well-formedness of the method type, we ensure that
the class context (C1, . . . ,Cn) is also well-formed, extending the environment
with the local variable a. In turn, this implies that fv(Ci) ⊆ {a}, in line with
the Haskell standard.

As usual, typing a class declaration extends the typing environment with the
method typing, and the program’s theory with the superclass axioms. For
instance, the extended monad transformer class yields the superclass axiom:

∀ t.Trans t ⇒ (∀ m.Monad m⇒ Monad (t m))

Class Instance Typing Instance typing takes the form P; Γ ìnst inst : AI and
is given by Rule Instance, also presented in Figure 8.2.

We check the well-formedness of the instance context A under the extended
typing environment, and that each superclass constraint Ci is entailed by the
instance context.

Finally, we check that the method implementation e has the type indicated by
the class declaration, appropriately instantiated for the instance in question.

DECLARATIVE TYPE SYSTEM 109

Program Typing The judgment for program typing ties everything together
and takes the form P; Γ p̀gm pgm : σ. Its definition is straightforward and can
be found in Appendix A.4.

8.3.3 Constraint Entailment

Following the approach of Schrijvers et al. [83] for their Cochis calculus,
we present constraint entailment in two steps. First, we provide an easy-to-
understand and expressive, yet also highly ambiguous, specification. Then we
present a syntax-directed, semi-algorithmic variant that takes the ambiguity
away, but has a more complicated formulation inspired by the focusing technique
used in proof search [5, 54, 58].

Declarative Specification Constraint entailment takes the form P; Γ |= C ,
and its high-level declarative specification is given by the following rules:

a /∈ Γ P; Γ, a |= C
P; Γ |= ∀a.C

(∀IC)
P; Γ |= ∀a.C Γ t̀y τ

P; Γ |= [τ/a]C
(∀EC)

C ∈ P
P; Γ |= C

(SpecC)
P,L C1; Γ |= C2

P; Γ |= C1 ⇒ C2
(⇒IC)

P; Γ |= C1 ⇒ C2
P; Γ |= C1

P; Γ |= C2
(⇒EC)

If we interpret constraints C as logical formulas, the above rules are nothing
more than the rules of the universal fragment of Hereditiary Harrop logic [34].
Rule (SpecC) is the standard axiom rule. Rules (⇒IC) and (⇒EC) correspond
to implication introduction and elimination, respectively. Similarly, Rules (∀IC)
and (∀EC) correspond to introduction and elimination of universal quantification,
respectively. These are also essentially the rules Hinze and Peyton Jones [38]
propose.

While compact and elegant, there is a serious downside to these rules: They are
highly ambiguous and give rise to many trivially different proofs for the same
constraint. For instance, assuming Γ = •, a and P = 〈•, •,Eq a〉, here are only
two of the infinitely many proofs of P; Γ |= Eq a:

Eq a ∈ P
P; Γ |= Eq a

(SpecC)

110 EXTENSION: QUANTIFIED CONSTRAINTS

P; Γ |= C (Constraint Entailment)

P; Γ |= [C]
P; Γ |= C

P; Γ |= [C] (Constraint Resolution)

P,L C1; Γ |= [C2]
P; Γ |= [C1 ⇒ C2]

(⇒R)
P; Γ, b |= [C]
P; Γ |= [∀b.C]

(∀R)

C ∈ P : Γ; [C] |= Q A ∀Ci ∈ A : P; Γ |= [Ci]
P; Γ |= [Q]

(QR)

Γ; [C] |= Q A (Constraint Matching)

Γ; [C2] |= Q A
Γ; [C1 ⇒ C2] |= Q A,C1

(⇒L)

Γ; [[τ/b]C] |= Q A Γ t̀y τ

Γ; [∀b.C] |= Q A
(∀L)

Γ; [Q] |= Q •
(QL)

Figure 8.3: Tractable Constraint Entailment

versus

Eq a ∈ P ′

P ′; Γ |= Eq a
(SpecC)

P; Γ |= Eq a⇒ Eq a
(⇒IC)

Eq a ∈ P
P; Γ |= Eq a

(SpecC)

P; Γ |= Eq a
(⇒EC)

where P ′ = P,L Eq a. Observe that the latter proof makes an unnecessary
appeal to implication introduction.

Type-Directed Specification To avoid the trivial forms of ambiguity like in
the example, we adopt a solution from proof search known as focusing [5]. This
solution was already adopted by the Cochis calculus, for the same reason.
The key idea of focusing is to provide a syntax-directed definition of constraint
entailment where only one inference rule applies at any given time.

DECLARATIVE TYPE SYSTEM 111

Figure 8.3 presents our definition of constraint entailment with focusing. The
main judgment P; Γ |= C is defined in terms of two auxiliary judgments,
P; Γ |= [C] and Γ; [C] |= Q A, each of which is defined by structural
induction on the constraint enclosed in square brackets.

The main entailment judgment is equivalent to the first auxiliary judgment
P; Γ |= [C]. This auxiliary judgment focuses on the constraint C whose
entailment is checked – we call this constraint the “goal”. There are three rules,
for the three possible syntactic forms of C . Rules (⇒R) and (∀R) decompose
the goal by applying implication and quantifier introductions respectively. Once
the goal is stripped down to a simple class constraint Q, Rule (QR) selects an
axiom C from the theory P to discharge it. The selected axiom must match
the goal, a notion that is captured by the second auxiliary judgment. Matching
gives rise to a sequence A of new (and hopefully simpler) goals whose entailment
is checked recursively.

The second auxiliary judgment Γ; [C] |= Q A focuses on the axiom C and
checks whether it matches the simple goal Q. Again, there are three rules for
the three possible forms the axiom can take. Rule (QL) expresses the base case
where the axiom is identical to the goal and there are no new goals. Rule (⇒L)
handles an implication axiom C1 ⇒ C2 by recursively checking whether C2
matches the goal. At the same time it yields a new goal C1 which needs to be
entailed in order for the axiom to apply. Finally, Rule (∀L) handles universal
quantification by instantiating the quantified variable in a way that recursively
yields a match.

It is not difficult to see that this type-directed formulation of entailment greatly
reduces the number of proofs for given goal.4 For instance, for the example
above there is only one proof:

Eq a ∈ P Γ; [Eq a] |= Eq a • (QL)
P; Γ |= [Eq a]

(QR)

P; Γ |= Eq a

8.3.4 Remaining Nondeterminism

While focusing makes the definition of constraint entailment type-directed, there
are still two sources of nondeterminism. As a consequence, the specification is
still ambiguous and not an algorithm.

4Without loss of expressive power. See for example Pfenning [74].

112 EXTENSION: QUANTIFIED CONSTRAINTS

Overlapping Axioms The first source of non-determinism is that in Rule (QR)
there may be multiple matching axioms that make the entailment go through.
For applications of logic where proofs are irrelevant this is not a problem, but
in Haskell where the proofs have computational content (namely the method
implementations) this is a cause for concern. Haskell’98 also faces this problem.
Consider two instances for the same type:

class Default a where {default :: a}
instance Default Bool where {default = True}
instance Default Bool where {default = False}

The two instances give rise to two different proofs for Default Bool , with distinct
computational content (True vs. False). We steer away from this problem in the
same was as Haskell’98, by requiring that instance declarations do not overlap.
This does not rule out the possibility of distinct proofs for the same goal, but
at least distinct proofs have the same computational content. Consider a class
hierarchy where C is the superclass of both D and E .

class C a where {. . .}
class C a⇒ D a where {. . .}
class C a⇒ E a where {. . .}

This gives rise to the superclass axioms ∀ a.D a ⇒ C a and ∀ a.E a ⇒ C a.
Given additionally two local constraints D ty and E ty , we have two ways to
establish C ty . The proofs are distinct, yet ultimately the computational content
is the same. This is easy to see as only instances supply the computational
content and there can be at most one instance for any given type ty .

In summary, non-overlap of instances is sufficient to ensure coherence.

Guessing Polymorphic Instantiation A second source of ambiguity is that
Rule (∀L) requires guessing an appropriate type τ for substituting the type
variable b. Guessing is problematic because there are an infinite number of types
to choose from and more than one of those choices can make the entailment
work out. Choosing an appropriate type is a problem for the type inference
algorithm in the next section. Different choices leading to different proofs is a
more fundamental problem that also manifests itself in Haskell’98. Consider
the following instances.

instance C Char where { . . .}
instance C Bool where {. . .}
instance C a⇒ D Int where {. . .}

The third instance gives rise to the axiom ∀ a.C a ⇒ D Int. When resolving
D Int with this axiom we can choose a to be either Char or Bool and thus select
a different C instance.

TYPE INFERENCE 113

unamb(C) (Unambiguity)

• ùnamb C
unamb(C)

Unamb

a ùnamb C (Unambiguity)

a ⊆ fv(Q)
a ùnamb Q

(QU)
a, a ùnamb C
a ùnamb ∀a.C

(∀U)
unamb(C1) a ùnamb C2

a ùnamb C1 ⇒ C2
(⇒U)

Figure 8.4: Unambiguity

Haskell’98 avoids this problem by requiring that all quantified type variables,
like a in the example, appear in the head of the axiom. Because our axioms
have a more general, recursively nested form, we generalize this requirement in
a recursively nested fashion. The predicate unamb(C) in Figure 8.4 formalizes
the requirement in terms of the auxiliary judgment a ùnamb C , where a are type
variables that need to be determined by the head of C . Rule (QU) constitutes
the base case where Q is the head and contains the determinable type variables
a. Rule (∀U) processes a quantifier by adding the new type variable to the list
of determinable type variables a. Finally, Rule (⇒U) checks whether the head
C2 of the implication determines the type variables a. It also recursively checks
whether C1 is unambiguous on its own. The latter check is necessary because
left-hand sides of implications are themselves added as axioms to the theory in
Rule (⇒R); hence they must be well-behaved on their own.

The predicate unamb(C) must be imposed on all constraints that are added
to the theory. This happens in four places: the instance axioms added in
Rule Instance, the superclass axioms added in Rule Class, the local axioms
added when checking against a given signature in Rule (⇒I) and the local
axioms added during constraint entailment checking in Rule (⇒R). These four
places can be traced back to three places in the syntax: class and instance
heads, and (method) signatures.

8.4 Type Inference

We provide a type inference algorithm with elaboration into System F [30]. To
simplify the presentation, this section focuses solely on type inference. The

114 EXTENSION: QUANTIFIED CONSTRAINTS

Γ t̀m e : τ t | A; E (Term Typing)

b, d fresh (x : ∀a.C ⇒ τ) ∈ Γ
Γ t̀m x : [b/a]τ x b d | (d : [b/a]C); •

TmVar

a fresh Γ, x : a t̀m e1 : τ1 t1 | A1; E1
Γ, x : τ1 t̀m e2 : τ2 t2 | A2; E2 t̀y τ1 υ1

Γ t̀m let x = e1 in e2 : τ2 let x : υ1 = t1 in t2 | (A1,A2); (E1,E2, a ∼ τ1)
TmLet

a fresh Γ, x : a t̀m e : τ t | A; E
Γ t̀m λx.e : a→ τ λ(x : a).t | A; E

TmAbs

a fresh Γ t̀m e1 : τ1 t1 | A1; E1 Γ t̀m e2 : τ2 t2 | A2; E2

Γ t̀m e1 e2 : a t1 t2 | (A1,A2); (E1,E2, τ1 ∼ τ2 → a)
TmApp

Figure 8.5: Constraint Generation for Terms with Elaboration

parts of the rules highlighted in gray concern elaboration and are discussed in
Section 8.5.

To make the connection to the relations of the declarative specification
(Section 8.3.2) more clear, corresponding rules share the same name.

8.4.1 Preliminaries

Before diving into the details of the algorithm, we first introduce some additional
notation and constructs.

Variable-Annotated Constraints & Type Equalities Since our goal is to
perform type inference and elaboration to System F simultaneously, we annotate
all constraints with their corresponding System F evidence term (dictionary
variable d). We keep the notational burden minimal by reusing the same letters
as in Figure 8.1, yet with a calligraphic font:

P ::= 〈AS ,AI ,AL〉 variable-annotated theory
A ::= • | A, C variable-annotated axiom set
C ::= d : C variable-annotated constraint
Q ::= d : Q variable-annotated class constraint

Additionally, like every HM(X)-based system, our type-inference algorithm
proceeds by first generating type constraints from the program text (constraint

TYPE INFERENCE 115

generation) and then solving these constraints independently of the program
text (constraint solving).

During constraint generation, our algorithm gives rise to both (variable-
annotated) constraints A, as well as type equalities E :

E ::= • | E , τ1 ∼ τ2 type equalities

Type & Evidence Substitutions Furthermore, we introduce two kinds of
substitutions: type substitutions θ and dictionary substitutions η:

θ ::= • | θ · [τ/a] type substitution
η ::= • | η · [t/d] evidence substitution

A type substitution θ maps type variables to monotypes, while an evidence
substitution η maps dictionary variables d to System F terms t (see Section 8.5.1
for the formal syntax of System F terms).

8.4.2 Constraint Generation For Terms

Figure 8.5 presents constraint generation for terms. The relation takes the form
Γ t̀m e : τ t | A; E . Given a typing environment Γ and a term e we infer
(1) a monotype τ , (2) a set of wanted constraints A, and (3) a set of wanted
equalities E . Its definition is standard.

Rule TmVar handles variables. We instantiate the polymorphic type ∀a.C ⇒ τ
of a term variable x with fresh unification variables b, introducing C as wanted
constraints, instantiated likewise. Rule TmAbs assigns a fresh unification
variable to the abstracted term variable x, and adds it to the context for
checking the body of the abstraction. Rule TmApp handles applications (e1 e2).
We collect wanted class and equality constraints from each subterm, we generate
a fresh type variable a for the result and record that the type of e1 is a function
type (τ1 ∼ τ2 → a). Rule TmLet handles (possibly recursive) let bindings.

8.4.3 Constraint Solving

The type class and equality constraints derived from terms are solved with the
following two algorithms.

Solving Equality Constraints We solve a set of equality constraints E by
means of unification. The function unify(a; E) = θ⊥ takes the set of equalities

116 EXTENSION: QUANTIFIED CONSTRAINTS

and a set of “untouchable” type variables, and returns either the most general
unifier θ of the equalities or fails if none exists. The untouchable type variables a
originate from type signatures; all other type variables are unification variables.
The unifier is of course only allowed to substitute unification variables.

The definition of this unification function is folklore, following Damas and
Milner [17] and accounting for signatures; it can be found in Appendix A.4.

Solving Type Class Constraints Figure 8.6 defines the judgment for solving
type class constraints; it takes the form a;P |= A1 A2; η . Given a set of
untouchable type variables a and a theory P , it (exhaustively) replaces a set of
constraints A1 with a set of simpler, residual constraints A2, via the auxiliary
judgment a;P |= [C] A ; η , explained below.

This form differs from the specification in Figure 8.3: we allow constraints to
be partially entailed, which in turn allows us to perform simplification [43] of
top-level signatures. This is standard practice in Haskell when inferring types.
For instance, when inferring the signature for

f x = [x] ==[x]

Haskell simplifies the derived constraint Eq [a] to Eq a, yielding the signature
∀ a.Eq a ⇒ a→ Bool .

Simplification Auxiliary judgment a;P |= [C] A ; η uses the theory P to
simplify a single constraint C to a set of simpler constraints without instantiating
any of the untouchable type variables a. Following the focusing approach, the
judgment is defined by three rules, one for each of the syntactic forms of the
goal C.

Rules (⇒R) and (∀R) recursively simplify the head of the goal. Observe that
we add the bound variable b to the untouchables a when going under a binder
in Rule (∀R). Once the goal is stripped down to a simple class constraint Q,
Rule (QR) selects an axiom C whose head matches the goal, and uses it to
replace the goal with a set of simpler constraints A (a process known as context
reduction [44]). Goal matching is performed by judgment a; [C] |= Q A; θ ; η ,
discussed below.

Matching Auxiliary judgment a; [C] |= Q A; θ ; η focuses on the axiom C
and checks whether it matches the simple goal Q. The main difference between
this algorithmic relation and its declarative specification in Figure 8.3 lies in the
type substitution θ. Instead of guessing a type for instantiating a polymorphic

TYPE INFERENCE 117

a;P |= A1 A2; η (Constraint Solving Algorithm)

@C ∈ A1 : a;P |= [C] A2 ; η
a;P |= A1 A1; •

Stop

a;P |= [C] A2 ; η1 a;P |= A1,A2 A3; η2

a;P |= A1, C A3; (η2 · η1)
Step

a;P |= [C] A ; η (Constraint Simplification)

c̀t C1 υ1 a;P,L (d1 : C1) |= [d2 : C2] (d : C) ; η
d
′
, d1, d2 fresh η′ = [λ(d1 : υ1).[d′ d1/d](η(d2))/d0]

a;P |= [d0 : C1 ⇒ C2] (d′ : C1 ⇒ C) ; η′
(⇒R)

d
′
, dC fresh

a, b;P |= [dC : C0] (d : C) ; η η′ = [Λb.[d′ b/d](η(dC))/d0]

a;P |= [d0 : ∀b.C0] (d′ : ∀b.C) ; η′
(∀R)

C ∈ P : a; [C] |= Q A; θ ; η
a;P |= [Q] A ; η

(QR)

a; [C] |= Q A; θ ; η (Constraint Matching)

d1, d2 fresh a; [d2 : C2] |= Q A; θ ; η
a; [d : C1 ⇒ C2] |= Q A, d1 : θ(C1); θ ; [d d1/d2] · η

(⇒L)

d′ fresh a; [d′ : C] |= Q A; θ ; η
a; [d : ∀b.C] |= Q A; θ ; [d (θ(b))/d′] · η

(∀L)

θ = unify(a; τ1 ∼ τ2)
a; [d′ : TC τ1] |= d : TC τ2 •; θ ; [d′/d]

(QL)

Figure 8.6: Constraint Entailment with Dictionary Construction

118 EXTENSION: QUANTIFIED CONSTRAINTS

Γ c̀ls cls : AS ; Γc fdata; fval (Class Declaration Typing)

cls = (class (C1, . . . ,Cn)⇒ TC a where { f :: σ })
Γ, a t̀y σ t̀y σ υ Γ, a c̀t Ci

c̀t Ci υi d, d
n fresh fdata = data TTC a = KTC υn υ

fval1 = let f : (∀a.TTC a→ υ) = Λa.λ(d : TTC a).projn+1
TC (d)

fvali2 = let di : (∀a.TTC a→ υi) = Λa.λ(d : TTC a).proj i
TC (d)

Γ c̀ls cls : [di : ∀a.TC a⇒ Ci
n
]; [f : ∀a.TC a⇒ σ] fdata; fval1, fval2

n
Class

P; Γ ìnst inst : AI fval (Class Instance Typing)

inst = (instance (C1, . . . ,Cn)⇒ TC τ where { f = e })
class (C ′1, . . . ,C ′m)⇒ TC a where { f :: σ }

b = fv(τ) d, d
′
, dI fresh PI = P,L d : C ΓI = Γ, b

ΓI c̀t Ci b;PI ,L (dI : ∀b.Cn ⇒ TC τ); ΓI t̀m e : [τ/a]σ t

c̀t Ci υi b;PI |= d′ : [τ/a]C ′ •; η
fval = let dI : (∀b.υ → TTC τ) = Λb.λ(d : υ).KTC τ η(d′) t

P; Γ ìnst inst : [dI : ∀b.C ⇒ TC τ] fval
Instance

Figure 8.7: Declaration Elaboration

axiom in Rule (∀L) (top-down), we defer the choice until the head of the axiom
is met, in Rule (QL) (bottom-up). Observe that Rule (∀L) does not record b as
untouchable, effectively turning it into a unification variable. Thus, by unifying
the head of the axiom with the goal we can determine without guessing an
instantiation for all top-level quantifiers, captured by the type substitution θ.

As an example, consider the derivation of one-step simplification of ∀b.Eq b⇒ Eq [b],
when (∀a.Eq a⇒ Eq [a]) ∈ P:5

unify(b; a ∼ b) = θ = [b/a]
b; [Eq [a]] |= Eq [b] •; θ

(QL)

b; [Eq a⇒ Eq [a]] |= Eq [b] Eq b; θ
(⇒L)

b; [∀a.Eq a⇒ Eq [a]] |= Eq [b] Eq b; θ
b;P,Eq b |= [Eq [b]] Eq b

(QR)

b;P |= [Eq b⇒ Eq [b]] (Eq b⇒ Eq b)
•;P |= [∀b.Eq b⇒ Eq [b]] (∀b.Eq b⇒ Eq b)

(∀R)
(⇒R)

(∀L)

5We omit the evidence substitutions for brevity.

TYPE INFERENCE 119

Search As Section 8.3.4 has remarked, there may be multiple matching axioms,
e.g., due to overlapping superclass axioms. The straightforward algorithmic
approach to the involved nondeterminism is search, possibly implemented by
backtracking. The GHC Haskell implementation can employ a heuristic to keep
this search shallow. It does so by using the superclass constraints very selectively:
whenever a new local constraint is added to the theory, it pro-actively derives
all its superclasses and adds them as additional local axioms. When looking for
a match, it does not consider the superclass axioms and prefers the local axioms
over the instance axioms. If a matching local axiom exists, it immediately
discharges the entire goal without further recursive resolution. This is the case
because in regular Haskell local axioms are always simple class constraints Q.

In our setting, we can also implement a (modified version) of GHC’s heuristic,
but this does not obviate the need for deep search. The reason is that our local
axioms are not necessarily simple axioms, and matching against them may leave
residual goals that require further recursive resolution. When that recursive
resolution gets stuck, we have to backtrack over the choice of axiom. Consider
the following example.

class (E a⇒ C a)⇒ D a
class (G a ⇒ C a)⇒ F a

Given local axioms D a, F a and G a, consider what happens when we resolve
the goal C a. The superclasses E a ⇒ C a and G a ⇒ C a of respectively D a
and F a both match this goal. If we pick the first one, we get stuck when
recursively resolving E a. However, if we backtrack and consider the second one
instead, we can recursively resolve G a against the given local constraint.

In summary, because we do not see a general way to avoid search, our prototype
implementation uses backtracking for choosing between the different axioms.6

Implementation Our prototype implementation is available at https://
github.com/gkaracha/quantcs-impl. It incorporates higher-kinded datatypes
and performs type inference, elaboration into System F (as explained in the
next section), and type checking of the generated code.

The examples we have tested with the prototype provide confidence that our
system is sound and that the elaboration is type preserving. The formal proof
of the metatheory is future work.

6It is worth mentioning that the rules of Figure 8.6 conservatively extend standard Haskell
resolution, both in terms of expressivity and performance.

https://github.com/gkaracha/quantcs-impl
https://github.com/gkaracha/quantcs-impl

120 EXTENSION: QUANTIFIED CONSTRAINTS

a;P; Γ t̀m e : σ t (Explicitly Annotated Term Typing)

Γ t̀m e : τ1 t | Ae; Ee d fresh θ = unify(a, b; Ee, τ1 ∼ τ2)
c̀t Ci υi a, b;P,L d : C |= θ(Ae) •; η

a;P; Γ t̀m e : (∀b.C ⇒ τ2) Λb.λ(d : υ).η(θ(t))
(�)

Figure 8.8: Subsumption Rule

8.4.4 Checking Declarations

Figure 8.7 defines type checking of class and instance declarations.

Class Declaration Typing Typing for class declarations is given by Rule Class.
For the purposes of type inference, Rule Class is identical to the corresponding
rule of Figure 8.2, so we defer its analysis to Section 8.5.5 which discusses
elaboration.

Instance Declaration Typing Typing for instance declarations takes the form
P; Γ ìnst inst : AI fval and is given by Rule Instance. For the most part it
is identical to the corresponding rule of Figure 8.2.

The most notable difference is the handling of the method implementation e:
method implementations have their type imposed by the method signature in
the class declaration. Hence, we need to check rather than infer their type.

This operation is expressed succinctly by relation a;P ; Γ t̀m e : σ t , presented
in Figure 8.8. Essentially, it ensures that the inferred type for e subsumes the
expected type σ. A type σ1 is said to subsume type σ2 if any expression that
can be assigned type σ1 can also be assigned type σ2.

Rule (�) performs type inference and type subsumption checking simultaneously:
First, it infers a monotype τ1 for expression e, as well as wanted constraints
Ae and type equalities Ee. Type equalities Ee should have a unifier and the
inferred type τ1 should also be unifiable with the expected type τ2. Finally, the
given constraints C should completely entail the wanted constraints Ae.

TRANSLATION TO SYSTEM F 121

fpgm ::= t | fval; fpgm | fdata; fpgm program
fval ::= let x : υ = t value binding
fdata ::= data T a = K υ datatype

t ::= x | K | λ(x : υ).t | t1 t2 | Λa.t | t υ term
| let x : υ = t1 in t2 | case t1 of K x→ t2

υ ::= a | υ1 → υ2 | ∀a.υ | T υ type

Figure 8.9: System F Syntax

8.4.5 Program Typing

Type inference and elaboration for programs is straightforward and can be
found in Appendix A.4.

8.5 Translation to System F

This section discusses the elaboration aspect of the algorithm presented in
Section 8.4.

8.5.1 Target Language: System F

Syntax The syntax of System F [30] – extended with data types and recursive
let-bindings – is presented in Figure 8.9 and is entirely standard. Like in the
source language, we elide all mention of kinds. Without loss of generality, we
simplify matters by allowing only data types with a single type parameter and
a single data constructor and case expressions with a single branch; this is
sufficient for our dictionary-passing translation of type classes.

Semantics & Typing Since the operational semantics and typing for System
F with data types are entirely standard and do not contribute to the novelty of
this chapter, we omit them from our main presentation. They can be found in
Appendix A.9.

122 EXTENSION: QUANTIFIED CONSTRAINTS

8.5.2 Elaboration of Types & Constraints

Our system follows the traditional approach of translating source type class
constraints into explicitly-passed System F terms, the so-called dictionaries [32,
95]. This transition is reflected in the translation of types, performed by
judgment t̀y σ υ:

t̀y a a
TyVar t̀y τ1 υ1 t̀y τ2 υ2

t̀y τ1 → τ2 υ1 → υ2
TyArr

c̀t C υ1 t̀y ρ υ2

t̀y C ⇒ ρ υ1 → υ2
TyQual t̀y σ υ

t̀y ∀a.σ ∀a.υ
TyAll

Rules TyVar, TyArr and TyAll are straightforward. Rule TyQual
elaborates a qualified type into a System F arrow type: the constraint C
is translated into the dictionary type υ1, via relation c̀t C υ which performs
elaboration of constraints:

t̀y τ υ

c̀t TC τ TTC υ
(CQ) c̀t C υ

c̀t ∀a.C ∀a.υ
(C∀)

c̀t C1 υ1 c̀t C2 υ2

c̀t C1 ⇒ C2 υ1 → υ2
(C⇒)

Rule (CQ) elaborates a class constraint TC τ into a type constructor application
TTC υ, which corresponds to the type of dictionaries that witness TC τ .
Rule (C∀) is straightforward. Rule (C⇒) elaborates implication constraints
of the form C1 ⇒ C2 into System F arrow types υ1 → υ2, that is, types of
dictionary transformers. As a concrete example, the constraint corresponding
to the Show instance for type HPerf (Section 8.2.2):

∀ f a.Show a⇒ (∀ x .Show x ⇒ Show (f x))⇒ Show (HPerf f a)

is elaborated into the type

∀ f a.TShow a→ (∀ x .TShow x → TShow (f x))→ TShow (HPerf f a)

8.5.3 Elaboration of Terms

Term elaboration is straightforward. Rule TmVar handles term variables. The
instantiation of the type scheme ∀a.C ⇒ τ to [b/a]τ becomes explicit in the
System F representation, by the application of x to type variables b, as well
as the fresh dictionary variables d, corresponding one-to-one to the implicit

TRANSLATION TO SYSTEM F 123

constraints C . Rule TmAbs elaborates λ-abstractions. Since in System F all
bindings are explicitly typed, in the elaborated term we annotate the binding
of x with its type a. Similarly, Rule TmLet elaborates let bindings, again
explicitly annotating x with its type υ1 in the elaborated term. Rule TmApp is
straightforward.

8.5.4 Dictionary Construction

The entailment algorithm of Figure 8.6 constructs explicit witness proofs (in
the form of dictionary substitutions) while entailing a constraint.

Simplification The evidence substitution η in the simplification relation shows
how to construct a witness for the wanted constraint C from the simpler
constraints A′ and program theory P.

The goal of Rule (⇒R) is to build an evidence substitution η′, which constructs
a proof for (d0 : C1 ⇒ C2) from the proofs d′ for the simpler constraints C1 ⇒ C .
It is instructive to consider the generated evidence substitution in parts, also
taking the types into account:

1. η illustrates how to generate a proof for (d2 : C2), from the local
assumption (d1 : C1) and local residual constraints (d : C).

2. [d′ d1/d] generates proofs for the (local) residual constraints (d : C), by
applying the residual constraints (d′ : C1 ⇒ C) to the local assumption
(d1 : C1).

3. ([d′ d1/d] · η)(d2) is a proof for C2, under assumptions (d1 : C1) and
(d′ : C1 ⇒ C).

4. Finally, we construct the proof for (d0 : C1 ⇒ C2) by explicitly abstracting
over d1: λ(d1 : υ1).[d′ d1/d](η(d2))

Rule (∀R) proceeds similarly. Finally, Rule (QR) generates the evidence
substitution via constraint matching, which we discuss next.

Matching Similarly, the evidence substitution η in the matching relation
shows how to construct a witness for the wanted constraint Q from the simpler
constraints A and program theory P.

Rule (⇒L) generates two fresh dictionary variables, d1 for the residual constraint
θ(C1), and d2 for the local assumption C2. Finally, dictionary d2 is replaced by

124 EXTENSION: QUANTIFIED CONSTRAINTS

the application of the dictionary transformer d to the residual dictionary d1.
Rule (∀L) behaves similarly. The instantiation of the axiom d becomes explicit,
by applying it to the chosen type θ(b). Finally, Rule (QL) is straightforward:
since the wanted and the given constraints are identical (given that they unify),
the wanted dictionary d is replaced by the given d′.

8.5.5 Declaration Elaboration

Figure 8.7 presents the elaboration of both class and instance declarations into
System F.

Elaboration of Class Declarations A declaration for a class TC is encoded in
System F as a dictionary type TTC , with a single data constructor KTC and
n+ 1 arguments: n arguments for the superclass dictionaries (of type υn) and
one more for the method implementation (of type υ). For example, the Trans
declaration of Section 8.2.1 gives rise to the following dictionary type:

data TTrans t = KTrans (∀m.TMonad m→ TMonad (t m))
(∀m a.TMonad m→ m a→ (t m) a)

Accordingly, we generate n + 1 projection functions that extract each of
the arguments (di extracts the i-th superclass dictionary and f the method
implementation). We use proj i

TC (d) to denote pattern matching against d and
extracting the i-th argument:

proj i
TC (d) ≡ case d of KTC xk → xi , xk fresh

where k denotes the arity of data constructor KTC . E.g., the superclass
projection function for class Trans takes the form:

dsc : ∀t.TTrans t→ (∀m.TMonad m→ TMonad (t m))
dsc = Λt.λ(d : TTrans t). case d of { KTrans d

′ _→ d′ }

Elaboration of Class Instances A class instance is elaborated into a System F
dictionary transformer dI :

let dI : (∀b.υ → TTC τ) = Λb.λ(d : υ).KTC τ η(d′) t

Given dictionaries d – corresponding to the given context constraints – we need
to provide all arguments of the data constructor KTC : (a) the instantiation
of the class type parameter, (b) the superclass dictionaries, and (c) the
method implementation. The first argument is trivial. We obtain the

TERMINATION OF RESOLUTION 125

superclass dictionaries by applying the evidence substitution η on the dictionary
variables d′ that abstract over the required superclass constraints. The method
implementation t is elaborated via premise

b;PI ; ΓI t̀m e : [τ/a]σ t

which elaborates type subsumption in a similar manner.

8.6 Termination of Resolution

Termination of resolution is the cornerstone of the overall termination of type
inference. This section discusses how to enforce termination by means of
syntactic conditions on the axioms. These conditions are adapted from those of
Cochis [83] and generalize the earlier conditions for Haskell by Sulzmann et al.
[91].

Overall Strategy We show termination by characterising the resolution process
as a (resolution) tree with goals in the nodes and axioms on the (multi-)edges.
The initial goal sits at the root of the tree. A multi-edge from a parent node
to its children presents an axiom that matches the parent node’s goal and its
children are the residual goals. Resolution terminates iff the tree is finite. Hence,
if it does not terminate, there is an infinite path from the root in the tree, that
denotes an infinite sequence of axiom applications.

To show that there cannot be such an infinite path, we use a norm ‖·‖ that
maps the head 7 of every goal C to a natural number, its size. The size of a
class constraint TC τ is the size of its type parameter τ , which is given by the
following equations:

‖a‖ = 1
‖τ1 → τ2‖ = 1 + ‖τ1‖+ ‖τ2‖

If we can show that this size strictly decreases from any parent goal to its
children, then we know that, because the order on the natural numbers is
well-founded, on any path from the root there is eventually a goal that has no
children.

Termination Condition It is trivial to show that the size strictly decreases, if
we require that every axiom makes it so. This requirement is formalised as the

7The head of a constraint is defined as: head(Q) = Q; head(∀a.C) = head(C); and
head(C1 ⇒ C2) = head(C2).

126 EXTENSION: QUANTIFIED CONSTRAINTS

termination condition of axioms term(C):

term(Q)
(QT)

term(C)
term(∀a.C)

(∀T)

term(C1) term(C2) Q1 = head(C1) Q2 = head(C2)
‖Q1‖ < ‖Q2‖ ∀a ∈ fv(C1) ∪ fv(C2) : occa(Q1) 6 occa(Q2)

term(C1 ⇒ C2)
(⇒T)

Rule (⇒T) for C1 ⇒ C2 enforces the main condition, that the size of the residual
constraint’s head Q1 is strictly smaller than the head Q2 of C2. In addition,
the rule ensures that this property is stable under type substitution. Consider
for instance the axiom ∀a.C (a→ a)⇒ C (a→ Int → Int). The head’s size 5
is strictly greater than the context constraint’s size 3. Yet, if we instantiate
a to (Int → Int → Int), then the head’s size becomes 10 while the context
constraint’s size becomes 11. Declaratively, we can formulate stability as:

∀θ.dom(θ) ⊆ fv(C1) ∪ fv(C2)⇒ ‖θ(Q1)‖ < ‖θ(Q2)‖

The rule uses instead an equivalent algorithmic formulation which states that
the number of occurrences of any free type variable a may not be larger in Q1
than in Q2. Here the number of occurrences of a type variable a in a class
constraint TC τ (denoted as occa(TC τ)) is the same as the number of free
occurrences of a in the parameter τ , where function occa(τ) is defined as:

occa(b) =
{

1 , if a = b
0 , if a 6= b

occa(τ1 → τ2) = occa(τ1) + occa(τ2)

Finally, as the constraints have a recursive structure whereby their components
are themselves used as axioms, the rules also enforce the termination condition
recursively on the components.

Superclass Condition If we could impose the termination condition above on
all axioms in the theory P, we would be set. Unfortunately, this condition is too
strong for the superclass axioms. Consider the superclass axiom ∀ a.Ord a⇒
Eq a of the standard Haskell’98 Ord type class. Here both Ord } a and Eq} a
have size 1; in other words, the size does not strictly decrease and so the axiom
does not satisfy the termination condition.

To accommodate this and other examples, we impose an alternative condition
for superclass axioms. This superclass condition relaxes the strict size decrease
to a non-strict size decrease and makes up for it by requiring that the superclass
relation forms a directed acyclic graph (DAG). The superclass relation is defined
as follows on type classes.

RELATED WORK 127

Definition 12 (Superclass Relation). Given a class declaration

class (C1, . . . ,Cn)⇒ TC a where { f :: σ }

each type class TC i is a superclass of TC , where head(Ci) = TC i τi.

Observe that the DAG induces a well-founded partial order on type classes.
Hence, on any path in the resolution tree, any uninterrupted sequence of
superclass axiom applications has to be finite. For the length of such a sequence,
the size of the goal does not increase (but might not decrease either). Yet, after
a finite number of steps the sequence has to come to an end. If the path still
goes on at that point, it must be due to the application of an instance or local
axiom, which strictly decreases the goal size. Hence, overall we have preserved
the variant that the goal size decreases after a bounded number8 of steps.

Termination & Soundness Finally, although we have not proven it formally
yet, we are confident that soundness of type inference and preservation of typing
under elaboration hold independently of termination (and thus are not affected
by whether the termination conditions are met). Such a property is crucial
for integrating our algorithm within GHC in the future, where flags such as
UndecidableInstances are heavily used.

8.7 Related Work

This section discusses related work, focusing mostly on comparing our approach
with existing encodings/workarounds in Haskell. The history of quantified class
constraints and their demand in previous research was already discussed in
Section 8.1.

The Coq Proof Assistant Coq provides very flexible support for type
classes [86] and allows for arbitrary formulas in class and instance contexts –
actually the contexts are just parameters. For instance, we can model the Trans
class as:

Class Trans (T : (Type → Type)→ Type → Type)
‘{∀ M, ‘{Monad M } → Monad (T M)} :=
{ lift : ∀ A M, ‘{Monad M } → M A→ (T M) A}.

8bounded by the height of the superclass DAG

128 EXTENSION: QUANTIFIED CONSTRAINTS

The downside of Coq’s flexibility is that resolution can be ambiguous and
non-terminating. The accepted workaround is for the programmer to perform
resolution manually when necessary. This is acceptable in the context of Coq’s
interactive approach to proving, but would mean a great departure from Haskell’s
non-interactive type inference.

Trifonov’s Workaround and Monatron Trifonov [93] gives an encoding of
quantified class constraints in terms of regular class constraints. The encoding
introduces a new type class that encapsulates the quantified constraint, e.g.
Monad_t t for ∀ m.Monad m ⇒ Monad (t m), and that provides the implied
methods under a new name. This expresses the Trans problem as follows:

class Monad_t t where
treturn :: Monad m⇒ a→ t m a
tbind :: Monad m⇒ t m a→ (a→ t m b)→ t m b

class Monad_t t ⇒ Trans t where
lift :: Monad m⇒ m a→ t m a

While this approach captures the intention of the quantified constraint, it does
not enable the type checker to see that Monad (t m) holds for any transformer
t and monad m. While the monad methods are available for t m, they do not
have the usual name.

For this reason, Trifonov presents a further (non-Haskell’98) refinement of the
encoding, which was adopted by the Monatron [39] library9 among others. A
non-essential difference is that Monatron merges the above Monad t and Trans
into a single class:

class MonadT t where
lift :: Monad m⇒ m a→ t m a
treturn :: Monad m⇒ a→ t m a
tbind :: Monad m⇒ t m a→ (a→ t m b)→ t m b

The key novelty is that it also makes the methods treturn and tbind available
under their usual name with a single Monad instance for all monad transformers.

instance (Monad m,MonadT t)⇒ Monad (t m) where
return = treturn
(>>=) = tbind

With these definitions the monad transformer composition does type check.
Unfortunately, the head of the Monad (t m) instance is highly generic and easily
overlaps with other instances.

9For the implementation see https://hackage.haskell.org/package/Monatron

https://hackage.haskell.org/package/Monatron

RELATED WORK 129

The MonadZipper Because they found Monatron’s overlapping instances
untenable, Schrijvers and Oliveira [82] presented a different workaround for this
problem in the context of their monad zipper datatype, which is an extended
form of transformer composition. Their solution adds a method mw to the
Trans type class:

class Trans t where
lift :: Monad m⇒ m a→ t m a
mw :: Monad m⇒ MonadWitness t m

For any monad m this method returns a GADT [71] witness for the fact that
t m is a monad. This is possible because with GADTs, type class instances can
be stored in the data constructors.

data MonadWitness (t :: (?→ ?)→ (?→ ?)) m where
MW :: Monad (t m)⇒ MonadWitness t m

By pattern matching on the witness of the appropriate type the programmer
can bring the required Monad (t2 m) constraint into scope to satisfy the type
checker.

instance (Trans t1 ,Trans t2)⇒ Trans (t1 ? t2) where
lift :: ∀ m a.Monad m⇒ m a→ (t1 ? t2) m a
lift = case (mw :: MonadWitness t2 m) of
MW → C ◦ lift ◦ lift

mw = . . .

The downside of this approach is that it offloads part of the type checker’s work
on the programmer. As a consequence, the code becomes cluttered with witness
manipulation.

The constraint Library Kmett’s constraint library [49] provides generic
infrastructure for reifying quantified constraints in terms of GADTs, generalizing
the MonadZipper solution above. Additionally, it complements the encoding
with ample utilities for the manipulation of such constraints. Unfortunately,
it suffers from the same problem: passing, construction and deconstruction of
dictionaries needs to be manually performed by the programmer.

Corecursive Resolution Fu et al. [27] address the divergence problem that
arises for generic nested datatypes. They turn the diverging resolution with
user-supplied instances into a terminating resolution in terms of automatically
derived instances. These auxiliary instances are derived specifically to deal with

130 EXTENSION: QUANTIFIED CONSTRAINTS

the query at hand; they shift the pattern of divergence to the term-level in the
form of co-recursively defined dictionaries. The authors do point out that the
class of divergent cases they support is limited and that deriving quantified
instances would be beneficial.

Cochis The calculus of coherent implicits, Cochis [83], and its focusing-based
resolution in particular, have been a major inspiration of this work. Just like
this work, Cochis supports recursive resolution of quantified constraints. Yet,
there are a number of significant differences. Firstly, Cochis does not feature a
separate syntactic sort for type classes, but implicitly resolves regular terms in
the Scala tradition. As a consequence, it does not distinguish between instance
and superclass axioms, e.g., for the sake of enforcing termination and coherence.
Perhaps more significantly, Cochis features local “instances” as opposed to our
globally scoped instances. Local instances may overlap with one another and
coherence is obtained by prioritizing those instances that are introduced in the
innermost scope. This way Cochis’s resolution is entirely deterministic, while
ours is non- deterministic (yet coherent) due to overlapping local and superclass
axioms.

Quantified class constraints have been a recurring feature request for Haskell in
the literature. This chapter gets things rolling by formally studying quantified
class constraints in a simplified Haskell-like calculus. However, there is still
plenty of work to be done to integrate quantified class constraints in a full
blown Haskell compiler such as GHC. Therefore, we see ample opportunities for
extending our system in the near future.

8.8 Quantified Constraints in GHC

Quantified class constraints have been introduced in GHC 8.6.1, using the
QuantifiedContraints language pragma. Despite being a relatively new language
extension, the pragma is currently—at the time of writing—being used in 170
Haskell packages, which make up about 1% of the Hackage library.

While the GHC implementation is based on this work, constraint entailment
is handled differently. While this work employs backtracking for selecting and
matching against axioms, the GHC community decided against this approach,
as they were worried about a possible performance penalty. In fact, multiple
alternatives exist, each with their own issues: (1) When multiple overlapping
axioms exist, the compiler could simply select the first with a matching head.
However, confusingly, the ordering of the instance context would now have
an impact on whether or not the program is accepted. (2) Heuristics could

SCIENTIFIC OUTPUT 131

be employed to determine which axioms to prefer over others. However, this
would add significant complexity to the compiler, and could potentially be
confusing during debugging. (3) The compiler could detect overlapping axioms,
and conservatively reject the program. In the end, GHC uses a very simple
heuristic which always prefers simple axioms over quantified ones, and prefers
local constraints over global instances. When no simple axioms matches, and
the compiler detects overlapping matching heads, it will conservatively reject
the program. While this approach works in most common cases, it is no full
substitute for backtracking, as discussed in Section 8.4.3.

8.9 Scientific Output

This chapter has motivated the need for, and presented a fully fledged design of
quantified class constraints.

The material found in this chapter is largely taken from the following publication:

Gert-Jan Bottu, Georgios Karachalias, Tom Schrijvers, Bruno
C. d. S. Oliveira, and Philip Wadler. 2017. Quantified
class constraints. In Proceedings of the 10th ACM SIGPLAN
International Symposium on Haskell (Haskell 2017). Associa-
tion for Computing Machinery, New York, NY, USA, 148–161.
DOI:https://doi.org/10.1145/3122955.3122967

This work was originally performed in the context of the master thesis of the
author of this text, under the mentoring of Georgios Karachalias and supervision
of Tom Schrijvers. The contributions of the different authors are as follows:

• Both the calculus used in this work and the type inference algorithm are
a joint effort between the author of this thesis, Georgios Karachalias and
Tom Schrijvers.

• The compiler prototype implementation was orginally developed by the
author of this thesis, whereas the latest version is a revision by Georgios
Karachalias.

Chapter 9

Meta Theory: Coherence for
Quantified Constraints

9.1 Introduction

Chapter 8 increased the expressivity of Haskell’s type classes by introducing
the quantified class constraints language extension. Note, however, that doing
so requires a significant update to the type class resolution mechanism. This
chapter answers the following research question:

How to prove coherence of type class resolution in the presence of
quantified class constraints?

Doing so showcases the adaptability of the coherence proof described in Chapter 7
by extending the proof with quantified class constraints.

Section 9.2 describes an alternative formulation of λ⇒TC, as well as a new
intermediate language F⇒D . Updates to the core theorems of the Chapter 7
proof are presented in Section 9.3. Finally, Section 9.4 discusses the required
changes to the logical relations and coherence proof itself. The full proof can
be found in Appendix C.

133

134 META THEORY: COHERENCE FOR QUANTIFIED CONSTRAINTS

9.2 Calculus Updates

This section discusses the λ⇒TC source and F⇒D intermediate language, used in
the updated proof of coherence with support for quantified class constraints.
We will emphasise both the updates in the calculi with respect to the λTC and
FD languages from Chapter 7, as well as the changes with respect to the λ⇒TC
language from Chapter 8.

We start off with a discription of the λ⇒TC calculus and its differences with λTC
from Section 9.2.1. Note, however, that while Chapter 8 describes a full type
inference algorithm for λ⇒TC, this section introduces an alternative formulation
of λ⇒TC with a bidirectional type system. We make a second deviation from the
calculus as described in Chapter 8 by disallowing recursive expressions. We
thus follow the example set by Chapter 7, as both type inference and recursion
are orthogonal to type class resolution. These two simplifications thus allow
us to focus on the coherence property, without getting lost in technical details
regarding type inference. Section 9.2.2 illustrates the new bidirectional type
system with an example derivation.

As the intermediate language FD features explicit dictionaries, it too needs to
be adapted to support quantified constraints. This includes support for the
extended constraints themselves, and a more expressive form of dictionaries, with
their own operational semantics. Section 9.2.3 describes these changes to the
F⇒D calculus. Section 9.2.4 illustrates the new intermediate language with and
example derivation, translating from λ⇒TC. Note that these advanced dictionaries
are still translated into standard System F (as described in Section 8.5). The
target language F{} can thus be left unchanged.

9.2.1 λ⇒
TC Updates

This section presents λ⇒TC, our source calculus used in the extended version of
our proof of coherence. We discuss both the difference between λ⇒TC and λTC,
as well as the changes compared to λ⇒TC as presented in Chapter 8.

Concretely, compared to λTC, the new calculus is extended with (1) the more
expressive form of constraints C from Chapter 8, (2) support for constraints
C in class and instance declarations, and (3) abstraction over constraints C in
qualified types ρ.

Compared to the Chapter 8 λ⇒TC, we now include a bidirectional type system
for λ⇒TC. This system requires a limited number of type annotations, as shown
in the grammar extension in Figure 9.1.

CALCULUS UPDATES 135

e ::= let x : σ = e1 in e2 | e :: τ | . . . Expression

Figure 9.1: Updated Grammar for λ⇒TC with Type Annotations, Extension of
Figure 8.1

We provide a high-level overview of the different updated typing relations. The
type and constraint well-formedness relations are unsurprising and can be found
in Appendix A.5.2. The expression and program typing relations have received
a number of largely minor updates, which can be found in Appendix A.5.2. The
most interesting judgement in this context is the constraint resolution relation, as
presented in Figure 9.2. Following Chapter 8, we employ a focusing approaching
for solving type class constraints. We thus split resolution in constraint
entailment and constraint matching. Constraint entailment P ; ΓC ; Γ � [C] e
succeeds if the constraint C can be proven from the axiom set P , producing
the proof e in the process. Note that this is slightly different from constraint
simplification in Chapter 8, as we solve any residual constraints right away.
Rules sEntailT-arrow and sEntailT-forall correspond to rules ⇒ R and
∀R from Chapter 8, with the exception of the more straightforward translation.
Rules sEntailT-inst and sEntailT-local resolve a class constraint Q by
finding a matching instance declaration and local axiom, respectively. Note
that these rules make the constraint resolution process non-syntax-directed.

Constraint matching P ; ΓC ; Γ; [a; δ : C ` e0 : C] � Q τ ` e1 succeeds if the
axiom C can be used to prove class constraint Q. The relation is quite involved,
as it needs to deconstruct the C axiom, while keeping track of all the aspects of
this axiom that still need to be handled. Concretely, it tracks the type variables
a that have yet to be instantiated, and the residual constraints C that still need
to be proven, along with their local names δ. Finally, it takes a proof e0 for
C, and constructs the proof e1 for constraint Q, along with an instantiation
τ for a. Rule sMatchT-arrow attempts to prove Q from C1 ⇒ C2, by first
assuming evidence δ1 for C1, and applying this to the given proof for C1 ⇒ C2
to obtain evidence for C2. It then recursively attempts to prove Q from this
new proof for C2. If this works out, we get back a substitution τ for the
variables a. We substitute, and construct a new proof e1 for [τ/a]C1. Finally,
we substitute this result for our temporary proof δ1 in e2, to produce our result
for Q. Rule sMatchT-forall attempts to prove Q from ∀a.C, by marking the
variable a for instantiation. The actual instantiation of these variables happens
in Rule sMatchT-classconstr, where a unifying substitution is constructed
to prove TC τ1 from TC τ0. This substitution is then propagated back, to be
applied to the residual constraints.

136 META THEORY: COHERENCE FOR QUANTIFIED CONSTRAINTS

P ; ΓC ; Γ � [C] e (Constraint Entailment)

sEntailT-arrow
P ; ΓC ; Γ, δ1 : C1 � [C2] e

ΓC ; Γ `C C1 σ1

P ; ΓC ; Γ � [C1 ⇒ C2] λδ1 : σ1.e

sEntailT-forall
P ; ΓC ; Γ, a � [C] e

P ; ΓC ; Γ � [∀a.C] Λa.e

sEntailT-inst
P = P 1, (D : ∀aj .C

′
i ⇒ Q′).m 7→ •, aj , δi : C ′i , bk , δy : Cy : e, P 2

P 1; ΓC ; •, aj , δi : C ′i , bk , δy : Cy `tm e⇒ τ e0

ΓC ; •, aj `C C ′i σ′i
i

ΓC ; •, aj , bk `C Cy σ′′y
y

`ctx P ; ΓC ; Γ Γ
e′0 = Λaj .λ δ

′
i : σ′i

i
.{m = Λbk .λ δy : σ′′y

y
.e0}

P ; ΓC ; Γ; [•; • ` e′0 : ∀aj .C
′
i ⇒ Q′] � Q • ` e1

P ; ΓC ; Γ � [Q] e1

sEntailT-local
(δ : C) ∈ Γ

`ctx P ; ΓC ; Γ Γ
P ; ΓC ; Γ; [•; • ` δ : C] � Q • ` e

P ; ΓC ; Γ � [Q] e

P ; ΓC ; Γ; [a; δ : C ` e0 : C] � Q τ ` e1 (Constraint Matching)

sMatchT-arrow
P ; ΓC ; Γ; [a; δ : C, δ1 : C1 ` e0 δ1 : C2] � Q τ ` e2

P ; ΓC ; Γ � [[τ/a]C1] e1

P ; ΓC ; Γ; [a; δ : C ` e0 : C1 ⇒ C2] � Q τ ` [e1/δ1]e2

sMatchT-forall
P ; ΓC ; Γ; [a, a; δ : C ` e0 a : C] � Q τ , τ ` e1

P ; ΓC ; Γ; [a; δ : C ` e0 : ∀a.C] � Q τ ` e1

sMatchT-classconstr
τ1 = [τ/a]τ0

ΓC ; Γ `ty τ i σi
i

P ; ΓC ; Γ; [a; δ : C ` e0 : TC τ0] � TC τ1 τ ` [σ/a]e0

Figure 9.2: Constraint resolution for λ⇒TC

CALCULUS UPDATES 137

9.2.2 Example Derivation

As an example of the new bidirectional type system for λ⇒TC, consider typing
the following program:

class A a where
foo :: a→ a

instance A Bool where
foo = impl1

instance (A a,A b)⇒ A (a, b) where
foo = impl2

instance (A b,∀ a.A a⇒ A (a, b))⇒ A [b] where
foo = impl3

foo :: [Bool]→ [Bool] [True,True]

Note that this program will not be accepted by GHC, even with the
QuantifiedConstraints extension, as the third instance does not respect the
termination condition: A (a, b) is not smaller than A [b]. This condition
is introduced in Chapter 8 and is actively enforced in GHC (unless the
UndecidableInstances language extension is enabled) to guarantee termination
of the type inference algorithm. As this chapter is not concerned with type
inference, we will not verify this condition in the bidirectional system.

As typing class and instance declarations has not been altered in an interesting
way, compared to λTC, we will focus on the typing derivation for the expression
(foo :: [Bool]→ [Bool]) [True,True]. While our calculus does not feature tuples
or lists, for the sake of this exercise, we will assume corresponding typing rules.

Note that typing a method foo in our bidirectional type system requires an
explicit type annotation [Bool] → [Bool] in order for the expression to be
accepted. This allows us to go to checking mode, where we can apply rule sTm-
CheckT-meth:

(foo : Aa : a→ a) ∈ ΓC P ; ΓC ; Γ � [A[Bool]] e . . .

P ; ΓC ; Γ `tm foo⇐ [Bool]→ [Bool] e
sTm-checkT-meth

P ; ΓC ; Γ `tm foo :: [Bool]→ [Bool]⇒ [Bool]→ [Bool] e
sTm-infT-Ann

. . .

P ; ΓC ; Γ `tm [True , True]⇒ [Bool] [True , True]
sTm-infT-List

sTm-infT-ArrE
P ; ΓC ; Γ `tm (foo :: [Bool]→ [Bool]) [True , True]⇒ [Bool] e [True , True]

The most interesting aspect here is the constraint entailment derivation.
Handling the three class and instance declarations above results in the following

138 META THEORY: COHERENCE FOR QUANTIFIED CONSTRAINTS

environments:

ΓC = foo : • ⇒ Aa : a→ a

P = (D1 : ABool).foo 7→ • : impl1

, (D2 : ∀a.∀b.Aa⇒ Ab⇒ A(a, b)).foo 7→ •, a, b, δ1 : Aa, δ2 : Ab : impl2

, (D3 : ∀b.Ab⇒ (∀a.Aa⇒ A(a, b))⇒ A[b]).foo 7→

•, b, δ3 : Ab, δ4 : ∀a.Aa⇒ A(a, b) : impl3

Figure 9.3 shows an example derivation for proving A[Bool], where we define P 1
and P 2 to contain the first and first two instance declarations respectively. The
entailment process works by first selecting the instance declaration for lists (the
third declaration) and matching against it. We then deconstruct this axiom,
adding b to the list of instantiatable variables, and adding both constraints to
the residual constraints. When we have deconstructed the axiom into a class
constraint A[b], we unify b with Bool, and propagate this unification back. The
residual constraints thus become ABool and ∀a.Aa⇒ A(a,Bool). These are
solved recursively, and their proofs are substituted in our proof for A[Bool]. This
results in the final F{} expression (Λb.λδ3 : σ3.λδ4 : σ4.{m = e0}) Bool e2 e3.

9.2.3 F⇒
D Updates

Besides translating directly from the λ⇒TC calculus into F{}, like we do in
Chapter 8, we follow the example set in Chapter 7 and introduce an intermediate
language. This section introduces F⇒D as an extension of FD: System F with
explicit dictionaries (like in Chapter 7), with support for more expressive
dictionaries, which are able to represent quantified constraints.

The syntax for the F⇒D grammar is shown in Figure 9.4. The extension on top of
FD is twofold: (1) mirroring λ⇒TC, the intermediate language supports quantified
constraints C, and (2) in order to represent these constraints, dictionaries d
have been made significantly more expressive. Note the non-standard definition
of dictionary values. Unlike in regular dictionaries, a dictionary constructor
is only a value when fully applied. By disallowing partially applied dictionary
constructors in values, we gain the canonical forms property where we can
determine the form of the dictionary based purely on its type. For example, a
dictionary value with a type C1 ⇒ C2 has to be of the form λδ : C1.d. Without
this restriction, the dictionary value could also be a partially applied constructor.
This property is exploited, for instance when proving the compatibility lemma

CALCULUS UPDATES 139

P
1;

Γ C
;•
,b
,δ

3
:A

b,
δ 4

:∀
a
.A
a
⇒
A

(a
,b

)`
tm

im
p
l3
⇒
τ

0
e 0

Γ C
;•
,b
` C

A
b

σ

3
Γ C

;•
,b
` C
∀a
.A
a
⇒
A

(a
,b

)
σ

4
e 1

=
(Λ
b.
λ
δ 3

:σ
3.
λ
δ 4

:σ
4.
{m

=
e 0
})

B
oo

lδ
5
δ 6

sE
nt

ai
lT

-c
la

ss
co

ns
tr

P
;Γ

C
;Γ

;[
•,
b;
•,
δ 5

:A
b,
δ 6

:∀
a
.A
a
⇒
A

(a
,b

)`
(Λ
b.
λ
δ 3

:σ
3.
λ
δ 4

:σ
4.
{m

=
e 0
})
b
δ 5
δ 6

:A
[b

]]
�
A

[B
oo

l]
•,

B
oo

l`
e 1

..
.

P
;Γ

C
;Γ
�

[∀
a
.A
a
⇒
A

(a
,B

oo
l)

]
e 3

sE
nt

ai
lT

-in
st

sM
at

ch
T

-a
rr

ow
P

;Γ
C

;Γ
;[
•,
b;
•,
δ 5

:A
b
`

(Λ
b.
λ
δ 3

:σ
3.
λ
δ 4

:σ
4.
{m

=
e 0
})
b
δ 5

:(
∀a
.A
a
⇒
A

(a
,b

))
⇒
A

[b
]]
�
A

[B
oo

l]
•,

B
oo

l`
[e

3/
δ 6

]e
1

..
.

P
;Γ

C
;Γ
�

[A
B

oo
l]

e 2
sE

nt
ai

lT
-in

st
sM

at
ch

T
-a

rr
ow

P
;Γ

C
;Γ

;[
•,
b;
•
`

(Λ
b.
λ
δ 3

:σ
3.
λ
δ 4

:σ
4.
{m

=
e 0
})
b

:A
b
⇒

(∀
a
.A
a
⇒
A

(a
,b

))
⇒
A

[b
]]
�
A

[B
oo

l]
•,

B
oo

l`
[e

2/
δ 5

][e
3/
δ 6

]e
1

sM
at

ch
T

-f
or

al
l

P
;Γ

C
;Γ

;[
•;
•
`

Λb
.λ
δ 3

:σ
3.
λ
δ 4

:σ
4.
{m

=
e 0
}

:∀
b.
A
b
⇒

(∀
a
.A
a
⇒
A

(a
,b

))
⇒
A

[b
]]
�
A

[B
oo

l]
•
`

[e
2/
δ 5

][e
3/
δ 6

]e
1

sE
nt

ai
lT

-in
st

P
;Γ

C
;Γ
�

[A
[B

oo
l]]

[e
2/
δ 5

][e
3/
δ 6

]e
1

Fi
gu

re
9.
3:

Ex
am

pl
e
C
on

st
ra
in
t
En

ta
ilm

en
t
D
er
iv
at
io
n

140 META THEORY: COHERENCE FOR QUANTIFIED CONSTRAINTS

e ::= λδ : C.e | . . . expression

σ ::= C ⇒ σ | . . . type
C ::= Q | C1 ⇒ C2 | ∀a.C constraint

d ::= δ | D | λδ : C.d | d1 d2 | Λa.d | d σ dictionary
dv ::= Dσ d | λδ : C.d | Λa.d dictionary value

Figure 9.4: Grammar for F⇒D , extension of Figure 7.2

for method calls (Lemma 127). While this restriction is not technically enforced
through the grammar of dictionary values, it is made explicit in our logical
relations.

The updates to type and constraint well-formedness are unsurprising and can
be found in Appendix A.7.2. The same holds for the expression typing rules,
which can be found in Appendix A.7.2. A prominent departure from FD is
the typing relation for dictionaries: whereas before dictionaries enjoyed a fixed
structure, they now require a System F-like type system (shown in Figure 9.5).
Rule D-con is the most notable: typing a dictionary constructor - corresponding
to an instance declaration - requires looking up both the class (for the type of
the method) and instance declaration (for the type of the constructor, and the
accompanying implementation), and translating the method implementation.
The constructor is then translated into a F{} record, where any remaining type
and dictionary variables are bound.

Finally, as dictionaries have gotten more expressive, the operational semantics
of F⇒D need to be extended to dictionaries as well. These additional evaluation
rules closely mirror those of System F, and can be found in Figure 9.6.

9.2.4 Example Translation

Illustrating the translation from λ⇒TC to F⇒D , we return to the example from
Section 9.2.2. Unlike our translation to F{}, we now translate the method call
to a dictionary constructor, rather than passing in the implementation directly.
This constructor acts as a pointer to a global set of instance declarations,
containing the implementation to use. The proof for A[Bool] thus becomes
D3 Bool D1 (D2 Bool D1), where Di refers to the ith instance declaration.

Using the dictionary typing relation, this dictionary gets translated into the
exact same F{} expression from Section 9.2.2.

CALCULUS UPDATES 141

Σ; ΓC ; Γ `d d : C e (Dictionary Typing)

D-var
(δ : C) ∈ Γ
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `d δ : C δ

D-con
Σ = Σ1, (D : ∀aj .Ci ⇒ TC σq).m 7→ Λaj .λδi : Ci .e,Σ2

(m : TC a : σm) ∈ ΓC
`ctx Σ; ΓC ; Γ

ΓC ; •, aj `C Ci σ′i
i

Σ1; ΓC ; •, aj , δi : Ci `tm e : [σq/a]σm e

Σ; ΓC ; Γ `d D : ∀aj .Ci ⇒ TC σq Λaj .λ δi : σ′i
i
.{m = e}

D-dabs
Σ; ΓC ; Γ, δ : C1 `d d : C2 e

ΓC ; Γ `C C1 σ1

Σ; ΓC ; Γ `d λδ : C1.d : C1 ⇒ C2 λδ : σ1.e

D-dapp
Σ; ΓC ; Γ `d d1 : C1 ⇒ C2 e1

Σ; ΓC ; Γ `d d2 : C1 e2

Σ; ΓC ; Γ `d d1 d2 : C2 e1 e2

D-tyabs
Σ; ΓC ; Γ, a `d d : C e

Σ; ΓC ; Γ `d Λa.d : ∀a.C Λa.e

D-tyapp
Σ; ΓC ; Γ `d d : ∀a.C e

ΓC ; Γ `ty σ σ

Σ; ΓC ; Γ `d d σ : [σ/a]C e σ

Figure 9.5: Dictionary typing relation for F⇒D

142 META THEORY: COHERENCE FOR QUANTIFIED CONSTRAINTS

Σ ` e −→ e′ (FD Evaluation)

iEval-method
d −→ d′

Σ ` d.m −→ d′.m

iEval-methodVal
(D : C).m 7→ e ∈ Σ

Σ ` (Dσm dn).m −→ e σm dn

d −→ d′ (FD Dictionary Evaluation)

iDictEval-app
d1 −→ d′1

d1 d2 −→ d′1 d2

iDictEval-appAbs

(λδ : C.d1) d2 −→ [d2/δ]d1

iDictEval-tyApp
d −→ d′

d σ −→ d′ σ

iDictEval-tyAppAbs

(Λa.d)σ −→ [σ/a]d

Figure 9.6: Operational Semantics for F⇒D , Extension of Figure 7.3

9.3 Meta-Theory

As both the source and intermediate calculi (λ⇒TC and F⇒D respectively) have
grown more expressive, their meta-theoretical properties need to be revisited as
well. Concretely, the properties and proofs from Chapter 7 need to be adapted
with support for dictionary operational semantics. This section discusses the
main updated theorems related to λ⇒TC, F⇒D and the elaboration between them.
Section 9.4 handles the proof of coherence of type class resolution.

9.3.1 F⇒
D Type Safety

When proving progress (Theorem 3) and preservation (Theorem 4) for the
FD calculus, we could make assumptions about the structure of dictionaries.
However, as F⇒D features a more expressive form of dictionaries, this is no longer
possible. For example, in the method case d.m (rule iTm-method), we could
assume d to be of the form Dσ d. With our more expressive dictionaries, we
can no longer make this assumption as d first needs to be evaluated. We thus
introduce separate theorems for the type safety of dictionaries.

META-THEORY 143

Theorem 18 (Progress for Dictionaries).
If Σ; ΓC ; • `d d : C, then either d is a dictionary value, or there exists d′

such that d −→ d′.

Theorem 19 (Preservation for Dictionaries).
If Σ; ΓC ; Γ `d d : C, and d −→ d′, then Σ; ΓC ; Γ `d d′ : C.

The formal proof of Theorems 18 and 19 can be found in Appendix C.5.3.

9.3.2 Strong Normalisation for F⇒
D

Following Chapter 7, F⇒D does not support recursive expressions. Strong
normalisation (Theorem 5) thus continues to hold. The proof of strong
normalisation for F⇒D requires considerable changes though: (1) A separate
logical relation is added to denote normalising dictionaries (Figure 9.7). (2) The
strong normalisation relation for expressions has been updated, along with the
context interpretation relations, to account for the more advanced dictionaries.
(3) A separate—non-trivial—proof of strong normalisation for dictionaries is
added (Appendix C.5.4). (4) The existing proof of strong normalisation for
expressions is updated to account for the evaluation of dictionaries.

9.3.3 Elaboration from λ⇒
TC to F⇒

D

The type preservation theorems are updated with the more expressive constraints
and corresponding dictionaries. Type preservation for expressions, class and
instance declarations are altered in a non-surprising manner. The more
expressive constraints are incorporated in preservation of type and constraint
well-formedness (Theorem 25) as well. Note though that preservation for
constraint proving is now split in two separate theorems, for constraint
entailment and matching.

9.3.4 Elaboration from F⇒
D to F{}

While elaborating F⇒D dictionaries to F{} expressions has gotten more involved,
the translation remains deterministic. The property is formally proven in
Appendix C.8.3.

144 META THEORY: COHERENCE FOR QUANTIFIED CONSTRAINTS

d ∈ SN JCKΣ,ΓC (Strong Normalization Relation for Dictionaries)

d ∈ SN JTC σKΣ,ΓC

, Σ; ΓC ; • `d d : TC σ ∧ ∃D,σj , di : d −→∗ Dσj di

where Σ = Σ1, (D : ∀aj .Ci ⇒ TC σq).m 7→ e,Σ2

∧ (m : TC a : σm) ∈ ΓC ∧ ΓC ; •, aj `ty σj
j

∧ di ∈ SN J[σj/aj]CiKΣ,ΓC
i
∧ σ = [σj/aj]σq

∧ e ∈ SN J∀aj .Ci ⇒ [σq/a]σmKΣ1,ΓC
•

d ∈ SN JC1 ⇒ C2KΣ,ΓC

, Σ; ΓC ; • `d d : C1 ⇒ C2 ∧ ∃dv : d −→∗ dv

∧ ∀d′ : d′ ∈ SN JC1KΣ,ΓC ⇒ d d′ ∈ SN JC2KΣ,ΓC

d ∈ SN J∀a.CKΣ,ΓC

, Σ; ΓC ; • `d d : ∀a.C ∧ ∃dv : d −→∗ dv

∧ ∀σ : ΓC ; • `ty σ ⇒ d σ ∈ SN J[σ/a]CKΣ,ΓC

Figure 9.7: Strong Normalisation Relation for Dictionaries

Similarly, dictionary elaboration soundness from F⇒D to F{} becomes more
convoluted as the possible forms of dictionaries increase. Note that term and
dictionary elaboration soundness need to be proven by mutual induction, as a
dictionary constructor (corresponding to an instance declaration) is translated
into (the translation of) its accompanying method implementation. The full
proofs can be found in Appendix C.8.2.

Finally, the inclusion of evaluation for dictionaries complicates the semantic
preservation proof. A separate theorem is added for semantic preservation for
dictionaries to amend Theorem 70. The full proofs are shown in Appendix C.8.4.

COHERENCE 145

9.4 Coherence

As F⇒D dictionaries now feature their own operational semantics, proving
coherence gets more involved. The definitions of our logical relations are
adapted to this more expressive form of dictionaries (Section 9.4.1), and the
coherence theorems are updated accordingly (Section 9.4.2).

9.4.1 Logical Relations

This section presents the required updates to the logical relations from Chapter 7,
in order to account for more expressive dictionaries with evaluation. The changes
are shown in Figures 9.8 and 9.9.

Firstly, as dictionaries have grown more expressive, with their own operational
semantics, we can no longer make assumptions about their form. We thus
introduce a separate relation for closed dictionaries: (Σ1 : d1,Σ2 : d2) ∈ EJCKΓC .
Note that even though the evaluation of dictionaries closely mirrors that of
System F, its logical relations are defined quite differently. This is the case
for two main reasons: (1) The expression value relation is defined over every
type, and the form of the expression can be determined based on its type. For
example, a closed expression value with a function type σ1 → σ2 has to be
unifyable with λx : σ1.e. The same does not hold for dictionaries: a dictionary
value with a given type C1 ⇒ C2 could be either a lambda form λδ : C1.d or
a partially instantiated dictionary constructor Dσm dn. For this reason, we
restrict the dictionary value relation to class constraints only. This restriction
makes sense as a dictionary needs to be fully instantiated into a class constraint
type, before it can be applied to a method. Furthermore, while the closed
dictionary relation differentiates on the type of the dictionary, it does not make
any assumptions on the form of the dictionary itself. (2) When handling a
function or forall type in the expression value relation, we can apply it to an
argument and evaluate the result until we reach another element of the value
relation. However, this approach does not work for dictionaries, as we can’t
distinguish a lambda dictionary from a partially applied constructor, solely by
the type. A partially applied constructor does not evaluate, and we don’t want
to accept this into the value relation, as it would break our ability to derive the
form of a dictionary by its type. For this reason, we build up the dictionary step
by step in the closed dictionary relation, only evaluate at the very end when we
achieve a class constraint, and only allow fully instantiated constructors in the
value relation.

Secondly, both the expression value relation and the context interpretation
judgments have been updated. Expressions now allow abstraction over quantified

146 META THEORY: COHERENCE FOR QUANTIFIED CONSTRAINTS

constraints, which are instantiated with closed dictionaries. The same holds
true for the interpretation judgment γ ∈ HJΓKΣ1,Σ2,ΓC

R .

Thirdly, while not strictly necessary, we simplified the open dictionary relation.
While the expression relations need to keep track of a type variable mapping R,
this is not actually the case for dictionaries. As constraints can never take the
form of a type variable, these can be substituted right away, and we no longer
need to keep track of the mapping.

9.4.2 Coherence Theorem Updates

This section discusses the required updates to both the coherence theorem
proofs and required helper theorems. We restate our coherence theorem for
expressions for clarity:

Theorem 2 (Expression Coherence - Restated).
If P ; ΓC ; Γ `tm e⇒ τ e1 and P ; ΓC ; Γ `tm e⇒ τ e2
then P ; ΓC ; Γ ` e1 'ctx e2 : τ .

Chapter 7 proves this theorem for λTC using a five step approach: (Step 1) We
prove that an elaboration from λTC to F{} can always be decomposed into
an equivalent set of two translations through FD (Theorem 10). (Step 2) We
show that any two FD translations from the same λTC expression are logically
equivalent (Theorem 14). (Step 3) We show that any two logically equivalent FD
expressions are also contextually equivalent (Theorem 15). (Step 4) We prove
that translating FD expressions to F{} is contextual equivalence preserving
with FD contexts (Theorem 16). (Step 5) We show that any two contextually
equivalent F{} expressions under FD contexts are also contextually equivalent
under λTC contexts (Theorem 17).

Step 1 is proven through mutual induction on several different theorems
for expressions, environments, types, etc. While every theorem requires mild
alterations, the bulk of the work can be found in the constraint entailment
theorem, which is now split into constraint entailment and matching:

Theorem 11 (Equivalence - Constraint Entailment).
If P ; ΓC ; Γ � [C] e and `ctx P ; ΓC ; Γ Γ
then P ; ΓC ; Γ �M [C] d and Σ; ΓC ; Γ `d d : C e
where ΓC ; Γ `MC C C and `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ and ΓC ; Γ Γ.

COHERENCE 147

(Σ1 : dv1,Σ2 : dv2) ∈ VJQKΓC (Closed Dictionary Value Relation)

(Σ1 : Dσm dn 1,Σ2 : Dσm dn 2) ∈ VJQKΓC

, Σ1; ΓC ; • `d Dσm dn 1 : Q e1 ∧ Σ2; ΓC ; • `d Dσm dn 2 : Q e2

∀d1 i , d2 i : (Σ1 : d1 i ,Σ2 : d2 i) ∈ EJ[σm/am]CiKΓC
i<n

where (D : ∀am.Cn ⇒ Q′).m 7→ e1 ∈ Σ1 ∧Q = [σm/am]Q′

(Σ1 : d1,Σ2 : d2) ∈ EJCKΓC (Closed Dictionary Relation)

(Σ1 : d1,Σ2 : d2) ∈ EJC1 ⇒ C2KΓC

, Σ1; ΓC ; • `d d1 : C1 ⇒ C2 e1 ∧ Σ2; ΓC ; • `d d2 : C1 ⇒ C2 e2

∧ ∀d3, d4 : (Σ1 : d3,Σ2 : d4) ∈ EJC1KΓC ⇒ (Σ1 : d1 d3,Σ2 : d2 d4) ∈ EJC2KΓC

(Σ1 : d1,Σ2 : d2) ∈ EJ∀a.C ′KΓC

, Σ1; ΓC ; • `d d1 : ∀a.C ′ e1 ∧ Σ2; ΓC ; • `d d2 : ∀a.C ′ e2

∧ ∀σ : ΓC ; • `ty σ σ ⇒ (Σ1 : d1 σ,Σ2 : d2 σ) ∈ EJ[σ/a]C ′KΓC

(Σ1 : d1,Σ2 : d2) ∈ EJQKΓC

, Σ1; ΓC ; • `d d1 : Q e1 ∧ Σ2; ΓC ; • `d d2 : Q e2

∧ ∃dv1, dv2, d1 −→∗ dv1, d2 −→∗ dv2, (Σ1 : dv1,Σ2 : dv2) ∈ VJQKΓC

ΓC ; Γ ` Σ1 : d1 'log Σ2 : d2 : C (Logical Equivalence for Open Dictionaries)

ΓC ; Γ ` Σ1 : d1 'log Σ2 : d2 : C

, ∀R ∈ FJΓKΓC , γ ∈ HJΓKΣ1,Σ2,ΓC

R ,

(Σ1 : γ1(R(d1)),Σ2 : γ2(R(d2))) ∈ EJR(C)KΓC

Figure 9.8: Updated Logical Relations for Dictionaries

148 META THEORY: COHERENCE FOR QUANTIFIED CONSTRAINTS

(Σ1 : v1,Σ2 : v2) ∈ VJσKΓC
R (Closed Expression Value Relation)

(Σ1 : λδ : C.e1,Σ2 : λδ : C.e2) ∈ VJC ⇒ σKΓC

R

, Σ1; ΓC ; • `tm λδ : C.e1 : R(C ⇒ σ) e1

∧ Σ2; ΓC ; • `tm λδ : C.e2 : R(C ⇒ σ) e2

∧ ∀(Σ1 : d1,Σ2 : d2) ∈ EJR(C)KΓC :

(Σ1 : (λδ : C.e1) d1,Σ2 : (λδ : C.e2) d2) ∈ EJσKΓC

R

Figure 9.9: Updated Logical Relations for Expressions, Extension of Definitions 6
and 7

Theorem 20 (Equivalence - Constraint Matching).
If P ; ΓC ; Γ; [a; δ : C ` e0 : C0] � Q1 τ ` e1
and Σ; ΓC ; Γ, a, δ : C `d d0 : C0 e0

where ΓC ; Γ, a `MC C0 C0 and ΓC ; Γ, a `MC Ci Ci
i

and `ctx P ; ΓC ; Γ Γ and `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ and ΓC ; Γ Γ
then P ; ΓC ; Γ; [a; δ : C ` d0 : C0] �M Q1 τ ` d1
and Σ; ΓC ; Γ, δ : [σ/a]C `d d1 : Q1 e1 where ΓC ; Γ `MQ Q1 Q1.

Pay special attention to the second theorem: it handles the case where a
wanted constraint Q1 matches a given axiom C0 in the λ⇒TC language, and thus
transforms a given proof e0 into a new proof e1 for Q1 in the F{} language.
The theorem states that when the given F{} proof e0 is the translation of a
F⇒D dictionary d0, that the aforementioned process can be decomposed by first
constructing a F⇒D dictionary d1 from d0 and then translating it into the original
proof e1.

Step 2 is one of the most involved parts of our coherence proof as it consists
of many moving parts. The theorem requires updates in four distinct aspects
of the proof. First, the coherence theorem for expressions itself (Theorem 14)
needs to be adapted to λ⇒TC. While this entails small updates throughout
the theorem, the rule sTm-check-var and rule sTm-check-meth cases are
most interesting, as they interact directly with F⇒D dictionaries. Proving these

COHERENCE 149

cases requires coherence for dictionaries, reflexivity Theorem 50, and updated
compatibility lemmas.

Second, showcasing the adaptability of our coherence proof, the coherence
theorem for dictionaries (Theorem 55) is the only major theorem in the proof
that needed to be rewritten from scratch. In order to make the proof more
manageable, the theorem is split in four parts: We first perform induction on
both constraint entailment derivations, deconstructing the wanted constraint
to a class constraint. At that point, four options arise as both derivations can
continue by matching against an instance declaration or local axiom. While
this alters the starting dictionary, every case continues in the same manner by
induction on the first constraint matching derivation, using the second part
of this theorem. For the constraint matching theorem we can not assume
that the given axiom we are matching against or the given evidence are the
same across the derivations. We thus create two separate theorems, performing
induction on the first and second derivation respectively. We deconstruct the
first axiom into a class constraint in Theorem 56 before deconstructing the
second axiom in Theorem 57. The final case, where both axioms are reduced
to class constraints is most interesting: we introduce a separate Theorem 12
stating that any two closed dictionaries, typed with the same class constraint
under logically related environments, are always logically equivalent. The clue
which makes this work is the fact that the environments are logically related and
that related environments can not contain overlapping instances unless their
method implementations are related as well. Note that this theorem replaces
the old Theorem 12, which only applied to dictionary values.

Third, reflexivity Theorems 50 and 49 are adapted to match the updated logical
relations for expressions and dictionaries respectively. Notably, accounting for
the evaluation of dictionaries, Lemma 130 is added, stating that the logical
relation for dictionaries is preserved by evaluation. Note that we define the size
of a class constraint to be 1, independently of its contained type, in order to
make the induction well-founded.

Fourth, compatibility lemmas are added to account for the new dictionary forms.
More notably, method compatibility Lemma 127 has been adapted with the
new logical relations. The proof of this lemma is aided by our more restrictive
dictionary value relation: as this logical relation is only defined for fully applied
dictionary constructors (with a class constraint type), we can now make stronger
assumptions on the form of the dictionaries in this relation.

Step 3 , Step 4 and Step 5 continue to follow from the definition of the
logical relation and contextual equivalence respectively, and thus do not need
to be altered.

150 META THEORY: COHERENCE FOR QUANTIFIED CONSTRAINTS

9.5 Conclusion

This chapter has presented an extension of the proof of coherence for type
class resolution, with quantified constraints. In doing so, we have shown the
adaptability of the existing proof.

The language extension adds significant expressivity to the type class resolution
mechanism, a core part of the coherence proof. When updating the proof,
we thus made the decision to extend both the source calculus λTC and the
intermediate calculus FD with this feature. While this simplifies the translation
steps and consequently the proof, it comes at the cost of increasing the scope of
this extension to about half of the theorems in the proof.

Illustrating the size of this non-trivial extension: of the 51 theorems in the proof,
13 remained unchanged, 14 received small, straightforward updates, 13 have
been significantly adapted and 11 theorems are new. The change is smaller for
the lemmas in this work: of the 86 lemmas, 51 remain unchanged, 17 received
minor updates, 2 have been significantly rewritten, and 16 are new.

Counting the updates line per line shows that this extension alters 25% of
lines in the definition of the grammar and typing rules, and 43% of lines in the
original proof. Of these changes, 52% are additions and 48% are modifications.
This way of quantifying the changes shows a slightly different picture from
before, as small, uninteresting updates can still span a large number of lines.

This chapter contains new original work and is as of yet unpublished. Concretely,
the alternative formulation of quantified constraints, as well as the proof
extensions and the conclusions thereof are novel. We do build on Chapter 7
for the original coherence proof and on Chapter 8 for the original formulation
of the quantified constraints language extension. Both of these chapters are
published work.

Chapter 10

Conclusion

The aim of this thesis is to improve the current state of the art in polymorphism,
by evaluating and proving both correctness and stability properties, as well as by
introducing new features. Part I focuses on the concept of stability and applies
it to the process of type instantiation. Part II focuses on proving coherence for
type class resolution. We introduce quantified class constraints as a case study,
and evaluate the adaptability of the coherence proof with this extension.

Though we largely focus on the Haskell programming language in this text,
the concepts and properties we discuss are more general. We thus believe that
most of the results from this work are more widely applicable. We discuss the
different results and contributions of this work below.

10.1 Parametric Polymorphism

Type Instantiation

Chapter 4 lays the groundwork for our work on stability in Chapter 5. It
provides background on different forms of type instantiation, and discusses a
number of design decisions related to instantiation. We introduce a family of
type systems, which can be reified into four different methods of instantiation,
and featuring a mix of explicit and implicit behaviour. These systems are
inspired by Peyton Jones et al. [73], Eisenberg et al. [24], and Serrano et al.
[85].

The contributions of this chapter are twofold:

151

152 CONCLUSION

1. We provide a comparison of the instantiation strategies in Haskell, Agda,
and Idris (Section 5.5).

2. We design a family of type systems, based on the bidirectional type-
checking algorithm implemented in GHC [24, 73, 85]. It is parameterised
over the flavour of type instantiation. (Section 5.2)

Stability

Chapter 5 introduces the concept of stability in a language that supports both
implicit and explicit arguments. We believe that designers of all languages
supporting this mix of features need to grapple with how to best incorporate
these features; those designers may wish to follow our lead in formalising the
problem to seek the most stable design. While stability is uninteresting in
languages featuring pure explicit or pure implicit instantiation, it turns out to
be an important metric in the presence of mixed behaviour.

Using the family of type systems defined in Chapter 4, we evaluated the
different flavours of instantiation, against a set of formal stability properties.
The results are surprisingly unambiguous: (a) lazy instantiation achieves the
highest stability for the compile time semantics, and (b) shallow instantiation
results in the most stable runtime semantics.

The contributions of this chapter are twofold:

1. We introduce the concept of stability, as a method of evaluating user-facing
design decisions. While it is not direct replacement for large user-studies,
we present stability as a more formal complementary approach.

2. We enumerate stability properties relevant for examining instantiation in
Haskell, along with examples of how these properties affect programmer
experience. (Section 5.1)

3. We provide an analysis of how different choices of instantiation flavour
either respect or do not respect the similarities we identify. We conclude
that lazy, shallow instantiation is the most stable. (Section 5.3; proofs in
coherence proof Appendix E) We hope this work proves useful in reopening
a productive discussion regarding the implementation of type instantiation
in GHC.

PARAMETRIC POLYMORPHISM 153

Future Work

Chapter 4 introduces both eagerness and depth as possible design decisions
with an impact on the stability of type instantiation. These axes were chosen
since they are an ongoing topic within the GHC community due to the recent
adoption of shallow instantiation in GHC 9.0. 1 Furthermore, they are interesting
because GHC has gone back and forth on its choice of instantiation, as the
GHC community has difficulty agreeing on it. However, other relevant design
decisions do exist. Consider for example the instantiation of multi equation
declarations. In our current definition of MPLC, the type of every branch is
instantiated in order to simplify the search for a single subsuming type for the
declaration. Investigating alternative algorithms could have a significant impact
on the stability of the language. For example, Property 10—one of the few
properties that favours eager instantiation—could potentially give a different
outcome, strengthening our claim that lazy instantiation is more user friendly.
Or consider Property 4: due to the current, somewhat hard to predict behaviour
of multi equation type inference, Property 4 does not hold in any of our four
calculi. These properties certainly warrant further investigation of the handling
of multi equation declarations.

Chapter 5 evaluates the stability of MPLC, a calculus which features both
implicit and explicit type instantiation. Following the example set by GHC, we
assume types are instantiated in an ordered fashion. Alternatively, languages
like Agda allow for named instantiation. Section 5.5 provides a brief discussion
on this form of type instantiation. Note that named instantiation can reduce or
eliminate the need for a distinction between inferred and specified type variables,
as this separation is based entirely on the need to positionally instantiate
generalised variables. Omitting this distinction means that several of our
properties would trivially hold. Introducing this as an alternative method of
type instantiation in GHC warrants a more thorough investigation, as it could
have a significant impact on the stability of the language.

The recent inclusion of the quick look algorithm in GHC 9.2, makes a difficult
trade-off exchanging stability for additional expressiveness for the type inference
engine. Formally investigating the stability impact of this feature makes for a
highly interesting research track.

1Motivated by the quick-look algorithm, as discussed in https://github.com/ghc-
proposals/ghc-proposals/pull/287

https://github.com/ghc-proposals/ghc-proposals/pull/287
https://github.com/ghc-proposals/ghc-proposals/pull/287

154 CONCLUSION

10.2 Ad-Hoc Polymorphism

Type Classes

Chapter 6 provides background on ad-hoc polymorphism and type classes in
general. It introduces the λTC Haskell-like calculus with support for type classes
and superclasses, and the F{} calculus to be used throughout Part II.

The main contributions of this chapter are thus:

1. We present the λ⇒TC basic calculus with full-blown type class resolution
(incl. superclasses), which isolates nondeterministic resolution.

2. We show an elaboration from λ⇒TC to the target language F{}, System F
with records, which are used to encode dictionaries.

Coherence

Chapter 7 has formally proven that type class resolution is coherent by means of
logical relations and an intermediate language with explicit dictionaries. While
we use Haskell examples throughout the chapter, the calculi and properties
are more general. The proof is thus relevant for any language with type class
resolution.

The contributions of this chapter are as follows:

1. We present the FD calculus, System F with explicit dictionary-passing.
This language enforces the uniqueness of dictionaries, which captures the
intention of type class instances. We study its meta-theory, and define a
logical relation to prove contextual equivalence.

2. We show elaborations from λ⇒TC to FD and from FD to F{}. We prove
that a direct translation from λ⇒TC to F{} can always be decomposed into
an equivalent translation through FD.

3. We provide a formal proof of coherence of the elaboration between λ⇒TC
and FD, using logical relations.

4. We provide a formal proof that coherence is preserved through the
elaboration from FD to F{}. As a consequence, by combining this with
the previous result, we prove that the elaboration between λ⇒TC and F{}
is coherent. The latter coherence result implies coherence of elaboration-
based type class resolution in the presence of superclasses and flexible
contexts.

AD-HOC POLYMORPHISM 155

Quantified Constraints

Chapter 8 has presented a fully fledged design of quantified class constraints.
We have shown that this feature significantly increases the modelling power of
type classes, while at the same enables a terminating type class resolution for a
larger class of applications.

The contributions of this chapter are as follows:

1. We present an informal discussion of the different advantages of quantified
class constraints, illustrated with examples.

2. We provide a fully fledged formalisation of quantified class constraints:
the λ⇒TC calculus. Our formalisation borrows the idea of focusing from
Cochis [83], and adapts it to the Haskell setting. We account for two
notable differences: a global set of non-overlapping instances and support
for superclasses.

3. We design a type inference algorithm that conservatively extends that of
Haskell 98, complete with a dictionary-passing elaboration into System F.

4. We present an informal discussion of the termination conditions on a
system with quantified class constraints.

5. We make a prototype implementation available, which incorporates higher-
kinded datatypes and accepts all2 examples in this chapter, which can be
found at https://github.com/gkaracha/quantcs-impl.

Future Work

While Chapter 8 increases the expressive power of type classes, we can still go
a step further. As asked in a long-standing open GHC feature request #5927,
the system can be extended further with quantification over predicates, raising
the power of type classes to (a fragment of) second-order logic.

As discussed in Section 8.8, GHC has opted to avoid backtracking entirely in
favour of a conservative, mild heuristic based approach of selecting overlapping
axioms. While the GHC community was worried about the performance
penalty of a backtracking algorithm for selecting axioms, this has not yet
been investigated. Implementing this alternative algorithm, and doing a proper
analysis on its performance impact, could convince the community to adopt
this more expressive approach.

2except for the HFunctor example, which needs higher-rank types [73].

https://github.com/gkaracha/quantcs-impl
https://ghc.haskell.org/trac/ghc/ticket/5927

156 CONCLUSION

While the QuantifiedConstraints language pragma has been available for several
years now, it still has a number of limitations and problems. At the time of
writing, GHC has 42 open issues related to quantified constraints. Investigating
and solving these issues could spread awareness about this extension and could
increase its usage.

Coherence for Quantified Constraints

Chapter 9 investigates the coherence of λ⇒TC, an extension of λTC with quantified
class constraints. The chapter discusses the adaptability of the coherence proof
as presented in Chapter 7, and denotes the non-trivial changes to both the
calculi and the theorems.

The contributions of this chapter are:

1. We design an alternative formalisation of λ⇒TC, featuring quantified class
constraints in combination with a bidirectional type system.

2. We provide an updated formulation of F⇒D , a calculus based on System
F with explicit dictionary passing and support for quantified class
constraints.

3. We present typing preservation theorems for the elaboration from λ⇒TC to
F⇒D , including formal proofs (Section 9.3.3).

4. We show an updated formal proof of coherence of the type class resolution
mechanism of λ⇒TC (Section 9.4).

Future Work

This work discusses a number of the meta-theoretical properties of quantified
class constraints, including an informal discussion of termination of the type
inference algorithm (Section 8.6), a formal proof of typing preservation theorems
for the elaboration between λ⇒TC and F⇒D (Section 9.3.3), and a formal proof of
coherence of the type class resolution mechanism of λ⇒TC (Section 9.4). However,
several interesting properties remain unproven. A formal proof for termination
of the type inference algorithm, as well as soundness of inference with respect
to the λ⇒TC bidirectional typing system, make for interesting future work.

We provide two separate versions of the proof of coherence for type class
resolution: (1) for λTC, a Haskell-like calculus with type classes and support
for superclasses (Chapter 7), and (2) for λ⇒TC, with support for quantified class

AD-HOC POLYMORPHISM 157

constraints (Chapter 9). However, several other widely used GHC features and
extensions still remain to be included in this work, e.g. dependent types, higher
kinded types and GADT’s. A more extensive discussion of possible extensions
can be found in Section 7.6.

This thesis presents a formal proof for coherence of type class resolution. While
work has started on a mechanised version of this proof in the Coq proof assistant,
to this day, this mechanisation has not yet been completed.

Appendix A

Additional Relations

A.1 MPLC Additional Definitions

bindersδ(σ) = a; ρ (Binders)

Bndr-ShallowInst

bindersS(ρ) = •; ρ

Bndr-ShallowForall
bindersS(σ) = b; ρ

bindersS(∀ a.σ) = a, b; ρ

Bndr-ShallowInfForall
bindersS(σ) = b; ρ

bindersS(∀ {a}.σ) = {a}, b; ρ

Bndr-DeepMono

bindersD(τ) = •; τ

Bndr-DeepFunction
bindersD(σ2) = a; ρ2

bindersD(σ1 → σ2) = a;σ1 → ρ2

Bndr-DeepForall
bindersD(σ) = b; ρ

bindersD(∀ a.σ) = a, b; ρ

Bndr-DeepInfForall
bindersD(σ) = b; ρ

bindersD(∀ {a}.σ) = {a}, b; ρ

159

160 ADDITIONAL RELATIONS

wrap (π; e1 e2) (Pattern Wrapping)

PatWrap-Empty

wrap (•; e e)

PatWrap-Var
wrap (π; e1 e2)

wrap (x, π; e1 λx.e2)

PatWrap-TyVar
wrap (π; e1 e2)

wrap (@a, π; e1 Λa.e2)

In addition to including the figures above, this appendix describes our treatment
of let -declarations and patterns:

Let Binders A let -expression let decl in e (rule ETm-InfLet and rule ETm-
CheckLet) defines a single variable, with or without a type signature. The
declaration typing judgement (Figure 5.3) produces a new context Γ′, extended
with the binding from this declaration.

Rules Decl-NoAnnSingle and Decl-NoAnnMulti distinguish between a
single equation without a type signature and multiple equations. In the former
case, we synthesise the types of the patterns using the `P judgement and then
the type of the right-hand side. We assemble the complete type with type, and
then generalise. The multiple-equation case is broadly similar, synthesising
types for the patterns (note that each equation must yield the same types
ψ) and then synthesising types for the right-hand side. These types are then
instantiated (only necessary under lazy instantiation—eager instantiation would
have already done this step). This additional instantiation step is the only
difference between the single-equation case and the multiple-equation case. The
reason is that rule Decl-NoAnnMulti needs to construct a single type that
subsumes the types of every branch. Following GHC, we simplify this process
by first instantiating the types.

Rule Decl-Ann checks a declaration with a type signature. It works by first
checking the patterns πi on the left of the equals sign against the provided type
σ. The right-hand sides ei are then checked against the remaining type σ′i .

Patterns The pattern synthesis relation Γ `P π ⇒ ψ; ∆ and checking relation
Γ `P π ⇐ σ ⇒ σ′; ∆ are presented in Figure 5.4. As the full type is not
yet available, synthesis produces argument descriptors ψ and a typing context
extension ∆. When checking patterns, the type to check against σ is available,
and the relation produces a residual type σ′, along with the typing context
extension ∆.

Typing a variable pattern works similarly to expressions. Under inference
(rule Pat-InfVar) we construct a monotype and place it in the context. When

MPLC CORE LANGUAGE DEFINITIONS 161

checking a variable (rule Pat-CheckVar), its type σ1 is extracted from the
known function type and placed in the context. Type abstraction @a in both
synthesis and checking mode (rule Pat-InfTyVar and rule Pat-CheckTyVar
respectively) produces a type argument descriptor @a and extends the typing
environment.

Typing data constructor patterns (rule Pat-InfCon and rule Pat-CheckCon),
works by looking up the type ∀ a0.σ0 → T a0 of the constructor K in the typing
context, and checking the applied patterns π against the instantiated type, and
an extended context1. The remaining type should be the result type for the
constructor, meaning that the constructor always needs to be fully applied.
Note that full type schemes σ1 are allowed in patterns, where they are used
to instantiate the variables a0 (possibly extended with guessed monotypes τ0,
if there are not enough σ1). Consider, for example, f (Just @Int x) = x + 1,
where the @Int refines the type of Just, which in turn assigns x the type
Int. Note that pattern checking allows skolemising bound type variables
(rule Pat-CheckInfForall), but only when the patterns are not empty in
order not to lose syntax-directedness of the rules. The same holds for rule Pat-
CheckForall, which only applies when no other rules match.

A.2 MPLC Core Language Definitions

The dynamic semantics of the languages in Section 5.2 are defined through
a translation to System F. While the target language is largely standard, a
few interesting remarks can be made. The language supports nested pattern
matching through case lambdas caseπF i : ψF → ei

i
, where patterns πF include

both term and type variables, as well as nested constructor patterns. Note that
while we reuse our type σ grammar for the core language, System F does not
distinguish between inferred and specified binders.

We also define two meta-language features to simplify the elaboration, and
the proofs: Firstly, in order to support eta-expansion (for translating deep
instantiation to System F), we define expression wrappers ṫ, essentially a
limited form of expressions with a hole [] in them. An expression e can be filled
in for the hole to get a new expression ṫ[e]. One especially noteworthy wrapper
construct is λe1.e2, explicitly abstracting over and handling the expression to
be filled in. Note that, as expression wrappers are only designed to alter the
type of expressions through eta-expansion, there is no need to support the full
System F syntax.

1Extending the context for later patterns is not used in this system, but it would be
required for extensions like view patterns.

162 ADDITIONAL RELATIONS

Secondly, in order to define contextual equivalence, we introduce contexts
M . These are again expressions with a hole [] in them, but unlike expression
wrappers, contexts do cover the entire System F syntax. Typing contexts is
performed by the M : Γ1;σ1 7→ Γ2;σ2 relation: “Given an expression e that has
type σ1 under typing environment Γ1, then the resulting expression M [e] has
type σ2 under typing environment Γ2”. We will elaborate further on contextual
equivalence in Appendix B.2.

e ::= x | K | e1 e2 | λx : σ.e | e σ | Λa.e Expression
| undefined | eq

| caseπF i : ψF → ei
i
| True | False

v ::= λx : σ.e | Λa.v | K e Value
| caseπF i : ψF → ei

i

ṫ ::= [] | λx : σ.ṫ | ṫ σ | Λa.ṫ | λe1.e2 Expr. Wrapper
M ::= [] | λx : σ.M | M e | eM Context

| Λa.M | M σ
argF ::= e | σ Argument
πF ::= x : σ | @a | K πF Pattern
ψF ::= σ | @a Arg. descriptor

Γ `tm e : σ (System F Term Typing)

tTm-Var
(x : σ) ∈ Γ `ctx Γ

Γ `tm x : σ

tTm-Con
K : a ; σ ; T ∈ Γ

Γ `tm K : ∀ a.σ → T a

tTm-App
Γ `tm e1 : σ → σ′

Γ `tm e2 : σ
Γ `tm e1 e2 : σ′

tTm-Abs
Γ, x : σ1 `tm e : σ2

Γ `tm λx : σ1.e : σ1 → σ2

tTm-Tapp
Γ `tm e : ∀a.σ1

Γ `ty σ2

Γ `tm e σ : [σ2/a]σ1

tTm-Tabs
Γ, a `tm e : σ

Γ `tm Λa.e : ∀a.σ

tTm-Undef

Γ `tm undefined : ∀ a.a

tTm-True
`ctx Γ

Γ `tm True : Bool

tTm-False
`ctx Γ

Γ `tm False : Bool

MPLC CORE LANGUAGE DEFINITIONS 163

tTm-Seq

Γ `tm eq : ∀ a.∀ b.a→ b→ b

tTm-Case
Γ `P πF i : ψF ; ∆

i

Γ,∆ `tm ei : σ1
i

type (ψF ;σ1 σ2)

Γ `tm caseπF i : ψF → ei
i

: σ2

Γ `P πF : ψF ; ∆ (System F Pattern Typing)

FPat-Empty

Γ `P • : •; •

FPat-Var
Γ, x : σ `P πF : ψF ; ∆

Γ `P x : σ, πF : σ, ψF ;x : σ,∆

FPat-TyVar
Γ, a `P πF : ψF ; ∆

Γ `P @a, πF : @a, ψF ; a,∆

FPat-Con
K : a0 ; σ0 ; T ∈ Γ
Γ `P πF : [σ1/a0]σ0; ∆1
Γ,∆1 `P πF ′ : ψF ; ∆2

Γ `P (K πF), πF ′ : T σ1, ψF ; ∆1,∆2

M : Γ1;σ1 7→ Γ2;σ2 (System F Context Typing)

FCtx-Hole

[] : Γ;σ 7→ Γ;σ

FCtx-Abs
M : Γ1;σ2 7→ Γ2, x : σ1;σ3

λx : σ1.M : Γ1;σ2 7→ Γ2;σ1 → σ3

FCtx-AppR
M1 : Γ1;σ1 7→ Γ2;σ2 → σ3

Γ2 `tm e2 : σ2

M1 e2 : Γ1;σ1 7→ Γ2;σ3

FCtx-AppL
Γ2 `tm e1 : σ2 → σ3
M2 : Γ1;σ1 7→ Γ2;σ2

e1 M2 : Γ1;σ1 7→ Γ2;σ3

FCtx-TyAbs
M : Γ1;σ1 7→ Γ2, a;σ2

Λa.M : Γ1;σ1 7→ Γ2;∀ a.σ2

FCtx-TyApp
M : Γ1;σ1 7→ Γ2;∀ a.σ2

M σ : Γ1;σ1 7→ Γ2; [σ/a]σ2

FCtx-Case
Γ1 `P πF i : ψF ; ∆

i

Mi : Γ1,∆;σ1 7→ Γ2;σ2
i

type (ψF ;σ2 σ3)

caseπF i : ψF → Mi
i

: Γ1;σ1 7→ Γ2;σ3

164 ADDITIONAL RELATIONS

Evaluation for our System F target language is largely standard and defined
below. Note that, following GHC, our target language evaluates inside type
abstractions (rule FEval-TyAbs). Because of this, a type abstraction Λa.e is
a value if and only if e is a value. A more extensive discussion can be found in
[13, Appendix A.3].

match (πF 1 → e1; e2 : σ2) ↪→ πF 2 → e′1 (Core Pattern Matching)

FMatch-Var

match (x : σ, πF → e1; e2 : σ) ↪→ πF → [e2/x]e1

FMatch-Con
σ2 = ψF 1 → σ′2
e2 ↪→⇓ K e

(caseπF 1 : ψF 1 → e1) e ↪→⇓ v
match ((K πF 1), πF 2 → e1; e2 : σ2) ↪→ πF 2 → v

e1 ↪→ e2 (Core Evaluation)

FEval-App
e1 ↪→ e′1

e1 e2 ↪→ e′1 e2

FEval-AppAbs

(λx : σ.e1) e2 ↪→ [e2/x]e1

FEval-Seq
e1 ↪→ e′1

eq e1 e2 ↪→ eq e
′
1 e2

FEval-SeqVal

eq v1 e2 ↪→ e2

FEval-CaseEmpty

case • : • → ei
i ↪→ e0

FEval-CaseMatch
∀j ∈ pwhere(match (πF j → ej ; e2 : σ) ↪→ πF

′
j → e′j)

(caseπF i : σ, ψF → ei
i<p

) e2 ↪→ caseπF ′j : ψF → e′j
j<w

FEval-TyAbs
e ↪→ e′

Λa.e ↪→ Λa.e′

FEval-TyApp
e1 ↪→ e′1

e1 σ ↪→ e′1 σ

FEval-TyAppAbs

(Λa.v1)σ ↪→ [σ/a]v1

FEval-Undef

undefined ↪→ undefined

FEval-TyAbsCase

(case @ai , πF i : @a, ψF → ei
i
)σ ↪→ case [σ/a]πF i : [σ/a]ψF → [σ/a]ei

i

MPLC CORE LANGUAGE DEFINITIONS 165

e ↪→⇓ v (Big Step Evaluation)

FEvalBigStep-Step
e ↪→ e′ e′ ↪→⇓ v

e ↪→⇓ v

FEvalBigStep-Done

v ↪→⇓ v

A.2.1 Translation from the Mixed Polymorphic λ-calculus

Γ `H h ⇒ σ e (Head Type Synthesis)

H-Var
x : σ ∈ Γ

Γ `H x ⇒ σ x

H-Con
K : a ; σ ; T ∈ Γ

Γ `H K ⇒ ∀ a.σ → T a K

H-Ann
Γ ` e ⇐ σ e

Γ `H e : σ ⇒ σ e

H-Undef

Γ `H undefined ⇒ ∀ a.a undefined

H-Seq

Γ `H eq ⇒ ∀ a.∀ b.a→ b→ b eq

H-Inf
Γ ` e ⇒ ηε e

Γ `H e ⇒ ηε e

Γ ` e ⇒ ηε e (Term Type Synthesis)

Tm-InfAbs
Γ, x : τ1 ` e ⇒ ηε2 e1

Γ ` λx.e ⇒ τ1 → ηε2 λx : σ1.e1

Tm-InfTyAbs
Γ, a ` e ⇒ ηε1 e

Γ ` ∀ a.ηε1 inst δ−−−−→ ηε2 ṫ
Γ ` Λa.e ⇒ ηε2 ṫ[Λa.e]

Tm-InfApp
Γ `H h ⇒ σ e

Γ `A arg ⇐ σ ⇒ σ′ argF
Γ ` σ′ inst δ−−−−→ ηε ṫ

Γ ` h arg ⇒ ηε ṫ[e argF]

Tm-InfLet
Γ ` decl ⇒ Γ′ x : σ = e1

Γ′ ` e ⇒ ηε e2

Γ ` let decl in e ⇒ ηε (λx : σ.e2) e1

Tm-InfTrue

Γ ` true⇒ Bool True

Tm-InfFalse

Γ ` false⇒ Bool False

166 ADDITIONAL RELATIONS

Γ ` e ⇐ σ e (Term Type Scheme Checking)

Tm-CheckAbs
Γ ` σ skol S

99999K σ1 → σ2; Γ1 ṫ
Γ1, x : σ1 ` e ⇐ σ2 e1

Γ ` λx.e ⇐ σ ṫ[λx : σ1.e1]

Tm-CheckTyAbs
σ = ∀ {a}.∀ a.σ′

Γ, a, a ` e ⇐ σ′ e

Γ ` Λa.e ⇐ σ Λa.Λa.e

Tm-CheckLet
Γ ` decl ⇒ Γ′ x : σ1 = e1

Γ′ ` e ⇐ σ e2

Γ ` let decl in e ⇐ σ (λx : σ1.e2) e1

Tm-CheckInf
Γ ` σ skol δ−−−−→ ρ; Γ1 ṫ1

Γ1 ` e ⇒ ηε e

Γ1 ` ηε inst δ−−−−→ ρ ṫ2
e 6= λ,Λ, let

Γ ` e ⇐ σ ṫ1[ṫ2[e]]

Γ `A arg ⇐ σ ⇒ σ′ argF (Argument Type Checking)

Arg-Empty

Γ `A • ⇐ σ ⇒ σ •

Arg-App
Γ ` e ⇐ σ1 e

Γ `A arg ⇐ σ2 ⇒ σ′ argF

Γ `A e, arg ⇐ σ1 → σ2 ⇒ σ′ e, argF

Arg-Inst
Γ `A e, arg ⇐ σ′2 ⇒ σ3 argF

σ′2 = [τ1/a]σ2

Γ `A e, arg ⇐ ∀ a.σ2 ⇒ σ3 argF

Arg-TyApp
Γ `A arg ⇐ [σ1/a]σ2 ⇒ σ3 argF

Γ `A @σ1, arg ⇐ ∀ a.σ2 ⇒ σ3 σ1, argF

Arg-InfInst
σ = ∀ {a}.σ2

Γ `A arg ⇐ σ′2 ⇒ σ3 argF
σ′2 = [τ1/a]σ2

Γ `A arg ⇐ σ ⇒ σ3 argF

Γ ` σ inst δ−−−−→ ρ ṫ (Type Instantiation)

InstT-SInst

Γ ` ρ inst S
99999K ρ []

InstT-SForall
Γ ` [τ/a]σ inst S

99999K ρ ṫ
Γ ` ∀ a.σ inst S

99999K ρ λe.(ṫ[e σ])

MPLC CORE LANGUAGE DEFINITIONS 167

InstT-SInfForall
Γ ` [τ/a]σ inst S

99999K ρ ṫ
Γ ` ∀ {a}.σ inst S

99999K ρ λe.(ṫ[e σ])

InstT-Mono

Γ ` τ inst D−−−−→ τ []

InstT-Function
Γ ` σ2

inst D−−−−→ ρ2 ṫ
Γ ` σ1 → σ2

inst D−−−−→σ1 → ρ2 λe.λx : σ1.(ṫ[e x])

InstT-Forall
Γ ` [τ/a]σ inst D−−−−→ ρ ṫ

Γ ` ∀ a.σ inst D−−−−→ ρ λe.(ṫ[e σ])

InstT-InfForall
Γ ` [τ/a]σ inst D−−−−→ ρ ṫ

Γ ` ∀ {a}.σ inst D−−−−→ ρ λe.(ṫ[e σ])

Γ ` σ skol δ−−−−→ ρ; Γ′ ṫ (Type Skolemisation)

SkolT-SInst

Γ ` ρ skol S
99999K ρ; Γ []

SkolT-SForall
Γ, a ` σ skol S

99999K ρ; Γ1 ṫ
Γ ` ∀ a.σ skol S

99999K ρ; Γ1 Λa.ṫ

SkolT-SInfForall
Γ, a ` σ skol S

99999K ρ; Γ1 ṫ
Γ ` ∀ {a}.σ skol S

99999K ρ; Γ1 Λa.ṫ

SkolT-Mono

Γ ` τ skol D−−−−→ τ ; Γ []

SkolT-Function
Γ ` σ2

skol D−−−−→ ρ2; Γ1 ṫ
Γ ` σ1 → σ2

skol D−−−−→σ1 → ρ2; Γ1 λe.λx : σ1.(ṫ[e x])

SkolT-Forall
Γ, a ` σ skol D−−−−→ ρ; Γ1 ṫ

Γ ` ∀ a.σ skol D−−−−→ ρ; Γ1 Λa.ṫ

SkolT-InfForall
Γ, a ` σ skol D−−−−→ ρ; Γ1 ṫ

Γ ` ∀ {a}.σ skol D−−−−→ ρ; Γ1 Λa.ṫ

Γ ` decl ⇒ Γ′ x : σ = e (Declaration Checking)

Decl-NoAnnSingle
Γ `P π ⇒ ψ; ∆ πF : ψF

Γ,∆ ` e ⇒ ηε e

type (ψ; ηε σ) a = fv (σ) \ dom (Γ)
Γ ` x π = e ⇒ Γ, x : ∀ {a}.σ x : ∀ {a}.σ = caseπF : ψF → e

168 ADDITIONAL RELATIONS

Decl-NoAnnMulti
j > 1 Γ `P πj ⇒ ψ; ∆j πF j : ψF

j

Γ,∆j ` ej ⇒ ηεj ej
j

Γ,∆j ` ηεj inst δ−−−−→ ρ ṫj
j

type (ψ; ρ σ)
a = fv (σ) \ dom (Γ) σ′ = ∀ {a}.σ

Γ ` x πj = ej
j ⇒ Γ, x : σ′ x : σ′ = caseπF j : ψF → ṫj [ej]

j

Decl-Ann
Γ `P πj ⇐ σ ⇒ σ′j ; ∆j πF j : ψF

j
Γ,∆j ` ej ⇐ σ′j ej

j

Γ ` x : σ; x πj = ej
j ⇒ Γ, x : σ x : σ = caseπF j : ψF → ej

j

Γ `P π ⇒ ψ; ∆ πF : ψF (Pattern Synthesis)

Pat-InfEmpty

Γ `P • ⇒ •; • • : •

Pat-InfVar
Γ, x : τ1 `P π ⇒ ψ; ∆ πF : ψF

Γ `P x, π ⇒ τ1, ψ; x : τ1,∆ x : σ1, πF : σ1, ψF

Pat-InfCon
K : a0 ; σ0 ; T ∈ Γ

Γ `P π ⇐ [σ1, τ0/a0] (σ0 → T a0)⇒ T τ ; ∆1 πF 1 : ψF 1
Γ,∆1 `P π′ ⇒ ψ; ∆2 πF 2 : ψF 2

Γ `P (K @σ1 π), π′ ⇒ T τ , ψ; ∆1,∆2 (K πF 1), πF 2 : T σ, ψF 2

Pat-InfTyVar
Γ, a `P π ⇒ ψ; ∆ πF : ψF

Γ `P @a, π ⇒ @a, ψ; a,∆ @a, πF : @a, ψF

Γ `P π ⇐ σ ⇒ σ′; ∆ πF : ψF (Pattern Checking)

Pat-CheckEmpty

Γ `P • ⇐ σ ⇒ σ; • • : •

Pat-CheckVar
Γ, x : σ1 `P π ⇐ σ2 ⇒ σ′; ∆ πF : ψF

Γ `P x, π ⇐ σ1 → σ2 ⇒ σ′; x : σ1,∆ x : σ1, πF : σ1, ψF

MPLC CORE LANGUAGE DEFINITIONS 169

Pat-CheckCon
K : a0 ; σ0 ; T ∈ Γ Γ ` σ1

inst δ−−−−→ ρ1 ṫ
Γ `P π ⇐ [σ1, τ0/a0] (σ0 → T a0)⇒ ρ1; ∆1 πF 1 : ψF 1

Γ,∆1 `P π′ ⇐ σ2 ⇒ σ′2; ∆2 πF 2 : ψF 2

Γ `P (K @σ1 π), π′ ⇐ σ1 → σ2 ⇒ σ′2; ∆1,∆2 (K πF 1), πF 2 : σ1, ψF 2

Pat-CheckForall
Γ, a `P π ⇐ σ ⇒ σ′; ∆ πF : ψF

π 6= · and π 6= @σ, π′

Γ `P π ⇐ ∀ a.σ ⇒ σ′; a,∆ πF : @a, ψF

Pat-CheckTyVar
Γ, a `P π ⇐ [a/b]σ1 ⇒ σ2; ∆ πF : ψF

Γ `P @a, π ⇐ ∀ b.σ1 ⇒ σ2; a,∆ πF : @a, ψF

Pat-CheckInfForall
Γ, a `P π ⇐ σ ⇒ σ′; ∆ πF : ψF π 6= ·

Γ `P π ⇐ ∀{a}.σ ⇒ σ′; a,∆ πF : @a, ψF

170 ADDITIONAL RELATIONS

A.3 λTC Additional Definitions

A.3.1 Syntax

pgm ::= e | cls; pgm | inst; pgm spgm
cls ::= class TC i a⇒ TC awhere {m : σ} class decl.
inst ::= instance Q⇒ TC τ where {m = e} instance decl.

e ::= True | False | x | m | λx.e | e1 e2 | let x : σ = e1 in e2 | e :: τ term

τ ::= Bool | a | τ1 → τ2 monotype
ρ ::= τ | Q⇒ ρ qualified type
σ ::= ρ | ∀a.σ type scheme

Q ::= TC τ class constraint
C ::= ∀a.Q⇒ Q constraint

Γ ::= • | Γ, x : σ | Γ, a | Γ, δ : Q typing environment
ΓC ::= • | ΓC ,m : TC i a⇒ TC a : σ class environment
P ::= • | P , (D : C).m 7→ Γ : e program context
M ::= [•] | λx.M |M e | eM |M :: τ evaluation context

| let x : σ = M in e | let x : σ = e in M

A.3.2 λTC Judgments and Elaboration

λTC Type & Constraint Well-Formedness

ΓC ; Γ `Q Q σ (λTC Class Constraint Well-Formedness)

osQT-TC
ΓC ; Γ `ty τ σ′

ΓC = ΓC1,m : Qi ⇒ TC a : σ,ΓC2
ΓC1; •, a `ty σ σ

ΓC ; Γ `Q TC τ [σ′/a]{m : σ}

λTC ADDITIONAL DEFINITIONS 171

ΓC ; Γ `C C σ (λTC Constraint Well-Formedness)

osCT-abs
ΓC ; Γ, aj `Q Qi σi

i

ΓC ; Γ, aj `Q Q σ
aj /∈ Γ

ΓC ; Γ `C ∀aj .Qi ⇒ Q ∀aj .σi → σ

ΓC ; Γ `ty σ σ (λTC Type Well-Formedness)

osTyT-bool

ΓC ; Γ `ty Bool Bool

osTyT-var
a ∈ Γ

ΓC ; Γ `ty a a

osTyT-arrow
ΓC ; Γ `ty τ1 σ1
ΓC ; Γ `ty τ2 σ2

ΓC ; Γ `ty τ1 → τ2 σ1 → σ2

osTyT-qual
ΓC ; Γ `Q Q σ1
ΓC ; Γ `ty ρ σ2

ΓC ; Γ `ty Q⇒ ρ σ1 → σ2

osTyT-scheme
a /∈ Γ

ΓC ; Γ, a `ty σ σ

ΓC ; Γ `ty ∀a.σ ∀a.σ

λTC Term Typing

P ; ΓC ; Γ `tm e⇒ τ e (λTC Term Inference)

osTm-infT-true
`ctx P ; ΓC ; Γ Γ

P ; ΓC ; Γ `tm True ⇒ Bool True

osTm-infT-false
`ctx P ; ΓC ; Γ Γ

P ; ΓC ; Γ `tm False ⇒ Bool False

172 ADDITIONAL RELATIONS

osTm-infT-let
x /∈ dom(Γ)

unambig(∀aj .Qi ⇒ τ1)
closure(ΓC ;Qi) = Qk

ΓC ; Γ `Q Qk σk
k

ΓC ; Γ `ty ∀aj .Qk ⇒ τ1 ∀aj .σk → σ

δk fresh
P ; ΓC ; Γ, aj , δk : Qk `tm e1 ⇐ τ1 e1

P ; ΓC ; Γ, x : ∀aj .Qk ⇒ τ1 `tm e2 ⇒ τ2 e2

e = let x : ∀aj .σk → σ = Λaj .λ δk : σk
k
.e1 in e2

P ; ΓC ; Γ `tm let x : ∀aj .Qi ⇒ τ1 = e1 in e2 ⇒ τ2 e

osTm-infT-ArrE
P ; ΓC ; Γ `tm e1 ⇒ τ1 → τ2 e1
P ; ΓC ; Γ `tm e2 ⇐ τ1 e2

P ; ΓC ; Γ `tm e1 e2 ⇒ τ2 e1 e2

osTm-infT-Ann
P ; ΓC ; Γ `tm e⇐ τ e

P ; ΓC ; Γ `tm e :: τ ⇒ τ e

P ; ΓC ; Γ `tm e⇐ τ e (λTC Term Checking)

osTm-checkT-var
(x : ∀aj .Qi ⇒ τ) ∈ Γ
unambig(∀aj .Qi ⇒ τ)
P ; ΓC ; Γ � [τ j/aj]Qi ei

i

ΓC ; Γ `ty τ j σj
j

`ctx P ; ΓC ; Γ Γ
P ; ΓC ; Γ `tm x⇐ [τ j/aj]τ xσj ei

osTm-checkT-meth
(m : Q′k ⇒ TC a : ∀aj .Qi ⇒ τ ′) ∈ ΓC

unambig(∀aj , a.Qi ⇒ τ ′)
P ; ΓC ; Γ � TC τ e

ΓC ; Γ `ty τ σ

P ; ΓC ; Γ � [τ j/aj][τ/a]Qi ei
i

ΓC ; Γ `ty τ j σj
j

`ctx P ; ΓC ; Γ Γ
P ; ΓC ; Γ `tm m⇐ [τ j/aj][τ/a]τ ′ e.mσj ei

λTC ADDITIONAL DEFINITIONS 173

osTm-checkT-ArrI
x /∈ dom(Γ)

P ; ΓC ; Γ, x : τ1 `tm e⇐ τ2 e
ΓC ; Γ `ty τ1 σ

P ; ΓC ; Γ `tm λx.e⇐ τ1 → τ2 λx : σ.e

osTm-checkT-Inf
P ; ΓC ; Γ `tm e⇒ τ e

P ; ΓC ; Γ `tm e⇐ τ e

ΓC `cls cls : ΓC ′ (Class Decl Typing)

osClsT-cls
m /∈ dom(ΓC)

closure(ΓC ;Qk) = Qp
ΓC ; •, a `ty ∀aj .Qp ⇒ τ σ

unambig(∀aj , a.Qp ⇒ τ)
ΓC ; •, a `Q TC i a σi

i

@TC ′ : (m : Q′m ⇒ TC ′ b : σ′) ∈ ΓC
@m′ : (m′ : Q′m ⇒ TC a : σ′) ∈ ΓC

ΓC ′ = m : TC i a⇒ TC a : ∀aj .Qp ⇒ τ

ΓC `cls class TC i a⇒ TC awhere {m : ∀aj .Qk ⇒ τ} : ΓC ′

P ; ΓC `inst inst : P ′ (Instance Decl Typing)

osInstT-inst
(m : Q′i ⇒ TC a : ∀aj .Q

′
y ⇒ τ1) ∈ ΓC

bk = fv(τ)
ΓC ; •, bk `ty τ σ

closure(ΓC ;Qp) = Qq
unambig(∀bk .Qq ⇒ TC τ)

ΓC ; •, bk `Q Qq σq
q

P ; ΓC ; •, bk , δq : Qq � [τ/a]Q′i ei
i

P ; ΓC ; •, bk , δq : Qq, aj , δ
′
y : [τ/a]Q′y `tm e⇐ [τ/a]τ1 e
D fresh

δq fresh δ
′
y fresh

(D′ : ∀b′w.Q
′
n ⇒ TC τ2).m′ 7→ Γ′ : e′ /∈ P where [τ ′w/b

′
w]τ2 = [τ ′k/bk]τ

P ′ = (D : ∀bk .Qq ⇒ TC τ).m 7→ •, bk , δq : Qq, aj , δ
′
y : [τ/a]Q′y : e

P ; ΓC `inst instance Qp ⇒ TC τ where {m = e} : P ′

174 ADDITIONAL RELATIONS

P ; ΓC `pgm pgm : τ ;P ′; ΓC ′ e (λTC Program Typing)

osPgmT-cls
ΓC `cls cls : ΓC ′

P ; ΓC ,ΓC ′ `pgm pgm : τ ;P ′; ΓC ′′ e

P ; ΓC `pgm cls; pgm : τ ;P ′; ΓC ′,ΓC ′′ e

osPgmT-inst
P ; ΓC `inst inst : P ′

P , P ′; ΓC `pgm pgm : τ ;P ′′; ΓC ′ e

P ; ΓC `pgm inst; pgm : τ ;P ′, P ′′; ΓC ′ e

osPgmT-expr
P ; ΓC ; • `tm e⇒ τ e

P ; ΓC `pgm e : τ ; •; • e

closure(ΓC ;Qi) = Qj (Closure over Superclass Relation)

osClosure-empty

closure(ΓC ; •) = •

osClosure-TC
(m : Qm ⇒ TC a : σ) ∈ ΓC
closure(ΓC ;Qi , Qm) = Qj

closure(ΓC ;Qi ,TC a) = Qj ,TC a

unambig(σ) (Unambiguity for Type Schemes)

osUnambig-scheme
aj ∈ fv(τ)

unambig(∀aj .Qi ⇒ τ)

unambig(C) (Unambiguity for Constraints)

osUnambig-constraint
aj ∈ fv(τ)

unambig(∀aj .Qi ⇒ TC τ)

λTC ADDITIONAL DEFINITIONS 175

Constraint Proving

P ; ΓC ; Γ � Q e (Constraint Entailment)

osEntailT-inst
P = P 1, (D : ∀aj .Q

′
i ⇒ Q′).m 7→ •, aj , δi : Q′i , bk , δy : Qy : e, P 2

Q = [τ j/aj]Q′

P 1; ΓC ; •, aj , δi : Q′i , bk , δy : Qy `tm e⇒ τ e
`ctx P ; ΓC ; Γ Γ
ΓC ; Γ `ty τ j σj

j

ΓC ; •, aj `Q Q′i σ′i
i

ΓC ; •, aj , bk `Q Qy σ′′y
y

P ; ΓC ; Γ � [τ j/aj]Q′i ei
i

P ; ΓC ; Γ � Q (Λaj .λ δ
′
i : σ′i

i
.{m = Λbk .λ δy : σ′′y

y
.e})σj ei

osEntailT-local
(δ : Q) ∈ Γ

`ctx P ; ΓC ; Γ Γ
P ; ΓC ; Γ � Q δ

λTC Environment Well-Formedness

`ctx P ; ΓC ; Γ Γ (λTC Environment Well-Formedness)

osCtxT-empty

`ctx •; •; • •

osCtxT-clsEnv
ΓC ; •, a `ty ∀aj .TC i a

i ⇒ τ σ
aj , a = fv(τ)

ΓC ; •, a `Q TC i a σi
i

m /∈ dom(ΓC)
TC b /∈ dom(ΓC)
`ctx •; ΓC ; • •

`ctx •; ΓC ,m : TC i a⇒ TC a : ∀aj .TC i a
i ⇒ τ ; • •

osCtxT-tyEnvTm
ΓC ; Γ `ty σ σ
x /∈ dom(Γ)

`ctx •; ΓC ; Γ Γ
`ctx •; ΓC ; Γ, x : σ Γ, x : σ

osCtxT-tyEnvTy
a /∈ Γ

`ctx •; ΓC ; Γ Γ
`ctx •; ΓC ; Γ, a Γ, a

176 ADDITIONAL RELATIONS

osCtxT-tyEnvD
ΓC ; Γ `Q TC τ σ

δ /∈ dom(Γ)
`ctx •; ΓC ; Γ Γ

`ctx •; ΓC ; Γ, δ : TC τ Γ, δ : σ

osCtxT-pgmInst
unambig(∀bj .Qi ⇒ TC τ)

ΓC ; • `C ∀bj .Qi ⇒ TC τ ∀bj .σi → [σ/a]{m : ∀ak .σ
′
y → σ′}

(m : Q′m ⇒ TC a : ∀ak .Q
′
y ⇒ τ ′) ∈ ΓC

ΓC ; •, a `ty ∀ak .Q
′
y ⇒ τ ′ ∀ak .σ

′
y → σ′

ΓC ; •, bj `ty τ σ

P ; ΓC ; •, bj , δi : Qi , ak , δy : [τ/a]Q′y `tm e⇐ [τ/a]τ ′ e
D /∈ dom(P)

(D′ : ∀b′k .Q
′′
y ⇒ TC τ ′′).m′ 7→ Γ′ : e′ /∈ P

where[τ j/bj]τ = [τ ′k/b
′
k]τ ′′

`ctx P ; ΓC ; Γ Γ
`ctx P , (D : ∀bj .Qi ⇒ TC τ).m 7→ •, bj , δi : Qi , ak , δy : [τ/a]Q′y : e; ΓC ; Γ Γ

λTC ADDITIONAL DEFINITIONS 177

A.3.3 λTC Judgments and Elaboration through FD

λTC Type & Constraint Well-Formedness

ΓC ; Γ `MQ Q Q (λTC Class Constraint Well-Formedness)

osQ-TC
ΓC ; Γ `ty τ σ

ΓC = ΓC1,m : Qi ⇒ TC a : σ,ΓC2
ΓC1; •, a `ty σ σ′

ΓC ; Γ `Q TC τ TC σ

ΓC ; Γ `MC C C (λTC Constraint Well-Formedness)

osC-abs
ΓC ; Γ, aj `Q Qi Qi

i

ΓC ; Γ, aj `Q Q Q
aj /∈ Γ

ΓC ; Γ `C ∀aj .Qi ⇒ Q ∀aj .Qi ⇒ Q

ΓC ; Γ `Mty σ σ (λTC Type Well-Formedness)

osTy-bool

ΓC ; Γ `ty Bool Bool

osTy-var
a ∈ Γ

ΓC ; Γ `ty a a

osTy-arrow
ΓC ; Γ `ty τ1 σ1
ΓC ; Γ `ty τ2 σ2

ΓC ; Γ `ty τ1 → τ2 σ1 → σ2

osTy-qual
ΓC ; Γ `Q Q Q
ΓC ; Γ `ty ρ σ

ΓC ; Γ `ty Q⇒ ρ Q⇒ σ

osTy-scheme
a /∈ Γ

ΓC ; Γ, a `ty σ σ

ΓC ; Γ `ty ∀a.σ ∀a.σ

178 ADDITIONAL RELATIONS

λTC Term Typing

P ; ΓC ; Γ `Mtm e⇒ τ e (λTC Term Inference)

osTm-inf-true
`ctx P ; ΓC ; Γ Σ; ΓC ; Γ

P ; ΓC ; Γ `tm True ⇒ Bool True

osTm-inf-false
`ctx P ; ΓC ; Γ Σ; ΓC ; Γ

P ; ΓC ; Γ `tm False ⇒ Bool False

osTm-inf-let
x /∈ dom(Γ)

unambig(∀aj .Qi ⇒ τ1)
closure(ΓC ;Qi) = Qk

ΓC ; Γ `ty ∀aj .Qk ⇒ τ1 ∀aj .Qk ⇒ σ

δk fresh
P ; ΓC ; Γ, aj , δk : Qk `tm e1 ⇐ τ1 e1

P ; ΓC ; Γ, x : ∀aj .Qk ⇒ τ1 `tm e2 ⇒ τ2 e2
e = let x : ∀aj .Qk ⇒ σ = Λaj .λδk : Qk .e1 in e2

P ; ΓC ; Γ `tm let x : ∀aj .Qi ⇒ τ1 = e1 in e2 ⇒ τ2 e

osTm-inf-ArrE
P ; ΓC ; Γ `tm e1 ⇒ τ1 → τ2 e1
P ; ΓC ; Γ `tm e2 ⇐ τ1 e2

P ; ΓC ; Γ `tm e1 e2 ⇒ τ2 e1 e2

osTm-inf-Ann
P ; ΓC ; Γ `tm e⇐ τ e

P ; ΓC ; Γ `tm e :: τ ⇒ τ e

P ; ΓC ; Γ `Mtm e⇐ τ e (λTC Term Checking)

osTm-check-var
(x : ∀aj .Qi ⇒ τ) ∈ Γ
unambig(∀aj .Qi ⇒ τ)

P ; ΓC ; Γ � [τ j/aj]Qi di
i

ΓC ; Γ `ty τ j σj
j

`ctx P ; ΓC ; Γ Σ; ΓC ; Γ
P ; ΓC ; Γ `tm x⇐ [τ j/aj]τ xσj di

λTC ADDITIONAL DEFINITIONS 179

osTm-check-meth
(m : Q′k ⇒ TC a : ∀aj .Qi ⇒ τ ′) ∈ ΓC

unambig(∀aj , a.Qi ⇒ τ ′)
P ; ΓC ; Γ � TC τ d

ΓC ; Γ `ty τ σ

P ; ΓC ; Γ � [τ j/aj][τ/a]Qi di
i

ΓC ; Γ `ty τ j σj
j

`ctx P ; ΓC ; Γ Σ; ΓC ; Γ
P ; ΓC ; Γ `tm m⇐ [τ j/aj][τ/a]τ ′ d.mσj di

osTm-check-ArrI
x /∈ dom(Γ)

P ; ΓC ; Γ, x : τ1 `tm e⇐ τ2 e
ΓC ; Γ `ty τ1 σ

P ; ΓC ; Γ `tm λx.e⇐ τ1 → τ2 λx : σ.e

osTm-check-Inf
P ; ΓC ; Γ `tm e⇒ τ e

P ; ΓC ; Γ `tm e⇐ τ e

ΓC `Mcls cls : ΓC ′ (Class Decl Typing)

osCls-cls
m /∈ dom(ΓC)

closure(ΓC ;Qk) = Qp
ΓC ; •, a `ty ∀aj .Qp ⇒ τ σ

unambig(∀aj , a.Qp ⇒ τ)
ΓC ; •, a `Q TC i a Qi

i

@TC ′ : (m : Q′m ⇒ TC ′ b : σ′) ∈ ΓC
@m′ : (m′ : Q′m ⇒ TC a : σ′) ∈ ΓC

ΓC ′ = m : TC i a⇒ TC a : ∀aj .Qp ⇒ τ

ΓC `Mcls class TC i a⇒ TC awhere {m : ∀aj .Qk ⇒ τ} : ΓC ′

180 ADDITIONAL RELATIONS

P ; ΓC `Minst inst : P ′ (Instance Decl Typing)

osInst-inst
(m : Q′i ⇒ TC a : ∀aj .Qy ⇒ τ1) ∈ ΓC

bk = fv(τ)
ΓC ; •, bk `ty τ σ

closure(ΓC ;Qp) = Qq
unambig(∀bk .Qq ⇒ TC τ)

ΓC ; •, bk `Q Qq Qq
q

P ; ΓC ; •, bk , δq : Qq � [τ/a]Q′i di
i

P ; ΓC ; •, bk , δq : Qq, aj , δy : [τ/a]Qy `tm e⇐ [τ/a]τ1 e
D fresh

δy fresh δq fresh
(D′ : ∀b′m.Q

′
n ⇒ TC τ2).m′ 7→ Γ′ : e′ /∈ P where [τ ′m/b

′
m]τ2 = [τ ′k/bk]τ

P ′ = (D : ∀bk .Qq ⇒ TC τ).m 7→ •, bk , δq : Qq, aj , δy : [τ/a]Qy : e
P ; ΓC `Minst instance Qp ⇒ TC τ where {m = e} : P ′

P ; ΓC `Mpgm pgm : τ ;P ′; ΓC ′ e (λTC Program Typing)

osPgm-cls
ΓC `Mcls cls : ΓC ′

P ; ΓC ,ΓC ′ `Mpgm pgm : τ ;P ′; ΓC ′′ e

P ; ΓC `Mpgm cls; pgm : τ ;P ′; ΓC ′,ΓC ′′ e

osPgm-inst
P ; ΓC `Minst inst : P ′

P , P ′; ΓC `Mpgm pgm : τ ;P ′′; ΓC ′ e

P ; ΓC `Mpgm inst; pgm : τ ;P ′, P ′′; ΓC ′ e

osPgm-expr
P ; ΓC ; • `tm e⇒ τ e

P ; ΓC `Mpgm e : τ ; •; • e

λTC ADDITIONAL DEFINITIONS 181

Constraint Proving

P ; ΓC ; Γ �M Q d (Constraint Entailment)

osEntail-inst
P = P 1, (D : ∀aj .Qi ⇒ Q′).m 7→ •, aj , δi : Qi , bk , δy : Qy : e, P 2

Q = [τ j/aj]Q′
`ctx P ; ΓC ; Γ Σ; ΓC ; Γ

ΓC ; Γ `ty τ j σj
j

P ; ΓC ; Γ � [τ j/aj]Qi di
i

P ; ΓC ; Γ � Q Dσj di

osEntail-local
(δ : Q) ∈ Γ

`ctx P ; ΓC ; Γ Σ; ΓC ; Γ
P ; ΓC ; Γ � Q δ

λTC Environment Well-Formedness

`Mctx P ; ΓC ; Γ Σ; ΓC ; Γ (λTC Environment Well-Formedness)

osCtx-empty

`ctx •; •; • •; •; •

osCtx-clsEnv
ΓC ; •, a `ty ∀aj .TC i a

i ⇒ τ σ
aj , a = fv(τ)

ΓC ; •, a `Q TC i a Qi
i

m /∈ dom(ΓC)
TC b /∈ dom(ΓC)

`ctx •; ΓC ; • •; ΓC ; •
`ctx •; ΓC ,m : TC i a⇒ TC a : ∀aj .TC i a

i ⇒ τ ; • •; ΓC ,m : TC a : σ; •

osCtx-tyEnvTm
ΓC ; Γ `ty σ σ
x /∈ dom(Γ)

`ctx •; ΓC ; Γ •; ΓC ; Γ
`ctx •; ΓC ; Γ, x : σ •; ΓC ; Γ, x : σ

osCtx-tyEnvTy
a /∈ Γ

`ctx •; ΓC ; Γ •; ΓC ; Γ
`ctx •; ΓC ; Γ, a •; ΓC ; Γ, a

182 ADDITIONAL RELATIONS

osCtx-tyEnvD
ΓC ; Γ `Q TC τ Q

δ /∈ dom(Γ)
`ctx •; ΓC ; Γ •; ΓC ; Γ

`ctx •; ΓC ; Γ, δ : TC τ •; ΓC ; Γ, δ : Q

osCtx-pgmInst
unambig(∀bj .Qi ⇒ TC τ)

ΓC ; • `C ∀bj .Qi ⇒ TC τ ∀bj .Qi ⇒ TC σ

(m : Q′m ⇒ TC a : ∀ak .Qy ⇒ τ ′) ∈ ΓC
P ; ΓC ; •, bj , δi : Qi , ak , δy : [τ/a]Qy `tm e⇐ [τ/a]τ ′ e

ΓC ; •, a `ty ∀ak .Qy ⇒ τ ′ ∀ak .Qy ⇒ σ′

D /∈ dom(P)
(D′ : ∀b′k .Q

′′
y ⇒ TC τ ′′).m′ 7→ Γ′ : e′ /∈ P

where[τ j/bj]τ = [τ ′k/b
′
k]τ ′′

`ctx P ; ΓC ; Γ Σ; ΓC ; Γ
Σ′ = Σ, (D : ∀bj .Qi ⇒ TC σ).m 7→ Λbj .λδi : Qi .Λak .λδy : [σ/a]Qy.e

`ctx P , (D : ∀bj .Qi ⇒ TC τ).m 7→ •, bj , δi : Qi , ak , δy : [τ/a]Qy : e; ΓC ; Γ Σ′; ΓC ; Γ

λTC Context Typing and Elaboration

M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M (λTC Context Inference -
Inference)

osM-inf-infT-empty

[•] : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ⇒ τ) [•]

osM-inf-infT-appL
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ1 → τ2) M

P ; ΓC ; Γ′ `tm e2 ⇐ τ1 e2

M e2 : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M e2

osM-inf-infT-appR
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ1) M

P ; ΓC ; Γ′ `tm e1 ⇒ τ1 → τ2 e1

e1M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) e1M

λTC ADDITIONAL DEFINITIONS 183

osM-inf-infT-letL
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′, aj , δi : Qi ⇐ τ1) M

δi fresh
x /∈ dom(Γ′)

P ; ΓC ; Γ′, x : ∀aj .Qi ⇒ τ1 `tm e2 ⇒ τ2 e2
ΓC ; Γ′ `ty ∀aj .Qi ⇒ τ1 ∀aj .σi → σ1

M ′ = let x : ∀aj .σi → σ1 = Λaj .λ δi : σi
i
.M in e2

let x : ∀aj .Qi ⇒ τ1 = M in e2 : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M ′

osM-inf-infT-letR
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′, x : ∀aj .Qi ⇒ τ1 ⇒ τ2) M

δi fresh
x /∈ dom(Γ′)

P ; ΓC ; Γ′, aj , δi : Qi `tm e1 ⇐ τ1 e1
ΓC ; Γ′ `ty ∀aj .Qi ⇒ τ1 ∀aj .σi → σ1

M ′ = let x : ∀aj .σi → σ1 = Λaj .λ δi : σi
i
.e1 in M

let x : ∀aj .Qi ⇒ τ1 = e1 in M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M ′

osM-inf-infT-ann
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M

M :: τ ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M

M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M (λTC Context Inference -
Checking)

osM-inf-checkT-abs
M : (P ; ΓC ; Γ⇒ τ1) 7→ (P ; ΓC ; Γ′, x : τ ⇐ τ2) M

ΓC ; Γ′ `ty τ σ

λx.M : (P ; ΓC ; Γ⇒ τ1) 7→ (P ; ΓC ; Γ′ ⇐ τ → τ2) λx : σ.M

osM-inf-checkT-inf
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M

M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M

184 ADDITIONAL RELATIONS

M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M (λTC Context Checking -
Inference)

osM-check-infT-appL
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ1 → τ2) M

P ; ΓC ; Γ′ `tm e2 ⇐ τ1 e2

M e2 : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M e2

osM-check-infT-appR
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ1) M

P ; ΓC ; Γ′ `tm e1 ⇒ τ1 → τ2 e1

e1M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) e1M

osM-check-infT-letL
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′, aj , δi : Qi ⇐ τ1) M

δi fresh
x /∈ dom(Γ′)

P ; ΓC ; Γ′, x : ∀aj .Qi ⇒ τ1 `tm e2 ⇒ τ2 e2
ΓC ; Γ′ `ty ∀aj .Qi ⇒ τ1 ∀aj .σi → σ1

M ′ = let x : ∀aj .σi → σ1 = Λaj .λ δi : σi
i
.M in e2

let x : ∀aj .Qi ⇒ τ1 = M in e2 : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M ′

osM-check-infT-letR
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′, x : ∀aj .Qi ⇒ τ1 ⇒ τ2) M

δi fresh
x /∈ dom(Γ′)

P ; ΓC ; Γ′, aj , δi : Qi `tm e1 ⇐ τ1 e1
ΓC ; Γ′ `ty ∀aj .Qi ⇒ τ1 ∀aj .σi → σ1

M ′ = let x : ∀aj .σi → σ1 = Λaj .λ δi : σi
i
.e1 in M

let x : ∀aj .Qi ⇒ τ1 = e1 in M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M ′

osM-check-infT-ann
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M

M :: τ ′ : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M

M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M (λTC Context Checking -
Checking)

osM-check-checkT-empty

[•] : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ⇐ τ) [•]

λTC ADDITIONAL DEFINITIONS 185

osM-check-checkT-abs
M : (P ; ΓC ; Γ⇐ τ1) 7→ (P ; ΓC ; Γ′, x : τ ⇐ τ2) M

ΓC ; Γ′ `ty τ σ

λx.M : (P ; ΓC ; Γ⇐ τ1) 7→ (P ; ΓC ; Γ′ ⇐ τ → τ2) λx : σ.M

osM-check-checkT-inf
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M

M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M

λTC Context Typing and Elaboration through FD

M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M (λTC Context Inference -
Inference)

osM-inf-inf-empty

[•] : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ⇒ τ) [•]

osM-inf-inf-appL
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ1 → τ2) M

P ; ΓC ; Γ′ `tm e2 ⇐ τ1 e2

M e2 : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M e2

osM-inf-inf-appR
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ1) M

P ; ΓC ; Γ′ `tm e1 ⇒ τ1 → τ2 e1

e1M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) e1M

osM-inf-inf-letL
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′, aj , δi : Qi ⇐ τ1) M

δi fresh
x /∈ dom(Γ′)

P ; ΓC ; Γ′, x : ∀aj .Qi ⇒ τ1 `tm e2 ⇒ τ2 e2
ΓC ; Γ′ `ty ∀aj .Qi ⇒ τ1 ∀aj .Qi ⇒ σ1

M ′ = let x : ∀aj .Qi ⇒ σ1 = Λaj .λδi : Qi .M in e2

let x : ∀aj .Qi ⇒ τ1 = M in e2 : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M ′

186 ADDITIONAL RELATIONS

osM-inf-inf-letR
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′, x : ∀aj .Qi ⇒ τ1 ⇒ τ2) M

δi fresh
x /∈ dom(Γ′)

P ; ΓC ; Γ′, aj , δi : Qi `tm e1 ⇐ τ1 e1
ΓC ; Γ′ `ty ∀aj .Qi ⇒ τ1 ∀aj .Qi ⇒ σ1

M ′ = let x : ∀aj .Qi ⇒ σ1 = Λaj .λδi : Qi .e1 in M

let x : ∀aj .Qi ⇒ τ1 = e1 in M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M ′

osM-inf-inf-ann
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M

M :: τ ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M

M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M (λTC Context Inference -
Checking)

osM-inf-check-abs
M : (P ; ΓC ; Γ⇒ τ1) 7→ (P ; ΓC ; Γ′, x : τ ⇐ τ2) M

ΓC ; Γ′ `ty τ σ

λx.M : (P ; ΓC ; Γ⇒ τ1) 7→ (P ; ΓC ; Γ′ ⇐ τ → τ2) λx : σ.M

osM-inf-check-inf
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M

M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M

M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M (λTC Context Checking -
Inference)

osM-check-inf-appL
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ1 → τ2) M

P ; ΓC ; Γ′ `tm e2 ⇐ τ1 e2

M e2 : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M e2

osM-check-inf-appR
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ1) M

P ; ΓC ; Γ′ `tm e1 ⇒ τ1 → τ2 e1

e1M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) e1M

λTC ADDITIONAL DEFINITIONS 187

osM-check-inf-letL
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′, aj , δi : Qi ⇐ τ1) M

δi fresh
x /∈ dom(Γ′)

P ; ΓC ; Γ′, x : ∀aj .Qi ⇒ τ1 `tm e2 ⇒ τ2 e2
ΓC ; Γ′ `ty ∀aj .Qi ⇒ τ1 ∀aj .Qi ⇒ σ1

M ′ = let x : ∀aj .Qi ⇒ σ1 = Λaj .λδi : Qi .M in e2

let x : ∀aj .Qi ⇒ τ1 = M in e2 : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M ′

osM-check-inf-letR
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′, x : ∀aj .Qi ⇒ τ1 ⇒ τ2) M

δi fresh
x /∈ dom(Γ′)

P ; ΓC ; Γ′, aj , δi : Qi `tm e1 ⇐ τ1 e1
ΓC ; Γ′ `ty ∀aj .Qi ⇒ τ1 ∀aj .Qi ⇒ σ1

M ′ = let x : ∀aj .Qi ⇒ σ1 = Λaj .λδi : Qi .e1 in M

let x : σ1 = e1 in M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M ′

osM-check-inf-ann
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M

M :: τ ′ : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M

M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M (λTC Context Checking -
Checking)

osM-check-check-empty

[•] : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ⇐ τ) [•]

osM-check-check-abs
M : (P ; ΓC ; Γ⇐ τ1) 7→ (P ; ΓC ; Γ′, x : τ ⇐ τ2) M

ΓC ; Γ′ `ty τ σ

λx.M : (P ; ΓC ; Γ⇐ τ1) 7→ (P ; ΓC ; Γ′ ⇐ τ → τ2) λx : σ.M

osM-check-check-inf
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M

M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M

188 ADDITIONAL RELATIONS

A.4 λ⇒TC Declarative Type System Additional Judg-
ments

A.4.1 Well-formedness of Types & Constraints

Well-formedness of types takes the form Γ t̀y σ and is given by the following
rules:

a ∈ Γ
Γ t̀y a

TyVar
Γ t̀y τ1 Γ t̀y τ2

Γ t̀y τ1 → τ2
TyArr

Γ c̀t C Γ t̀y ρ

Γ t̀y C ⇒ ρ
TyQual

a /∈ Γ Γ, a t̀y σ

Γ t̀y ∀a.σ
TyAll

It is entirely straightforward and ensures that type terms are well-scoped.
Rule TyQual requires checking the well-formedness of our new form of
constraints C , via relation Γ c̀t C , given by the following rules:

Γ t̀y τ

Γ c̀t TC τ
(CQ)

Γ c̀t C1 Γ c̀t C2

Γ c̀t C1 ⇒ C2
(C⇒)

a /∈ Γ
Γ, a c̀t C
Γ c̀t ∀a.C

(C∀)

Finally, an axiom set A is well-formed if all constraints it contains are well-
formed:

Γ àx •
AxNil

Γ àx A Γ c̀t C
Γ àx A,C

AxCons

A.4.2 Program Typing

The judgment for program typing takes the form P; Γ p̀gm pgm : σ and is given
by the following rules:

Γ c̀ls cls : AS ; Γc P,S AS ; Γ,Γc p̀gm pgm : σ
P; Γ p̀gm (cls; pgm) : σ

PgmCls

P; Γ ìnst inst : AI P,I AI ; Γ p̀gm pgm : σ
P; Γ p̀gm (inst; pgm) : σ

PgmInst

P; Γ t̀m e : σ
P; Γ p̀gm e : σ

PgmExpr

For brevity, if P = • and Γ = • we denote program typing as p̀gm pgm : σ.

λ⇒
TC DECLARATIVE TYPE SYSTEM ADDITIONAL JUDGMENTS 189

A.4.3 Elaboration of Programs

Elaboration of programs is given by judgment P; Γ p̀gm pgm : σ fpgm :

P; Γ p̀gm pgm : σ fpgm (Program Elaboration)

Γ c̀ls cls : AS ; Γc fdata; fval P,SAS ; Γ,Γc p̀gm pgm : σ fpgm

P; Γ p̀gm (cls; pgm) : σ fdata; fval; fpgm
PCls

P; Γ ìnst inst : AI fval P,IAI ; Γ p̀gm pgm : σ fpgm
P; Γ p̀gm (inst; pgm) : σ fval; fpgm

PIns

Γ t̀m e : τ t | A; E θ = unify(•; E) a = fv(θ(A)) ∪ fv(θ(τ))
a; 〈•,AI ,AL〉 |= θ(A) d : C ; η c̀t Ci υi

〈AS ,AI ,AL〉; Γ p̀gm e : ∀a.C ⇒ θ(τ) Λa.λ(d : υ).η(θ(t))
PExp

Rules PCls and PIns handle class and instance declarations, respectively,
and they are entirely standard. Rule PExp performs standard type-inference,
simplification [43] and generalization for a top-level expression e. For simplicity,
we do not utilize interaction rules (e.g. we do not simplify the constraints
{Eq a,Ord a} to {Ord a}), but it is straightforward to do so. Finally, observe
that superclass axioms AS are not used for the simplification of wanted
constraints. This is standard practice for Haskell but our distinction between
the axioms within the program theory allows us to express this explicitly.

190 ADDITIONAL RELATIONS

A.5 λ⇒TC Additional Definitions

A.5.1 Syntax

pgm ::= e | cls; pgm | inst; pgm spgm
cls ::= class C ⇒ TC awhere {m : σ} class decl.
inst ::= instance C ⇒ TC τ where {m = e} instance decl.

e ::= True | False | x | m | λx.e | e1 e2 | let x : σ = e1 in e2 | e :: τ term

τ ::= Bool | a | τ1 → τ2 monotype
ρ ::= τ | C ⇒ ρ qualified type
σ ::= ρ | ∀a.σ type scheme

Q ::= TC τ class constraint
C ::= Q | C1 ⇒ C2 | ∀a.C constraint

Γ ::= • | Γ, x : σ | Γ, a | Γ, δ : C typing environment
ΓC ::= • | ΓC ,m : C ⇒ TC a : σ class environment
P ::= • | P , (D : C).m 7→ Γ : e program context
M ::= [•] | λx.M |M e | eM |M :: τ evaluation context

| let x : σ = M in e | let x : σ = e in M

A.5.2 λ⇒
TC Judgments and Elaboration

λ⇒TC Type & Constraint Well-Formedness

ΓC ; Γ `Q Q σ (λ⇒TC Class Constraint Well-Formedness)

sQT-TC
ΓC ; Γ `ty τ σ′

ΓC = ΓC1,m : Ci ⇒ TC a : σ,ΓC2
ΓC1; •, a `ty σ σ

ΓC ; Γ `Q TC τ [σ′/a]{m : σ}

λ⇒
TC ADDITIONAL DEFINITIONS 191

ΓC ; Γ `C C σ (λ⇒TC Constraint Well-Formedness)

sCT-forall
ΓC ; Γ, a `C C σ

a /∈ Γ
ΓC ; Γ `C ∀a.C ∀a.σ

sCT-arrow
ΓC ; Γ `C C1 σ1
ΓC ; Γ `C C2 σ2

ΓC ; Γ `C C1 ⇒ C2 σ1 → σ2

sCT-classconstr
ΓC ; Γ `Q Q σ

ΓC ; Γ `C Q σ

ΓC ; Γ `ty σ σ (λ⇒TC Type Well-Formedness)

sTyT-bool

ΓC ; Γ `ty Bool Bool

sTyT-var
a ∈ Γ

ΓC ; Γ `ty a a

sTyT-arrow
ΓC ; Γ `ty τ1 σ1
ΓC ; Γ `ty τ2 σ2

ΓC ; Γ `ty τ1 → τ2 σ1 → σ2

sTyT-qual
ΓC ; Γ `C C σ1
ΓC ; Γ `ty ρ σ2

ΓC ; Γ `ty C ⇒ ρ σ1 → σ2

sTyT-scheme
a /∈ Γ

ΓC ; Γ, a `ty σ σ

ΓC ; Γ `ty ∀a.σ ∀a.σ

λ⇒TC Term Typing

P ; ΓC ; Γ `tm e⇒ τ e (λ⇒TC Term Inference)

sTm-infT-true
`ctx P ; ΓC ; Γ Γ

P ; ΓC ; Γ `tm True ⇒ Bool True

sTm-infT-false
`ctx P ; ΓC ; Γ Γ

P ; ΓC ; Γ `tm False ⇒ Bool False

192 ADDITIONAL RELATIONS

sTm-infT-let
x /∈ dom(Γ)

unambig(∀aj .Ci ⇒ τ1)
closure(ΓC ;Ci) = Ck

ΓC ; Γ `C Ck σk
k

ΓC ; Γ `ty ∀aj .Ck ⇒ τ1 ∀aj .σk → σ

δk fresh
P ; ΓC ; Γ, aj , δk : Ck `tm e1 ⇐ τ1 e1

P ; ΓC ; Γ, x : ∀aj .Ck ⇒ τ1 `tm e2 ⇒ τ2 e2

e = let x : ∀aj .σk → σ = Λaj .λ δk : σk
k
.e1 in e2

P ; ΓC ; Γ `tm let x : ∀aj .Ci ⇒ τ1 = e1 in e2 ⇒ τ2 e

sTm-infT-ArrE
P ; ΓC ; Γ `tm e1 ⇒ τ1 → τ2 e1
P ; ΓC ; Γ `tm e2 ⇐ τ1 e2

P ; ΓC ; Γ `tm e1 e2 ⇒ τ2 e1 e2

sTm-infT-Ann
P ; ΓC ; Γ `tm e⇐ τ e

P ; ΓC ; Γ `tm e :: τ ⇒ τ e

P ; ΓC ; Γ `tm e⇐ τ e (λ⇒TC Term Checking)

sTm-checkT-var
(x : ∀aj .Ci ⇒ τ) ∈ Γ
unambig(∀aj .Ci ⇒ τ)

P ; ΓC ; Γ � [[τ j/aj]Ci] ei
i

ΓC ; Γ `ty τ j σj
j

`ctx P ; ΓC ; Γ Γ
P ; ΓC ; Γ `tm x⇐ [τ j/aj]τ xσj ei

sTm-checkT-meth
(m : C ′k ⇒ TC a : ∀aj .Ci ⇒ τ ′) ∈ ΓC

unambig(∀aj , a.Ci ⇒ τ ′)
P ; ΓC ; Γ � [TC τ] e

ΓC ; Γ `ty τ σ

P ; ΓC ; Γ � [[τ j/aj][τ/a]Ci] ei
i

ΓC ; Γ `ty τ j σj
j

`ctx P ; ΓC ; Γ Γ
P ; ΓC ; Γ `tm m⇐ [τ j/aj][τ/a]τ ′ e.mσj ei

λ⇒
TC ADDITIONAL DEFINITIONS 193

sTm-checkT-ArrI
x /∈ dom(Γ)

P ; ΓC ; Γ, x : τ1 `tm e⇐ τ2 e
ΓC ; Γ `ty τ1 σ

P ; ΓC ; Γ `tm λx.e⇐ τ1 → τ2 λx : σ.e

sTm-checkT-Inf
P ; ΓC ; Γ `tm e⇒ τ e

P ; ΓC ; Γ `tm e⇐ τ e

ΓC `cls cls : ΓC ′ (Class Decl Typing)

sClsT-cls
m /∈ dom(ΓC)

closure(ΓC ;Cm) = Cn
ΓC ; •, a `ty ∀aj .Cn ⇒ τ σ
unambig(∀aj , a.Cn ⇒ τ)
ΓC ; •, a `C Ci σi

i<q

@TC ′ : (m : C ′w ⇒ TC ′ b : σ′) ∈ ΓC
@m′ : (m′ : C ′w ⇒ TC a : σ′) ∈ ΓC

ΓC ′ = m : Cq ⇒ TC a : ∀aj .Cn ⇒ τ

ΓC `cls class Cq ⇒ TC awhere {m : ∀aj .Cm ⇒ τ} : ΓC ′

P ; ΓC `inst inst : P ′ (Instance Decl Typing)

sInstT-inst
(m : C ′i ⇒ TC a : ∀aj .C

′
y ⇒ τ1) ∈ ΓC

bk = fv(τ)
ΓC ; •, bk `ty τ σ

closure(ΓC ;Cp) = Cq
unambig(∀bk .Cq ⇒ TC τ)

ΓC ; •, bk `C Cq σq
q

P ; ΓC ; •, bk , δq : Cq � [[τ/a]C ′i] ei
i

P ; ΓC ; •, bk , δq : Cq, aj , δ
′
y : [τ/a]C ′y `tm e⇐ [τ/a]τ1 e
D fresh

δq fresh δ
′
y fresh

(D′ : ∀b′w.C
′
n ⇒ TC τ2).m′ 7→ Γ′ : e′ /∈ P where [τ ′w/b

′
w]τ2 = [τ ′k/bk]τ

P ′ = (D : ∀bk .Cq ⇒ TC τ).m 7→ •, bk , δq : Cq, aj , δ
′
y : [τ/a]C ′y : e

P ; ΓC `inst instance Cp ⇒ TC τ where {m = e} : P ′

194 ADDITIONAL RELATIONS

P ; ΓC `pgm pgm : τ ;P ′; ΓC ′ e (λ⇒TC Program Typing)

sPgmT-cls
ΓC `cls cls : ΓC ′

P ; ΓC ,ΓC ′ `pgm pgm : τ ;P ′; ΓC ′′ e

P ; ΓC `pgm cls; pgm : τ ;P ′; ΓC ′,ΓC ′′ e

sPgmT-inst
P ; ΓC `inst inst : P ′

P , P ′; ΓC `pgm pgm : τ ;P ′′; ΓC ′ e

P ; ΓC `pgm inst; pgm : τ ;P ′, P ′′; ΓC ′ e

sPgmT-expr
P ; ΓC ; • `tm e⇒ τ e

P ; ΓC `pgm e : τ ; •; • e

closure(ΓC ;Ci) = Cj (Closure over Superclass Relation)

sClosure-empty

closure(ΓC ; •) = •

sClosure-TC
TC a = head(C)

(m : Cm ⇒ TC a : σ) ∈ ΓC
closure(ΓC ;Ci , Cm) = Cj

closure(ΓC ;Ci , C) = Cj , C

unambig(σ) (Unambiguity for Type Schemes)

sUnambig-scheme
aj ∈ fv(τ)

unambig(∀aj .Ci ⇒ τ)

unambig(C) (Unambiguity for Constraints)

sUnambig-constraint
aj ∈ fv(τ)

unambig(∀aj .Ci ⇒ TC τ)

λ⇒
TC ADDITIONAL DEFINITIONS 195

Constraint Proving

P ; ΓC ; Γ � [C] e (Constraint Entailment)

sEntailT-arrow
P ; ΓC ; Γ, δ1 : C1 � [C2] e

ΓC ; Γ `C C1 σ1

P ; ΓC ; Γ � [C1 ⇒ C2] λδ1 : σ1.e

sEntailT-forall
P ; ΓC ; Γ, a � [C] e

P ; ΓC ; Γ � [∀a.C] Λa.e

sEntailT-inst
P = P 1, (D : ∀aj .C

′
i ⇒ Q′).m 7→ •, aj , δi : C ′i , bk , δy : Cy : e, P 2

P 1; ΓC ; •, aj , δi : C ′i , bk , δy : Cy `tm e⇒ τ e0

ΓC ; •, aj `C C ′i σ′i
i

ΓC ; •, aj , bk `C Cy σ′′y
y

`ctx P ; ΓC ; Γ Γ
e′0 = Λaj .λ δ

′
i : σ′i

i
.{m = Λbk .λ δy : σ′′y

y
.e0}

P ; ΓC ; Γ; [•; • ` e′0 : ∀aj .C
′
i ⇒ Q′] � Q • ` e1

P ; ΓC ; Γ � [Q] e1

sEntailT-local
(δ : C) ∈ Γ

`ctx P ; ΓC ; Γ Γ
P ; ΓC ; Γ; [•; • ` δ : C] � Q • ` e

P ; ΓC ; Γ � [Q] e

P ; ΓC ; Γ; [a; • ` e0 : C] � Q τ ` e1 (Constraint Matching)

sMatchT-arrow
P ; ΓC ; Γ; [a; δ : C, δ1 : C1 ` e0 δ1 : C2] � Q τ ` e2

P ; ΓC ; Γ � [[τ/a]C1] e1

P ; ΓC ; Γ; [a; δ : C ` e0 : C1 ⇒ C2] � Q τ ` [e1/δ1]e2

sMatchT-forall
P ; ΓC ; Γ; [a, a; δ : C ` e0 a : C] � Q τ , τ ` e1

P ; ΓC ; Γ; [a; δ : C ` e0 : ∀a.C] � Q τ ` e1

sMatchT-classconstr
τ1 = [τ/a]τ0

ΓC ; Γ `ty τ i σi
i

P ; ΓC ; Γ; [a; δ : C ` e0 : TC τ0] � TC τ1 τ ` [σ/a]e0

196 ADDITIONAL RELATIONS

λ⇒TC Environment Well-Formedness

`ctx P ; ΓC ; Γ Γ (λ⇒TC Environment Well-Formedness)

sCtxT-empty

`ctx •; •; • •

sCtxT-clsEnv
ΓC ; •, a `ty ∀aj .Ci ⇒ τ σ

aj , a = fv(τ)
ΓC ; •, a `C Ci σi

i

m /∈ dom(ΓC)
TC b /∈ dom(ΓC)
`ctx •; ΓC ; • •

`ctx •; ΓC ,m : Ci ⇒ TC a : ∀aj .Ci ⇒ τ ; • •

sCtxT-tyEnvTm
ΓC ; Γ `ty σ σ
x /∈ dom(Γ)

`ctx •; ΓC ; Γ Γ
`ctx •; ΓC ; Γ, x : σ Γ, x : σ

sCtxT-tyEnvTy
a /∈ Γ

`ctx •; ΓC ; Γ Γ
`ctx •; ΓC ; Γ, a Γ, a

sCtxT-tyEnvD
ΓC ; Γ `C C σ
δ /∈ dom(Γ)

`ctx •; ΓC ; Γ Γ
`ctx •; ΓC ; Γ, δ : C Γ, δ : σ

sCtxT-pgmInst
unambig(∀bj .Ci ⇒ TC τ)

ΓC ; • `C ∀bj .Ci ⇒ TC τ ∀bj .σi → [σ/a]{m : ∀ak .σ
′
y → σ′}

(m : C ′m ⇒ TC a : ∀ak .C
′
y ⇒ τ ′) ∈ ΓC

ΓC ; •, a `ty ∀ak .C
′
y ⇒ τ ′ ∀ak .σ

′
y → σ′

ΓC ; •, bj `ty τ σ

P ; ΓC ; •, bj , δi : Ci , ak , δy : [τ/a]C ′y `tm e⇐ [τ/a]τ ′ e
D /∈ dom(P)

(D′ : ∀b′k .C
′′
y ⇒ TC τ ′′).m′ 7→ Γ′ : e′ /∈ P

where[τ j/bj]τ = [τ ′k/b
′
k]τ ′′

`ctx P ; ΓC ; Γ Γ
`ctx P , (D : ∀bj .Ci ⇒ TC τ).m 7→ •, bj , δi : Ci , ak , δy : [τ/a]C ′y : e; ΓC ; Γ Γ

λ⇒
TC ADDITIONAL DEFINITIONS 197

A.5.3 λ⇒
TC Judgments and Elaboration through F⇒

D

λ⇒TC Type & Constraint Well-Formedness

ΓC ; Γ `MQ Q Q (λ⇒TC Class Constraint Well-Formedness)

sQ-TC
ΓC ; Γ `Mty τ σ

ΓC = ΓC1,m : Ci ⇒ TC a : σ,ΓC2
ΓC1; •, a `Mty σ σ′

ΓC ; Γ `MQ TC τ TC σ

ΓC ; Γ `MC C C (λ⇒TC Constraint Well-Formedness)

sC-forall
ΓC ; Γ, a `MC C C

a /∈ Γ
ΓC ; Γ `MC ∀a.C ∀a.C

sC-arrow
ΓC ; Γ `MC C1 C1
ΓC ; Γ `MC C2 C2

ΓC ; Γ `MC C1 ⇒ C2 C1 ⇒ C2

sC-classconstr
ΓC ; Γ `MQ Q Q

ΓC ; Γ `MC Q Q

ΓC ; Γ `Mty σ σ (λ⇒TC Type Well-Formedness)

sTy-bool

ΓC ; Γ `Mty Bool Bool

sTy-var
a ∈ Γ

ΓC ; Γ `Mty a a

sTy-arrow
ΓC ; Γ `Mty τ1 σ1
ΓC ; Γ `Mty τ2 σ2

ΓC ; Γ `Mty τ1 → τ2 σ1 → σ2

sTy-qual
ΓC ; Γ `MC C C

ΓC ; Γ `Mty ρ σ

ΓC ; Γ `Mty C ⇒ ρ C ⇒ σ

sTy-scheme
a /∈ Γ

ΓC ; Γ, a `Mty σ σ

ΓC ; Γ `Mty ∀a.σ ∀a.σ

198 ADDITIONAL RELATIONS

λ⇒TC Term Typing

P ; ΓC ; Γ `Mtm e⇒ τ e (λ⇒TC Term Inference)

sTm-inf-true
`Mctx P ; ΓC ; Γ Σ; ΓC ; Γ

P ; ΓC ; Γ `Mtm True ⇒ Bool True

sTm-inf-false
`Mctx P ; ΓC ; Γ Σ; ΓC ; Γ

P ; ΓC ; Γ `Mtm False ⇒ Bool False

sTm-inf-let
x /∈ dom(Γ)

unambig(∀aj .Ci ⇒ τ1)
closure(ΓC ;Ci) = Ck

ΓC ; Γ `Mty ∀aj .Ck ⇒ τ1 ∀aj .Ck ⇒ σ

δk fresh
P ; ΓC ; Γ, aj , δk : Ck `Mtm e1 ⇐ τ1 e1

P ; ΓC ; Γ, x : ∀aj .Ck ⇒ τ1 `Mtm e2 ⇒ τ2 e2
e = let x : ∀aj .Ck ⇒ σ = Λaj .λδk : Ck .e1 in e2

P ; ΓC ; Γ `Mtm let x : ∀aj .Ci ⇒ τ1 = e1 in e2 ⇒ τ2 e

sTm-inf-ArrE
P ; ΓC ; Γ `Mtm e1 ⇒ τ1 → τ2 e1
P ; ΓC ; Γ `Mtm e2 ⇐ τ1 e2

P ; ΓC ; Γ `Mtm e1 e2 ⇒ τ2 e1 e2

sTm-inf-Ann
P ; ΓC ; Γ `Mtm e⇐ τ e

P ; ΓC ; Γ `Mtm e :: τ ⇒ τ e

P ; ΓC ; Γ `Mtm e⇐ τ e (λ⇒TC Term Checking)

sTm-check-var
(x : ∀aj .Ci ⇒ τ) ∈ Γ
unambig(∀aj .Ci ⇒ τ)

P ; ΓC ; Γ �M [[τ j/aj]Ci] di
i

ΓC ; Γ `Mty τ j σj
j

`Mctx P ; ΓC ; Γ Σ; ΓC ; Γ
P ; ΓC ; Γ `Mtm x⇐ [τ j/aj]τ xσj di

λ⇒
TC ADDITIONAL DEFINITIONS 199

sTm-check-meth
(m : C ′k ⇒ TC a : ∀aj .Ci ⇒ τ ′) ∈ ΓC

unambig(∀aj , a.Ci ⇒ τ ′)
P ; ΓC ; Γ �M [TC τ] d

ΓC ; Γ `Mty τ σ

P ; ΓC ; Γ �M [[τ j/aj][τ/a]Ci] di
i

ΓC ; Γ `Mty τ j σj
j

`Mctx P ; ΓC ; Γ Σ; ΓC ; Γ
P ; ΓC ; Γ `Mtm m⇐ [τ j/aj][τ/a]τ ′ d.mσj di

sTm-check-ArrI
x /∈ dom(Γ)

P ; ΓC ; Γ, x : τ1 `Mtm e⇐ τ2 e

ΓC ; Γ `Mty τ1 σ

P ; ΓC ; Γ `Mtm λx.e⇐ τ1 → τ2 λx : σ.e

sTm-check-Inf
P ; ΓC ; Γ `Mtm e⇒ τ e

P ; ΓC ; Γ `Mtm e⇐ τ e

ΓC `Mcls cls : ΓC ′ (Class Decl Typing)

sCls-cls
m /∈ dom(ΓC)

closure(ΓC ;Cm) = Cn
ΓC ; •, a `Mty ∀aj .Cn ⇒ τ σ

unambig(∀aj , a.Cn ⇒ τ)
ΓC ; •, a `MC Ci Ci

i<q

@TC ′ : (m : C ′w ⇒ TC ′ b : σ′) ∈ ΓC
@m′ : (m′ : C ′w ⇒ TC a : σ′) ∈ ΓC

ΓC ′ = m : Cq ⇒ TC a : ∀aj .Cn ⇒ τ

ΓC `Mcls class Cq ⇒ TC awhere {m : ∀aj .Cm ⇒ τ} : ΓC ′

200 ADDITIONAL RELATIONS

P ; ΓC `Minst inst : P ′ (Instance Decl Typing)

sInst-inst
(m : C ′i ⇒ TC a : ∀aj .Cy ⇒ τ1) ∈ ΓC

bk = fv(τ)
ΓC ; •, bk `Mty τ σ

closure(ΓC ;Cp) = Cq
unambig(∀bk .Cq ⇒ TC τ)

ΓC ; •, bk `MC Cq Cq
q

P ; ΓC ; •, bk , δq : Cq �M [[τ/a]C ′i] di
i

P ; ΓC ; •, bk , δq : Cq, aj , δy : [τ/a]Cy `Mtm e⇐ [τ/a]τ1 e
D fresh

δy fresh δq fresh
(D′ : ∀b′m.C

′
n ⇒ TC τ2).m′ 7→ Γ′ : e′ /∈ P where [τ ′m/b

′
m]τ2 = [τ ′k/bk]τ

P ′ = (D : ∀bk .Cq ⇒ TC τ).m 7→ •, bk , δq : Cq, aj , δy : [τ/a]Cy : e
P ; ΓC `Minst instance Cp ⇒ TC τ where {m = e} : P ′

P ; ΓC `Mpgm pgm : τ ;P ′; ΓC ′ e (λ⇒TC Program Typing)

sPgm-cls
ΓC `Mcls cls : ΓC ′

P ; ΓC ,ΓC ′ `Mpgm pgm : τ ;P ′; ΓC ′′ e

P ; ΓC `Mpgm cls; pgm : τ ;P ′; ΓC ′,ΓC ′′ e

sPgm-inst
P ; ΓC `Minst inst : P ′

P , P ′; ΓC `Mpgm pgm : τ ;P ′′; ΓC ′ e

P ; ΓC `Mpgm inst; pgm : τ ;P ′, P ′′; ΓC ′ e

sPgm-expr
P ; ΓC ; • `Mtm e⇒ τ e

P ; ΓC `Mpgm e : τ ; •; • e

Constraint Proving

P ; ΓC ; Γ �M [C] d (Constraint Entailment)

sEntail-arrow
P ; ΓC ; Γ, δ1 : C1 �

M [C2] d

ΓC ; Γ `MC C1 C1

P ; ΓC ; Γ �M [C1 ⇒ C2] λδ1 : C1.d

sEntail-forall
P ; ΓC ; Γ, a �M [C] d

P ; ΓC ; Γ �M [∀a.C] Λa.d

λ⇒
TC ADDITIONAL DEFINITIONS 201

sEntail-inst
P = P 1, (D : C).m 7→ Γ′ : e, P 2
`Mctx P ; ΓC ; Γ Σ; ΓC ; Γ

P ; ΓC ; Γ; [•; • ` D : C] �M Q • ` d
P ; ΓC ; Γ �M [Q] d

sEntail-local
(δ : C) ∈ Γ

`Mctx P ; ΓC ; Γ Σ; ΓC ; Γ
P ; ΓC ; Γ; [•; • ` δ : C] �M Q • ` d

P ; ΓC ; Γ �M [Q] d

P ; ΓC ; Γ; [a; • ` d0 : C] �M Q τ ` d1 (Constraint Matching)

sMatch-arrow
P ; ΓC ; Γ; [a; δ : C, δ1 : C1 ` d0 δ1 : C2] �M Q τ ` d2

P ; ΓC ; Γ �M [[τ/a]C1] d1

P ; ΓC ; Γ; [a; δ : C ` d0 : C1 ⇒ C2] �M Q τ ` [d1/δ1]d2

sMatch-forall
P ; ΓC ; Γ; [a, a; δ : C ` d0 a : C] �M Q τ , τ ` d1

P ; ΓC ; Γ; [a; δ : C ` d0 : ∀a.C] �M Q τ ` d1

sMatch-classconstr
τ1 = [τ/a]τ0

ΓC ; Γ `Mty τ i σi
i

P ; ΓC ; Γ; [a; δ : C ` d0 : TC τ0] �M TC τ1 τ ` [σ/a]d0

λ⇒TC Environment Well-Formedness

`Mctx P ; ΓC ; Γ Σ; ΓC ; Γ (λ⇒TC Environment Well-Formedness)

sCtx-empty

`Mctx •; •; • •; •; •

202 ADDITIONAL RELATIONS

sCtx-clsEnv
ΓC ; •, a `Mty ∀aj .Ci ⇒ τ σ

aj , a = fv(τ)
ΓC ; •, a `MC Ci Qi

i

m /∈ dom(ΓC)
TC b /∈ dom(ΓC)

`Mctx •; ΓC ; • •; ΓC ; •
`Mctx •; ΓC ,m : Ci ⇒ TC a : ∀aj .Ci ⇒ τ ; • •; ΓC ,m : TC a : σ; •

sCtx-tyEnvTm
ΓC ; Γ `Mty σ σ
x /∈ dom(Γ)

`Mctx •; ΓC ; Γ •; ΓC ; Γ
`Mctx •; ΓC ; Γ, x : σ •; ΓC ; Γ, x : σ

sCtx-tyEnvTy
a /∈ Γ

`Mctx •; ΓC ; Γ •; ΓC ; Γ
`Mctx •; ΓC ; Γ, a •; ΓC ; Γ, a

sCtx-tyEnvD
ΓC ; Γ `MC C C
δ /∈ dom(Γ)

`Mctx •; ΓC ; Γ •; ΓC ; Γ
`Mctx •; ΓC ; Γ, δ : C •; ΓC ; Γ, δ : C

sCtx-pgmInst
unambig(∀bj .Ci ⇒ TC τ)

ΓC ; • `MC ∀bj .Ci ⇒ TC τ ∀bj .Ci ⇒ TC σ

(m : C ′m ⇒ TC a : ∀ak .Cy ⇒ τ ′) ∈ ΓC
P ; ΓC ; •, bj , δi : Ci , ak , δy : [τ/a]Cy `Mtm e⇐ [τ/a]τ ′ e

ΓC ; •, a `Mty ∀ak .Cy ⇒ τ ′ ∀ak .Cy ⇒ σ′

D /∈ dom(P)
(D′ : ∀b′k .C

′′
y ⇒ TC τ ′′).m′ 7→ Γ′ : e′ /∈ P

where[τ j/bj]τ = [τ ′k/b
′
k]τ ′′

`Mctx P ; ΓC ; Γ Σ; ΓC ; Γ
Σ′ = Σ, (D : ∀bj .Ci ⇒ TC σ).m 7→ Λbj .λδi : Ci .Λak .λδy : [σ/a]Cy.e

`Mctx P , (D : ∀bj .Ci ⇒ TC τ).m 7→ •, bj , δi : Ci , ak , δy : [τ/a]Cy : e; ΓC ; Γ Σ′; ΓC ; Γ

λ⇒
TC ADDITIONAL DEFINITIONS 203

λ⇒TC Context Typing and Elaboration

M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M (λ⇒TC Context Inference -
Inference)

sM-inf-infT-empty

[•] : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ⇒ τ) [•]

sM-inf-infT-appL
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ1 → τ2) M

P ; ΓC ; Γ′ `tm e2 ⇐ τ1 e2

M e2 : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M e2

sM-inf-infT-appR
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ1) M

P ; ΓC ; Γ′ `tm e1 ⇒ τ1 → τ2 e1

e1M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) e1M

sM-inf-infT-letL
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′, aj , δi : Ci ⇐ τ1) M

δi fresh
x /∈ dom(Γ′)

P ; ΓC ; Γ′, x : ∀aj .Ci ⇒ τ1 `tm e2 ⇒ τ2 e2
ΓC ; Γ′ `ty ∀aj .Ci ⇒ τ1 ∀aj .σi → σ1

M ′ = let x : ∀aj .σi → σ1 = Λaj .λ δi : σi
i
.M in e2

let x : ∀aj .Ci ⇒ τ1 = M in e2 : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M ′

sM-inf-infT-letR
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′, x : ∀aj .Ci ⇒ τ1 ⇒ τ2) M

δi fresh
x /∈ dom(Γ′)

P ; ΓC ; Γ′, aj , δi : Ci `tm e1 ⇐ τ1 e1
ΓC ; Γ′ `ty ∀aj .Ci ⇒ τ1 ∀aj .σi → σ1

M ′ = let x : ∀aj .σi → σ1 = Λaj .λ δi : σi
i
.e1 in M

let x : ∀aj .Ci ⇒ τ1 = e1 in M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M ′

sM-inf-infT-ann
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M

M :: τ ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M

204 ADDITIONAL RELATIONS

M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M (λ⇒TC Context Inference -
Checking)

sM-inf-checkT-abs
M : (P ; ΓC ; Γ⇒ τ1) 7→ (P ; ΓC ; Γ′, x : τ ⇐ τ2) M

ΓC ; Γ′ `ty τ σ

λx.M : (P ; ΓC ; Γ⇒ τ1) 7→ (P ; ΓC ; Γ′ ⇐ τ → τ2) λx : σ.M

sM-inf-checkT-inf
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M

M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M

M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M (λ⇒TC Context Checking -
Inference)

sM-check-infT-appL
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ1 → τ2) M

P ; ΓC ; Γ′ `tm e2 ⇐ τ1 e2

M e2 : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M e2

sM-check-infT-appR
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ1) M

P ; ΓC ; Γ′ `tm e1 ⇒ τ1 → τ2 e1

e1M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) e1M

sM-check-infT-letL
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′, aj , δi : Ci ⇐ τ1) M

δi fresh
x /∈ dom(Γ′)

P ; ΓC ; Γ′, x : ∀aj .Ci ⇒ τ1 `tm e2 ⇒ τ2 e2
ΓC ; Γ′ `ty ∀aj .Ci ⇒ τ1 ∀aj .σi → σ1

M ′ = let x : ∀aj .σi → σ1 = Λaj .λ δi : σi
i
.M in e2

let x : ∀aj .Ci ⇒ τ1 = M in e2 : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M ′

λ⇒
TC ADDITIONAL DEFINITIONS 205

sM-check-infT-letR
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′, x : ∀aj .Ci ⇒ τ1 ⇒ τ2) M

δi fresh
x /∈ dom(Γ′)

P ; ΓC ; Γ′, aj , δi : Ci `tm e1 ⇐ τ1 e1
ΓC ; Γ′ `ty ∀aj .Ci ⇒ τ1 ∀aj .σi → σ1

M ′ = let x : ∀aj .σi → σ1 = Λaj .λ δi : σi
i
.e1 in M

let x : ∀aj .Ci ⇒ τ1 = e1 in M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M ′

sM-check-infT-ann
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M

M :: τ ′ : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M

M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M (λ⇒TC Context Checking -
Checking)

sM-check-checkT-empty

[•] : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ⇐ τ) [•]

sM-check-checkT-abs
M : (P ; ΓC ; Γ⇐ τ1) 7→ (P ; ΓC ; Γ′, x : τ ⇐ τ2) M

ΓC ; Γ′ `ty τ σ

λx.M : (P ; ΓC ; Γ⇐ τ1) 7→ (P ; ΓC ; Γ′ ⇐ τ → τ2) λx : σ.M

sM-check-checkT-inf
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M

M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M

λ⇒TC Context Typing and Elaboration through F⇒D

M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M (λ⇒TC Context Inference -
Inference)

sM-inf-inf-empty

[•] : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ⇒ τ) [•]

206 ADDITIONAL RELATIONS

sM-inf-inf-appL
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ1 → τ2) M

P ; ΓC ; Γ′ `Mtm e2 ⇐ τ1 e2

M e2 : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M e2

sM-inf-inf-appR
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ1) M

P ; ΓC ; Γ′ `Mtm e1 ⇒ τ1 → τ2 e1

e1M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) e1M

sM-inf-inf-letL
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′, aj , δi : Ci ⇐ τ1) M

δi fresh
x /∈ dom(Γ′)

P ; ΓC ; Γ′, x : ∀aj .Ci ⇒ τ1 `Mtm e2 ⇒ τ2 e2
ΓC ; Γ′ `Mty ∀aj .Ci ⇒ τ1 ∀aj .Ci ⇒ σ1

M ′ = let x : ∀aj .Ci ⇒ σ1 = Λaj .λδi : Ci .M in e2

let x : ∀aj .Ci ⇒ τ1 = M in e2 : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M ′

sM-inf-inf-letR
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′, x : ∀aj .Ci ⇒ τ1 ⇒ τ2) M

δi fresh
x /∈ dom(Γ′)

P ; ΓC ; Γ′, aj , δi : Ci `Mtm e1 ⇐ τ1 e1
ΓC ; Γ′ `Mty ∀aj .Ci ⇒ τ1 ∀aj .Ci ⇒ σ1

M ′ = let x : ∀aj .Ci ⇒ σ1 = Λaj .λδi : Ci .e1 in M

let x : ∀aj .Ci ⇒ τ1 = e1 in M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M ′

sM-inf-inf-ann
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M

M :: τ ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M

λ⇒
TC ADDITIONAL DEFINITIONS 207

M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M (λ⇒TC Context Inference -
Checking)

sM-inf-check-abs
M : (P ; ΓC ; Γ⇒ τ1) 7→ (P ; ΓC ; Γ′, x : τ ⇐ τ2) M

ΓC ; Γ′ `Mty τ σ

λx.M : (P ; ΓC ; Γ⇒ τ1) 7→ (P ; ΓC ; Γ′ ⇐ τ → τ2) λx : σ.M

sM-inf-check-inf
M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M

M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M

M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M (λ⇒TC Context Checking -
Inference)

sM-check-inf-appL
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ1 → τ2) M

P ; ΓC ; Γ′ `Mtm e2 ⇐ τ1 e2

M e2 : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M e2

sM-check-inf-appR
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ1) M

P ; ΓC ; Γ′ `Mtm e1 ⇒ τ1 → τ2 e1

e1M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) e1M

sM-check-inf-letL
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′, aj , δi : Ci ⇐ τ1) M

δi fresh
x /∈ dom(Γ′)

P ; ΓC ; Γ′, x : ∀aj .Ci ⇒ τ1 `Mtm e2 ⇒ τ2 e2
ΓC ; Γ′ `Mty ∀aj .Ci ⇒ τ1 ∀aj .Ci ⇒ σ1

M ′ = let x : ∀aj .Ci ⇒ σ1 = Λaj .λδi : Ci .M in e2

let x : ∀aj .Ci ⇒ τ1 = M in e2 : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M ′

208 ADDITIONAL RELATIONS

sM-check-inf-letR
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′, x : ∀aj .Ci ⇒ τ1 ⇒ τ2) M

δi fresh
x /∈ dom(Γ′)

P ; ΓC ; Γ′, aj , δi : Ci `Mtm e1 ⇐ τ1 e1
ΓC ; Γ′ `Mty ∀aj .Ci ⇒ τ1 ∀aj .Ci ⇒ σ1

M ′ = let x : ∀aj .Ci ⇒ σ1 = Λaj .λδi : Ci .e1 in M

let x : σ1 = e1 in M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M ′

sM-check-inf-ann
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M

M :: τ ′ : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M

M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M (λ⇒TC Context Checking -
Checking)

sM-check-check-empty

[•] : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ⇐ τ) [•]

sM-check-check-abs
M : (P ; ΓC ; Γ⇐ τ1) 7→ (P ; ΓC ; Γ′, x : τ ⇐ τ2) M

ΓC ; Γ′ `Mty τ σ

λx.M : (P ; ΓC ; Γ⇐ τ1) 7→ (P ; ΓC ; Γ′ ⇐ τ → τ2) λx : σ.M

sM-check-check-inf
M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M

M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M

A.5.4 Unification Algorithm

The unification algorithm takes the form unify(a; E) = θ⊥ and is given by the
following equations:

unify(a; •) = •
unify(a; E , b ∼ b) = unify(a; E)
unify(a; E , b ∼ τ) = unify(a; θ(E)) · θ

where b /∈ a ∧ b /∈ fv(τ) ∧ θ = [τ/b]
unify(a; E , τ ∼ b) = unify(a; θ(E)) · θ

where b /∈ a ∧ b /∈ fv(τ) ∧ θ = [τ/b]
unify(a; E , (τ1 → τ2) ∼ (τ3 → τ4)) = unify(a; E , τ1 ∼ τ3, τ2 ∼ τ4)

FD ADDITIONAL DEFINITIONS 209

Function unify is a straightforward extension of the standard first-order
unification algorithm [17]. The only difference between the two lies in the
additional argument: the untouchable variables a. These variables are treated
by the algorithm as skolem constants and therefore can not be substituted (they
can be unified with themselves though).

A.6 FD Additional Definitions

A.6.1 Syntax

e ::= True | False | x | λx : σ.e | e1 e2 | λδ : Q.e | e d expression
Λa.e | e σ | d.m | let x : σ = e1 in e2

v ::= True | False | λx : σ.e | λδ : Q.e | Λa.e value

σ ::= Bool | a | σ1 → σ2 | Q⇒ σ | ∀a.σ type
Q ::= TC σ class constraint
C ::= ∀a.Q⇒ Q constraint

Γ ::= • | Γ, x : σ | Γ, a | Γ, δ : Q typing environment
ΓC ::= • | ΓC ,m : TC a : σ class environment
Σ ::= • | Σ, (D : C).m 7→ e method environment
M ::= [•] | λx : σ.M | λδ : Q.M | eM |M e |M d evaluation context

| Λa.M |M σ | let x : σ = M in e
| let x : σ = e in M

Dictionaries

d ::= δ | Dσ d dictionary
dv ::= Dσ dv dictionary value

210 ADDITIONAL RELATIONS

A.6.2 FD Judgments and Elaboration

FD Type & Constraint Well-Formedness

ΓC ; Γ `Q Q σ (FD Dictionary Type Well-Formedness)

oiQ-TC
ΓC ; Γ `ty σ σ

ΓC = ΓC1,m : TC a : σ′,ΓC2
ΓC1; •, a `ty σ′ σ′

ΓC ; Γ `Q TC σ [σ/a]{m : σ′}

ΓC ; Γ `C C (FD Constraint Well-Formedness)

oiC-abs
ΓC ; Γ, aj `Q Qi σi

i∈1..n

ΓC ; Γ, aj `Q Q σ
aj /∈ Γ

ΓC ; Γ `C ∀aj .Qi ⇒ Q

ΓC ; Γ `ty σ σ (FD Type Well-Formedness)

oiTy-bool

ΓC ; Γ `ty Bool Bool

oiTy-var
a ∈ Γ

ΓC ; Γ `ty a a

oiTy-arrow
ΓC ; Γ `ty σ1 σ1
ΓC ; Γ `ty σ2 σ2

ΓC ; Γ `ty σ1 → σ2 σ1 → σ2

oiTy-qual
ΓC ; Γ `Q Q σ′

ΓC ; Γ `ty σ σ

ΓC ; Γ `ty Q⇒ σ σ′ → σ

oiTy-scheme
ΓC ; Γ, a `ty σ σ

ΓC ; Γ `ty ∀a.σ ∀a.σ

FD ADDITIONAL DEFINITIONS 211

Dictionary Typing

Σ; ΓC ; Γ `d d : Q e (Dictionary Typing)

oD-var
(δ : Q) ∈ Γ
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `d δ : Q δ

oD-con
Σ = Σ1, (D : ∀aj .Qi ⇒ TC σq).m 7→ Λaj .λδi : Qi .e,Σ2

`ctx Σ; ΓC ; Γ
ΓC ; •, aj `Q Qi σ′i

i

ΓC ; Γ `ty σj σj
j

Σ1; ΓC ; •, aj , δi : Qi `tm e : [σq/a]σm e

Σ; ΓC ; Γ `d di : [σj/aj]Qi ei
i

Σ; ΓC ; Γ `d Dσj di : TC [σj/aj]σq (Λaj .λ δi : σ′i
i
.{m = e})σj ei

FD Term Typing

Σ; ΓC ; Γ `tm e : σ e (FD Term Typing)

oiTm-true
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `tm True : Bool True

oiTm-false
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `tm False : Bool False

oiTm-var
(x : σ) ∈ Γ
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `tm x : σ x

oiTm-let
Σ; ΓC ; Γ `tm e1 : σ1 e1

Σ; ΓC ; Γ, x : σ1 `tm e2 : σ2 e2
ΓC ; Γ `ty σ1 σ1

Σ; ΓC ; Γ `tm let x : σ1 = e1 in e2 : σ2 let x : σ1 = e1 in e2

212 ADDITIONAL RELATIONS

oiTm-method
Σ; ΓC ; Γ `d d : TC σ e

(m : TC a : σ′) ∈ ΓC
Σ; ΓC ; Γ `tm d.m : [σ/a]σ′ e.m

oiTm-arrI
Σ; ΓC ; Γ, x : σ1 `tm e : σ2 e

ΓC ; Γ `ty σ1 σ1

Σ; ΓC ; Γ `tm λx : σ1.e : σ1 → σ2 λx : σ1.e

oiTm-arrE
Σ; ΓC ; Γ `tm e1 : σ1 → σ2 e1

Σ; ΓC ; Γ `tm e2 : σ1 e2

Σ; ΓC ; Γ `tm e1 e2 : σ2 e1 e2

oiTm-constrI
Σ; ΓC ; Γ, δ : Q `tm e : σ e

ΓC ; Γ `Q Q σ

Σ; ΓC ; Γ `tm λδ : Q.e : Q⇒ σ λδ : σ.e

oiTm-constrE
Σ; ΓC ; Γ `tm e : Q⇒ σ e1

Σ; ΓC ; Γ `d d : Q e2

Σ; ΓC ; Γ `tm e d : σ e1 e2

oiTm-forallI
Σ; ΓC ; Γ, a `tm e : σ e

Σ; ΓC ; Γ `tm Λa.e : ∀a.σ Λa.e

oiTm-forallE
Σ; ΓC ; Γ `tm e : ∀a.σ′ e

ΓC ; Γ `ty σ σ

Σ; ΓC ; Γ `tm e σ : [σ/a]σ′ e σ

FD Environment Well-Formedness

`ctx Σ; ΓC ; Γ (FD Environment Well-Formedness)

oiCtx-empty

`ctx •; •; •

oiCtx-clsEnv
ΓC ; •, a `ty σ σ
m /∈ dom(ΓC)

TC b /∈ dom(ΓC)
`ctx •; ΓC ; •

`ctx •; ΓC ,m : TC a : σ; •

oiCtx-tyEnvTm
ΓC ; Γ `ty σ σ
x /∈ dom(Γ)
`ctx •; ΓC ; Γ

`ctx •; ΓC ; Γ, x : σ

oiCtx-tyEnvTy
a /∈ Γ `ctx •; ΓC ; Γ
`ctx •; ΓC ; Γ, a

oiCtx-tyEnvD
ΓC ; Γ `Q TC σ σ

δ /∈ dom(Γ)
`ctx •; ΓC ; Γ

`ctx •; ΓC ; Γ, δ : TC σ

FD ADDITIONAL DEFINITIONS 213

oiCtx-MEnv
unambig(∀aj .Qi ⇒ TC σ)
ΓC ; • `C ∀aj .Qi ⇒ TC σ

(m : TC a : σ′) ∈ ΓC
Σ; ΓC ; • `tm e : ∀aj .Qi ⇒ [σ/a]σ′ e

D /∈ dom(Σ)
(D′ : ∀a′m.Q

′′
n ⇒ TC σ′′).m′ 7→ e′ /∈ Σ

where[σj/aj]σ = [σ′m/a′m]σ′′
`ctx Σ; ΓC ; Γ

`ctx Σ, (D : ∀aj .Qi ⇒ TC σ).m 7→ e; ΓC ; Γ

unambig(C) (Unambiguity for Constraints)

oiUnambig-constraint
aj ∈ fv(σ)

unambig(∀aj .Qi ⇒ TC σ)

FD Environment Elaboration

ΓC ; Γ Γ (FD-to-F{} environment translation)

Ctx-Empty

ΓC ; • •

Ctx-Var
ΓC ; Γ Γ

ΓC ; Γ `ty σ σ

ΓC ; Γ, x : σ Γ, x : σ

Ctx-DVar
ΓC ; Γ Γ

ΓC ; Γ `C C σ

ΓC ; Γ, δ : C Γ, δ : σ

Ctx-TVar
ΓC ; Γ Γ

ΓC ; Γ, a Γ, a

In the translation mechanism, we have assumed namespace translation functions
which take a FD type, term or dictionary-variable name and return the same
identifier representing a F{} type or term variable. There are four such functions,
each with a different namespace as domain:

214 ADDITIONAL RELATIONS

Type variables: It translates a type variable of the FD language,
a, to the F{} type variable with the same name, a.

Term variables: Similar to type variables, but for the term sort.

Dictionary variables: It translates a dictionary variable, δ, to
a F{} term variable with the same name.

Dictionary labels: It translates a dictionary method, m, to a
record-field label, m, with the same name.

This identifier translation is assumed in all judgments that involve elaboration,
such as the FD term typing. When we regard identifiers, the font-color change
implies such a translation. However, this convention is not used in other
language sorts (types, non-variable terms, etc.). For example, two types with
the same identifier but of different color mean only two types, a FD and a
F{} type, that are not related to each other. Any specification of the relation
between the two types is given by the judgments they appear in.

FD Operational Semantics

Σ ` e −→ e′ (FD Evaluation)

oiEval-app
Σ ` e1 −→ e′1

Σ ` e1 e2 −→ e′1 e2

oiEval-appAbs

Σ ` (λx : σ.e1) e2 −→ [e2/x]e1

oiEval-tyApp
Σ ` e −→ e′

Σ ` e σ −→ e′ σ

oiEval-tyAppAbs

Σ ` (Λa.e)σ −→ [σ/a]e

oiEval-DApp
Σ ` e −→ e′

Σ ` e d −→ e′ d

oiEval-DAppAbs

Σ ` (λδ : Q.e) d −→ [d/δ]e

oiEval-method
(D : C).m 7→ e ∈ Σ

Σ ` (Dσ d).m −→ e σ d

oiEval-let

Σ ` let x : σ = e1 in e2 −→ [e1/x]e2

FD Context Typing and Elaboration

M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ′) M (FD Context Typing)

oiM-empty

[•] : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ⇒ σ) [•]

FD ADDITIONAL DEFINITIONS 215

oiM-abs
M : (Σ; ΓC ; Γ⇒ σ1) 7→ (Σ; ΓC ; Γ′, x : σ ⇒ σ2) M

ΓC ; Γ′ `ty σ σ

λx : σ.M : (Σ; ΓC ; Γ⇒ σ1) 7→ (Σ; ΓC ; Γ′ ⇒ σ → σ2) λx : σ.M

oiM-appL
M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ1 → σ2) M

Σ; ΓC ; Γ′ `tm e2 : σ1 e2

M e2 : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ2) M e2

oiM-appR
M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ1) M

Σ; ΓC ; Γ′ `tm e1 : σ1 → σ2 e1

e1M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ2) e1M

oiM-dictAbs
M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′, δ : Q⇒ σ1) M

ΓC ; Γ′ `Q Q σ

λδ : Q.M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ Q⇒ σ1) λδ : σ.M

oiM-dictApp
M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ Q⇒ σ1) M

Σ; ΓC ; Γ′ `d d : Q e

M d : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ1) M e

oiM-tyAbs
M : (Σ; ΓC ; Γ⇒ σ1) 7→ (Σ; ΓC ; Γ′, a⇒ σ2) M

Λa.M : (Σ; ΓC ; Γ⇒ σ1) 7→ (Σ; ΓC ; Γ′ ⇒ ∀a.σ2) Λa.M

oiM-tyApp
M : (Σ; ΓC ; Γ⇒ σ1) 7→ (Σ; ΓC ; Γ′ ⇒ ∀a.σ2) M

ΓC ; Γ′ `ty σ σ

M σ : (Σ; ΓC ; Γ⇒ σ1) 7→ (Σ; ΓC ; Γ′ ⇒ [σ/a]σ2) M σ

oiM-letL
M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ1) M

Σ; ΓC ; Γ′, x : σ1 `tm e2 : σ2 e2
ΓC ; Γ′ `ty σ1 σ1

let x : σ1 = M in e2 : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ2) let x : σ1 = M in e2

216 ADDITIONAL RELATIONS

oiM-letR
M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′, x : σ1 ⇒ σ2) M

Σ; ΓC ; Γ′ `tm e1 : σ1 e1
ΓC ; Γ′ `ty σ1 σ1

let x : σ1 = e1 in M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ2) let x : σ1 = e1 in M

A.7 F⇒D Additional Definitions

A.7.1 Syntax

e ::= True | False | x | λx : σ.e | e1 e2 | λδ : C.e | e d expression
Λa.e | e σ | d.m | let x : σ = e1 in e2

v ::= True | False | λx : σ.e | λδ : C.e | Λa.e value

σ ::= Bool | a | σ1 → σ2 | C ⇒ σ | ∀a.σ type
Q ::= TC σ class constraint
C ::= Q | C1 ⇒ C2 | ∀a.C constraint

Γ ::= • | Γ, x : σ | Γ, a | Γ, δ : C typing environment
ΓC ::= • | ΓC ,m : TC a : σ class environment
Σ ::= • | Σ, (D : C).m 7→ e method environment
M ::= [•] | λx : σ.M | λδ : C.M | eM |M e |M d evaluation context

| Λa.M |M σ | let x : σ = M in e
| let x : σ = e in M

Dictionaries

d ::= δ | D | λδ : C.d | d1 d2 | Λa.d | d σ dictionary
dv ::= Dσ d | λδ : C.d | Λa.d dictionary value

F⇒
D ADDITIONAL DEFINITIONS 217

A.7.2 FD Judgments and Elaboration

FD Type & Constraint Well-Formedness

ΓC ; Γ `Q Q σ (FD Dictionary Type Well-Formedness)

iQ-TC
ΓC ; Γ `ty σ σ

ΓC = ΓC1,m : TC a : σ′,ΓC2
ΓC1; •, a `ty σ′ σ′

ΓC ; Γ `Q TC σ [σ/a]{m : σ′}

ΓC ; Γ `C C σ (FD Constraint Well-Formedness)

iC-forall
ΓC ; Γ, a `C C σ

a /∈ Γ
ΓC ; Γ `C ∀a.C ∀a.σ

iC-arrow
ΓC ; Γ `C C1 σ1
ΓC ; Γ `C C2 σ2

ΓC ; Γ `C C1 ⇒ C2 σ1 → σ2

iC-classconstr
ΓC ; Γ `Q Q σ

ΓC ; Γ `C Q σ

ΓC ; Γ `ty σ σ (FD Type Well-Formedness)

iTy-bool

ΓC ; Γ `ty Bool Bool

iTy-var
a ∈ Γ

ΓC ; Γ `ty a a

iTy-arrow
ΓC ; Γ `ty σ1 σ1
ΓC ; Γ `ty σ2 σ2

ΓC ; Γ `ty σ1 → σ2 σ1 → σ2

iTy-qual
ΓC ; Γ `C C σ′

ΓC ; Γ `ty σ σ

ΓC ; Γ `ty C ⇒ σ σ′ → σ

iTy-scheme
ΓC ; Γ, a `ty σ σ

ΓC ; Γ `ty ∀a.σ ∀a.σ

218 ADDITIONAL RELATIONS

Dictionary Typing

Σ; ΓC ; Γ `d d : C e (Dictionary Typing)

D-var
(δ : C) ∈ Γ
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `d δ : C δ

D-con
Σ = Σ1, (D : ∀aj .Ci ⇒ TC σq).m 7→ Λaj .λδi : Ci .e,Σ2

(m : TC a : σm) ∈ ΓC
`ctx Σ; ΓC ; Γ

ΓC ; •, aj `C Ci σ′i
i

Σ1; ΓC ; •, aj , δi : Ci `tm e : [σq/a]σm e

Σ; ΓC ; Γ `d D : ∀aj .Ci ⇒ TC σq Λaj .λ δi : σ′i
i
.{m = e}

D-dabs
Σ; ΓC ; Γ, δ : C1 `d d : C2 e

ΓC ; Γ `C C1 σ1

Σ; ΓC ; Γ `d λδ : C1.d : C1 ⇒ C2 λδ : σ1.e

D-dapp
Σ; ΓC ; Γ `d d1 : C1 ⇒ C2 e1

Σ; ΓC ; Γ `d d2 : C1 e2

Σ; ΓC ; Γ `d d1 d2 : C2 e1 e2

D-tyabs
Σ; ΓC ; Γ, a `d d : C e

Σ; ΓC ; Γ `d Λa.d : ∀a.C Λa.e

D-tyapp
Σ; ΓC ; Γ `d d : ∀a.C e

ΓC ; Γ `ty σ σ

Σ; ΓC ; Γ `d d σ : [σ/a]C e σ

FD Term Typing

Σ; ΓC ; Γ `tm e : σ e (FD Term Typing)

iTm-true
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `tm True : Bool True

iTm-false
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `tm False : Bool False

F⇒
D ADDITIONAL DEFINITIONS 219

iTm-var
(x : σ) ∈ Γ
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `tm x : σ x

iTm-let
Σ; ΓC ; Γ `tm e1 : σ1 e1

Σ; ΓC ; Γ, x : σ1 `tm e2 : σ2 e2
ΓC ; Γ `ty σ1 σ1

Σ; ΓC ; Γ `tm let x : σ1 = e1 in e2 : σ2 let x : σ1 = e1 in e2

iTm-method
Σ; ΓC ; Γ `d d : TC σ e

(m : TC a : σ′) ∈ ΓC
Σ; ΓC ; Γ `tm d.m : [σ/a]σ′ e.m

iTm-arrI
Σ; ΓC ; Γ, x : σ1 `tm e : σ2 e

ΓC ; Γ `ty σ1 σ1

Σ; ΓC ; Γ `tm λx : σ1.e : σ1 → σ2 λx : σ1.e

iTm-arrE
Σ; ΓC ; Γ `tm e1 : σ1 → σ2 e1

Σ; ΓC ; Γ `tm e2 : σ1 e2

Σ; ΓC ; Γ `tm e1 e2 : σ2 e1 e2

iTm-constrI
Σ; ΓC ; Γ, δ : C `tm e : σ e

ΓC ; Γ `C C σ

Σ; ΓC ; Γ `tm λδ : C.e : C ⇒ σ λδ : σ.e

iTm-constrE
Σ; ΓC ; Γ `tm e : C ⇒ σ e1

Σ; ΓC ; Γ `d d : C e2

Σ; ΓC ; Γ `tm e d : σ e1 e2

iTm-forallI
Σ; ΓC ; Γ, a `tm e : σ e

Σ; ΓC ; Γ `tm Λa.e : ∀a.σ Λa.e

iTm-forallE
Σ; ΓC ; Γ `tm e : ∀a.σ′ e

ΓC ; Γ `ty σ σ

Σ; ΓC ; Γ `tm e σ : [σ/a]σ′ e σ

220 ADDITIONAL RELATIONS

FD Environment Well-Formedness

`ctx Σ; ΓC ; Γ (FD Environment Well-Formedness)

iCtx-empty

`ctx •; •; •

iCtx-clsEnv
ΓC ; •, a `ty σ σ
m /∈ dom(ΓC)

TC b /∈ dom(ΓC)
`ctx •; ΓC ; •

`ctx •; ΓC ,m : TC a : σ; •

iCtx-tyEnvTm
ΓC ; Γ `ty σ σ
x /∈ dom(Γ)
`ctx •; ΓC ; Γ

`ctx •; ΓC ; Γ, x : σ

iCtx-tyEnvTy
a /∈ Γ `ctx •; ΓC ; Γ
`ctx •; ΓC ; Γ, a

iCtx-tyEnvD
ΓC ; Γ `C C σ
δ /∈ dom(Γ)
`ctx •; ΓC ; Γ

`ctx •; ΓC ; Γ, δ : C

iCtx-MEnv
unambig(∀aj .Ci ⇒ TC σ)

ΓC ; • `C ∀aj .Ci ⇒ TC σ σ
(m : TC a : σ′) ∈ ΓC

Σ; ΓC ; • `tm e : ∀aj .Ci ⇒ [σ/a]σ′ e
D /∈ dom(Σ)

(D′ : ∀a′m.C
′′
n ⇒ TC σ′′).m′ 7→ e′ /∈ Σ

where[σj/aj]σ = [σ′m/a′m]σ′′
`ctx Σ; ΓC ; Γ

`ctx Σ, (D : ∀aj .Ci ⇒ TC σ).m 7→ e; ΓC ; Γ

unambig(C) (Unambiguity for Constraints)

iUnambig-constraint
aj ∈ fv(σ)

unambig(∀aj .Qi ⇒ TC σ)

F⇒
D ADDITIONAL DEFINITIONS 221

FD Environment Elaboration

ΓC ; Γ Γ (FD-to-F{} environment translation)

Ctx-Empty

ΓC ; • •

Ctx-Var
ΓC ; Γ Γ

ΓC ; Γ `ty σ σ

ΓC ; Γ, x : σ Γ, x : σ

Ctx-DVar
ΓC ; Γ Γ

ΓC ; Γ `C C σ

ΓC ; Γ, δ : C Γ, δ : σ

Ctx-TVar
ΓC ; Γ Γ

ΓC ; Γ, a Γ, a

In the translation mechanism, we have assumed namespace translation functions
which take a FD type, term or dictionary-variable name and return the same
identifier representing a F{} type or term variable. There are four such functions,
each with a different namespace as domain:

Type variables: It translates a type variable of the FD language,
a, to the F{} type variable with the same name, a.

Term variables: Similar to type variables, but for the term sort.

Dictionary variables: It translates a dictionary variable, δ, to
a F{} term variable with the same name.

Dictionary labels: It translates a dictionary method, m, to a
record-field label, m, with the same name.

This identifier translation is assumed in all judgments that involve elaboration,
such as the FD term typing. When we regard identifiers, the font-color change
implies such a translation. However, this convention is not used in other
language sorts (types, non-variable terms, etc.). For example, two types with
the same identifier but of different color mean only two types, a FD and a
F{} type, that are not related to each other. Any specification of the relation
between the two types is given by the judgments they appear in.

222 ADDITIONAL RELATIONS

FD Operational Semantics

Σ ` e −→ e′ (FD Evaluation)

iEval-app
Σ ` e1 −→ e′1

Σ ` e1 e2 −→ e′1 e2

iEval-appAbs

Σ ` (λx : σ.e1) e2 −→ [e2/x]e1

iEval-tyApp
Σ ` e −→ e′

Σ ` e σ −→ e′ σ

iEval-tyAppAbs

Σ ` (Λa.e)σ −→ [σ/a]e

iEval-DApp
Σ ` e −→ e′

Σ ` e d −→ e′ d

iEval-DAppAbs

Σ ` (λδ : C.e) d −→ [d/δ]e

iEval-method
d −→ d′

Σ ` d.m −→ d′.m

iEval-methodVal
(D : C).m 7→ e ∈ Σ

Σ ` (Dσm dn).m −→ e σm dn

iEval-let

Σ ` let x : σ = e1 in e2 −→ [e1/x]e2

Σ ` e −→∗ e′ (FD Reduction)

iReduce-step
Σ ` e1 −→ e2
Σ ` e2 −→∗ e3

Σ ` e1 −→∗ e3

iReduce-stop

Σ ` e1 −→∗ e1

d −→ d′ (FD Dictionary Evaluation)

iDictEval-app
d1 −→ d′1

d1 d2 −→ d′1 d2

iDictEval-appAbs

(λδ : C.d1) d2 −→ [d2/δ]d1

iDictEval-tyApp
d −→ d′

d σ −→ d′ σ

iDictEval-tyAppAbs

(Λa.d)σ −→ [σ/a]d

F⇒
D ADDITIONAL DEFINITIONS 223

d −→∗ d′ (FD Dictionary Reduction)

iDictReduce-step
d1 −→ d2
d2 −→∗ d3

d1 −→∗ d3

iDictReduce-stop

d1 −→∗ d1

FD Context Typing and Elaboration

M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ′) M (FD Context Typing)

iM-empty

[•] : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ⇒ σ) [•]

iM-abs
M : (Σ; ΓC ; Γ⇒ σ1) 7→ (Σ; ΓC ; Γ′, x : σ ⇒ σ2) M

ΓC ; Γ′ `ty σ σ

λx : σ.M : (Σ; ΓC ; Γ⇒ σ1) 7→ (Σ; ΓC ; Γ′ ⇒ σ → σ2) λx : σ.M

iM-appL
M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ1 → σ2) M

Σ; ΓC ; Γ′ `tm e2 : σ1 e2

M e2 : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ2) M e2

iM-appR
M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ1) M

Σ; ΓC ; Γ′ `tm e1 : σ1 → σ2 e1

e1M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ2) e1M

iM-dictAbs
M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′, δ : C ⇒ σ1) M

ΓC ; Γ′ `C C σ

λδ : C.M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ C ⇒ σ1) λδ : σ.M

iM-dictApp
M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ C ⇒ σ1) M

Σ; ΓC ; Γ′ `d d : C e

M d : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ1) M e

224 ADDITIONAL RELATIONS

iM-tyAbs
M : (Σ; ΓC ; Γ⇒ σ1) 7→ (Σ; ΓC ; Γ′, a⇒ σ2) M

Λa.M : (Σ; ΓC ; Γ⇒ σ1) 7→ (Σ; ΓC ; Γ′ ⇒ ∀a.σ2) Λa.M

iM-tyApp
M : (Σ; ΓC ; Γ⇒ σ1) 7→ (Σ; ΓC ; Γ′ ⇒ ∀a.σ2) M

ΓC ; Γ′ `ty σ σ

M σ : (Σ; ΓC ; Γ⇒ σ1) 7→ (Σ; ΓC ; Γ′ ⇒ [σ/a]σ2) M σ

iM-letL
M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ1) M

Σ; ΓC ; Γ′, x : σ1 `tm e2 : σ2 e2
ΓC ; Γ′ `ty σ1 σ1

let x : σ1 = M in e2 : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ2) let x : σ1 = M in e2

iM-letR
M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′, x : σ1 ⇒ σ2) M

Σ; ΓC ; Γ′ `tm e1 : σ1 e1
ΓC ; Γ′ `ty σ1 σ1

let x : σ1 = e1 in M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ2) let x : σ1 = e1 in M

A.8 F{} Additional Definitions

A.8.1 Syntax

e ::= True | False | x | λx : σ.e | e1 e2 | Λa.e | e σ target term
| {mi = ei

i<n } | e.m | let x : σ = e1 in e2
v ::= True | False | λx : σ.e | Λa.e | {mi = ei

i<n } target value
σ ::= Bool | a | ∀a.σ | σ1 → σ2 | {mi : σi

i<n } target type
Γ ::= • | Γ, a | Γ, x : σ target context
M ::= [•] | λx : σ.M | eM |M e | Λa.M |M σ target evaluation context

| {mi = M i
i∈1..n } |M.m

| let x : σ = M in e | let x : σ = e in M

F{} ADDITIONAL DEFINITIONS 225

A.8.2 F{} Judgments

F{} Type Well-Formedness

Γ `ty σ (Well-formed F{} types)

tTy-Bool

Γ `ty Bool

tTy-Var

Γ `ty a

tTy-Abs
Γ, a `ty σ
Γ `ty ∀a.σ

tTy-Arr
Γ `ty σ1 Γ `ty σ2

Γ `ty σ1 → σ2

tTy-Rec
Γ `ty σi

i<n

Γ `ty {mi : σi
i<n }

F{} Term Typing

Γ `tm e : σ (Well typed F{} terms)

tTm-True
`ctx Γ

Γ `tm True : Bool

tTm-False
`ctx Γ

Γ `tm False : Bool

tTm-Var
(x : σ) ∈ Γ `ctx Γ

Γ `tm x : σ

tTm-Abs
Γ, x : σ1 `tm e : σ2

Γ `tm λx : σ1.e : σ1 → σ2

tTm-App
Γ `tm e1 : σ → σ′

Γ `tm e2 : σ
Γ `tm e1 e2 : σ′

tTm-Tabs
Γ, a `tm e : σ

Γ `tm Λa.e : ∀a.σ

tTm-Tapp
Γ `tm e : ∀a.σ1

Γ `ty σ2

Γ `tm e σ : [σ2/a]σ1

tTm-Rec
Γ `tm ei : σi

i<n

Γ `tm {mi = ei
i<n } : {mi : σi

i<n }

tTm-Proj
Γ `tm e : {mi : σi

i<n }
Γ `tm e.mj : σj

tTm-Let
Γ, x : σ1 `tm e2 : σ2

Γ `tm e1 : σ1

Γ `tm let x : σ1 = e1 in e2 : σ2

226 ADDITIONAL RELATIONS

F{} Environment Well-Formedness

`ctx Γ (Well-formed F{} environment)

tCx-Empty

`ctx •

tCx-Tvar
`ctx Γ a /∈ Γ
`ctx Γ, a

tCx-Var
`ctx Γ

Γ `ty σ x /∈ Γ
`ctx Γ, x : σ

F{} Operational Semantics

e −→ e′ (F{} evaluation)

tEval-AppAbs

(λx : σ.e1) e2 −→ [e1/x]e2

tEval-TappTabs

(Λa.e)σ −→ [σ/a]e

tEval-Proj

{mi = ei
i∈1..n }.mj −→ ej

tEval-Let

let x : σ = e1 in e2 −→ [e1/x]e2

tEval-App
e1 −→ e′1

e1 e2 −→ e′1 e2

tEval-Tapp
e1 −→ e′1

e1 σ −→ e′1 σ

tEval-Rec
e −→ e′

e.mj −→ e′.mj

e −→∗ e′ (F{} Reduction)

tReduce-step
e1 −→ e2
e2 −→∗ e3

e1 −→∗ e3

tReduce-stop

e1 −→∗ e1

SYSTEM F WITH DATA TYPES DEFINITIONS 227

F{} Context Typing

M : (Γ⇒ σ) 7→ (Γ′ ⇒ σ′) (F{} Context Typing)

tM-empty

[•] : (Γ⇒ σ) 7→ (Γ⇒ σ)

tM-abs
M : (Γ⇒ σ1) 7→ (Γ′, x : σ ⇒ σ2)

Γ′ `ty σ
λx : σ.M : (Γ⇒ σ1) 7→ (Γ′ ⇒ σ → σ2)

tM-appL
M : (Γ⇒ σ) 7→ (Γ′ ⇒ σ1 → σ2)

Γ′ `tm e2 : σ1

M e2 : (Γ⇒ σ) 7→ (Γ′ ⇒ σ2)

tM-appR
M : (Γ⇒ σ) 7→ (Γ′ ⇒ σ1)

Γ′ `tm e1 : σ1 → σ2

e1M : (Γ⇒ σ) 7→ (Γ′ ⇒ σ2)

tM-tyAbs
M : (Γ⇒ σ1) 7→ (Γ′, a⇒ σ2)

Λa.M : (Γ⇒ σ1) 7→ (Γ′ ⇒ ∀a.σ2)

tM-tyApp
M : (Γ⇒ σ1) 7→ (Γ′ ⇒ ∀a.σ2)

Γ′ `ty σ
M σ : (Γ⇒ σ1) 7→ (Γ′ ⇒ [σ/a]σ2)

tM-letL
M : (Γ⇒ σ) 7→ (Γ′ ⇒ σ1)

Γ′, x : σ1 `tm e2 : σ2
Γ′ `ty σ1

let x : σ1 = M in e2 : (Γ⇒ σ) 7→ (Γ′ ⇒ σ2)

tM-letR
M : (Γ⇒ σ) 7→ (Γ′, x : σ1 ⇒ σ2)

Γ′ `tm e1 : σ1
Γ′ `ty σ1

let x : σ1 = e1 in M : (Γ⇒ σ) 7→ (Γ′ ⇒ σ2)

A.9 System F with Data Types Definitions

Both the typing rules and call-by-name operational semantics for System F are
entirely standard and can be found elsewhere, we include them here to keep
the presentation self-contained. In the following, we denote System F typing
environments by ∆:

∆ ::= • | ∆,T | ∆,K : υ | ∆, a | ∆, x : υ typing environment

228 ADDITIONAL RELATIONS

A.9.1 Term Typing

∆ `F
tm t : υ (Term Typing)

(x : υ) ∈ ∆
∆ `F

tm x : υ
TmVar

x /∈ dom(∆)
∆, x : υ1 `F

tm t : υ2 ∆ `F
ty υ1

∆ `F
tm λ(x : υ1).t : υ1 → υ2

(→I)

(K : υ) ∈ ∆
∆ `F

tm K : υ
TmCon

∆ `F
tm t1 : υ1 → υ2 ∆ `F

tm t2 : υ1

∆ `F
tm t1 t2 : υ2

(→E)

a /∈ ∆ ∆, a `F
tm t : υ

∆ `F
tm Λa.t : ∀a.υ

(∀I)
∆ `F

tm t : ∀a.υ ∆ `F
ty υ1

∆ `F
tm t υ1 : [υ1/a]υ

(∀E)

x /∈ dom(∆) ∆, x : υ1 `F
tm t1 : υ1

∆ `F
ty υ1 ∆, x : υ1 `F

tm t2 : υ2

∆ `F
tm (let x : υ1 = t1 in t2) : υ2

TmLet

∆ `F
tm t1 : T υ

x /∈ dom(∆) (K : ∀a.υ → T a) ∈ ∆ ∆, x : [υ/a]υ `F
tm t2 : υ2

∆ `F
tm (case t1 of K x→ t2) : υ2

TmCase

A.9.2 Well-formedness of Types

∆ `F
ty υ (Type Well-formedness)

a ∈ ∆
∆ `F

ty a
TyVar

T ∈ ∆
∆ `F

ty T
TyCon

∆ `F
ty υ1 ∆ `F

ty υ2

∆ `F
ty υ1 → υ2

TyArr

a /∈ ∆ ∆, a `F
ty υ

∆ `F
ty ∀a.υ

TyAll
∆ `F

ty υ1 ∆ `F
ty υ2

∆ `F
ty υ1 υ2

TyApp

A.9.3 Program Typing

∆ `F
pgm fpgm : υ (Program Typing)

SYSTEM F WITH DATA TYPES DEFINITIONS 229

∆ `F
tm t : υ

∆ `F
pgm t : υ

PgmExpr

∆ `F
val fval : ∆v ∆,∆v `F

pgm fpgm : υ
∆ `F

pgm (fval; fpgm) : υ
PgmVal

∆ `F
data fdata : ∆d ∆,∆d `F

pgm fpgm : υ
∆ `F

pgm (fdata; fpgm) : υ
PgmData

For brevity, if ∆ = • we denote System F program typing as `F
pgm fpgm : υ.

A.9.4 Value Binding Typing

∆ `F
val fval : ∆fval (Value Binding Typing)

x /∈ dom(∆) ∆, x : υ `F
tm t : υ ∆ `F

ty υ

∆ `F
val (let x : υ = t) : [x : υ]

Val

A.9.5 Datatype Declaration Typing

∆ `F
data fdata : ∆fdata (Datatype Declaration Typing)

∆, a F̀
ty υ

∆ `F
val (data T a = K υ) : [T ,K : ∀a.υ → T a]

Data

A.9.6 Call-by-name Operational Semantics

The small-step, call-by-name operational semantics of System F are presented
below:

t −→ t′ (Operational Semantics (Small-step))

230 ADDITIONAL RELATIONS

(Λa.t) υ −→ [υ/a]t
TyBeta

(λ(x : υ).t) t′ −→ [t′/x]t
TmBeta

t1 −→ t′1
(case t1 of K x→ t2) −→ (case t′1 of K x→ t2)

CaseStep

(case K t of K x→ t) −→ [t/x]t
CaseBeta

(let x : υ = t1 in t2) −→ [let x : υ = t1 in t1/x]t2
LetBeta

Appendix B

Stability Proofs

This chapter provides the proofs for the properties discussed in Section 5.3.

B.1 Let-Inlining and Extraction

Property 1 (Let Inlining is Type Preserving).

• If Γ ` let x = e1 in e2 ⇒ ηε then Γ ` [e1/x] e2 ⇒ ηε

• If Γ ` let x = e1 in e2 ⇐ σ then Γ ` [e1/x] e2 ⇐ σ

Before proving Property 1, we first introduce a number of helper lemmas:

Lemma 1 (Expression Inlining is Type Preserving (Synthesis)).
If Γ1 ` e1 ⇒ ηε1 and Γ1, x : ∀ {a}.ηε1,Γ2 ` e2 ⇒ ηε2 where a = fv (ηε1) \ dom (Γ1)
then Γ1,Γ2 ` [e1/x] e2 ⇒ ηε2

Lemma 2 (Expression Inlining is Type Preserving (Checking)).
If Γ1 ` e1 ⇒ ηε1 and Γ1, x : ∀ {a}.ηε1,Γ2 ` e2 ⇐ σ2 where a = fv (ηε1) \dom (Γ1)
then Γ1,Γ2 ` [e1/x] e2 ⇐ σ2

Lemma 3 (Head Inlining is Type Preserving).
If Γ1 ` e1 ⇒ ηε1 and Γ1, x : ∀ {a}.ηε1,Γ2 `H h ⇒ σ2 where a = fv (ηε1)\dom (Γ1)
then Γ1,Γ2 `H [e1/x] h ⇒ σ2

Lemma 4 (Argument Inlining is Type Preserving).
If Γ1 ` e1 ⇒ ηε1 and Γ1, x : ∀ {a}.ηε1,Γ2 `A arg ⇐ σ1 ⇒ σ2
where a = fv (ηε1) \ dom (Γ1) then Γ1,Γ2 `A [e1/x] arg ⇐ σ1 ⇒ σ2

231

232 STABILITY PROOFS

Γ ` e ⇒ ηε Γ ` e ⇐ σ

Γ `H h ⇒ σ

Γ `A arg ⇐ σ1 ⇒ σ2 Γ ` decl ⇒ Γ′

Figure B.1: Relation dependencies

Lemma 5 (Declaration Inlining is Type Preserving).
If Γ1 ` e1 ⇒ ηε1 and Γ1, x : ∀ {a}.ηε1,Γ2 ` decl ⇒ Γ3
where a = fv (ηε1) \ dom (Γ1) then Γ1,Γ2 ` [e1/x] decl ⇒ Γ3

Figure B.1 shows the dependencies between the different relations, and by
extension the different helper lemmas. An arrow from A to B denotes that B
depends on A. Note that these 5 lemmas need to be proven through mutual
induction. The proof proceeds by structural induction on the second typing
derivation. While the number of cases gets quite large, each case is entirely
trivial.

Using these additional lemmas, we then continue proving Property 1. By case
analysis on the premise (rule Tm-InfLet or rule Tm-CheckLet, followed
by rule Decl-NoAnnSingle), we learn that Γ ` x = e1 ⇒ Γ, x : ∀ {a}.ηε1,
Γ ` e1 ⇒ ηε1, and either Γ, x : ∀ {a}.ηε1 ` e2 ⇒ ηε or Γ, x : ∀ {a}.ηε1 ` e2 ⇐ σ.
Both parts of the goal now follow trivially from Lemma 1 and 2 respectively.

Property 2 (Let Extraction is Type Preserving).

• If Γ ` [e1/x] e2 ⇒ ηε2 and Γ ` e1 ⇒ ηε1 then Γ ` let x = e1 in e2 ⇒ ηε2

• If Γ ` [e1/x] e2 ⇐ σ2 and Γ ` e1 ⇒ ηε1 then Γ ` let x = e1 in e2 ⇐ σ2

Similarly to before, we start by introducing a number of helper lemmas:

Lemma 6 (Expression Extraction is Type Preserving (Synthesis)).
If Γ ` e1 ⇒ ηε1 and Γ ` [e1/x] e2 ⇒ ηε2
then Γ, x : ∀ {a}.ηε1 ` e2 ⇒ ηε2 where a = fv (ηε1) \ dom (Γ)

LET-INLINING AND EXTRACTION 233

Lemma 7 (Expression Extraction is Type Preserving (Checking)).
If Γ ` e1 ⇒ ηε1 and Γ ` [e1/x] e2 ⇐ σ2
then Γ, x : ∀ {a}.ηε1 ` e2 ⇐ σ2 where a = fv (ηε1) \ dom (Γ)

Lemma 8 (Head Extraction is Type Preserving).
If Γ ` e1 ⇒ ηε1 and Γ `H [e1/x] h ⇒ σ2
then Γ, x : ∀ {a}.ηε1 `H h ⇒ σ2 where a = fv (ηε1) \ dom (Γ)

Lemma 9 (Argument Extraction is Type Preserving).
If Γ ` e1 ⇒ ηε1 and Γ `A [e1/x] arg ⇐ σ1 ⇒ σ2
then Γ, x : ∀ {a}.ηε1 `A arg ⇐ σ1 ⇒ σ2 where a = fv (ηε1) \ dom (Γ)

Lemma 10 (Declaration Extraction is Type Preserving).
If Γ ` e1 ⇒ ηε1 and Γ ` [e1/x] decl ⇒ Γ,Γ′
then Γ, x : ∀ {a}.ηε1 ` decl ⇒ Γ, x : ∀ {a}.ηε1,Γ′ where a = fv (ηε1) \ dom (Γ)

In addition to these helper lemmas, we also introduce two typing context lemmas:

Lemma 11 (Environment Variable Shifting is Type Preserving).

• If Γ1, x1 : σ1, x2 : σ2,Γ2 ` e ⇒ ηε then Γ1, x2 : σ2, x1 : σ1,Γ2 ` e ⇒ ηε

• If Γ1, x1 : σ1, x2 : σ2,Γ2 ` e ⇐ σ then Γ1, x2 : σ2, x1 : σ1,Γ2 ` e ⇐ σ

Lemma 12 (Environment Type Variable Shifting is Type Preserving).

• If Γ1, a, x : σ,Γ2 ` e ⇒ ηε and • = fv (σ) \ dom (Γ1)
then Γ1, x : σ, a,Γ2 ` e ⇒ ηε

• If Γ1, a, x : σ,Γ2 ` e ⇐ σ and • = fv (σ) \ dom (Γ1)
then Γ1, x : σ, a,Γ2 ` e ⇐ σ

• If Γ1, x : σ, a,Γ2 ` e ⇒ ηε then Γ1, a, x : σ,Γ2 ` e ⇒ ηε

• If Γ1, x : σ, a,Γ2 ` e ⇐ σ then Γ1, a, x : σ,Γ2 ` e ⇐ σ

Lemmas 11 and 12 are folklore, and can be proven through straightforward
induction.

Now we can go about proving Lemmas 6 till 10. Similarly to the Property 1
helper lemmas, they have to be proven using mutual induction. Most cases
are quite straightforward, and we will focus only on Lemma 8. We start by
performing case analysis on h:

Case h = y where y = x

234 STABILITY PROOFS

By evaluating the substitution, we know from the premise that Γ ` e1 ⇒ ηε1
and Γ `H e1 ⇒ σ2, while the goal remains Γ, x : ∀ {a}.ηε1 `H x ⇒ σ2. It is clear
from rule H-Var that in order for the goal to hold, σ2 = ∀ {a}.ηε1. We proceed
by case analysis on the second derivation:

case rule H-Var e1 = x ′ : The rule premise tells us that x ′ : σ2 ∈ Γ. The
goal follows directly under lazy instantiation. However, under eager instantiation,
rule Tm-InfApp instantiates the type Γ ` σ2

inst δ−−−−→ ηε1 making the goal invalid.

case rule H-Con e1 = K , rule H-Ann e1 = e3 : σ3, rule H-Inf e1 = e1,
rule H-Undef e1 = undefined, or rule H-Seq e1 = eq :

Similarly to the previous case, the goal is only valid under eager instantiation.

Case h = y where y 6= x

This case is trivial, as the substitution [e1/x] does not alter h. The result thus
follows from weakening.

Case h = K , h = undefined, or h = eq

Similarly to the previous case, as the substitution does not alter h, the result
thus follows from weakening.

Case h = e : σ

The result follows by applying Lemma 7.

Case h = e

The result follows by applying Lemma 6.

Using these lemmas, both Property 2 goals follow straightforwardly using
rule Decl-NoAnnSingle, in combination with rule Tm-InfLet and Lemma 6
or rule Tm-CheckLet and Lemma 7, respectively.

B.2 Contextual Equivalence

As we’ve now arrived at properties involving the runtime semantics of the
language, we first need to formalise our definition of contextual equivalence,
and introduce a number of useful lemmas.

CONTEXTUAL EQUIVALENCE 235

Definition 13 (Contextual Equavalence).
e1 ' e2 ≡ Γ `tm e1 : σ1 ∧ Γ ` σ1

inst δ−−−−→ ρ3 ṫ1

∧ Γ `tm e2 : σ2 ∧ Γ ` σ2
inst δ−−−−→ ρ3 ṫ2

∧ ∀M : Γ;σ3 7→ •; Bool,

∃v : M [ṫ1[e1]] ↪→⇓ v ∧ M [ṫ2[e2]] ↪→⇓ v

This definition for contextual equivalence is modified from [33, Chapter 46].
Two core expressions are thus contextually equivalent, if a common type exists
to which both their types instantiate, and if no (closed) context can distinguish
between them. This can either mean that both applied expressions evaluate
to the same value v or both diverge. Note that while we require the context
to map to a closed, Boolean expression, other base types, like Int, would have
been valid alternatives as well.

We first introduce reflexivity, commutativity and transitivity lemmas:

Lemma 13 (Contextual Equivalence Reflexivity).
If Γ `tm e : σ then e ' e

The proof follows directly from the definition of contextual equivalence, along
with the determinism of System F evaluation.

Lemma 14 (Contextual Equivalence Commutativity).
If e1 ' e2 then e2 ' e1

Trivial proof by unfolding the definition of contextual equivalence.

Lemma 15 (Contextual Equivalence Transitivity).
If e1 ' e2 and e2 ' e3 then e1 ' e3

Trivial proof by unfolding the definition of contextual equivalence.

Furthermore, we also introduce a number of compatibility lemmas for the
contextual equivalence relation, along with two helper lemmas:

Lemma 16 (Compatibility Term Abstraction).
If e1 ' e2 then λx : σ.e1 ' λx : σ.e2

Lemma 17 (Compatibility Term Application).
If e1 ' e2 and e′1 ' e′2 then e1 e

′
1 ' e2 e

′
2

Lemma 18 (Compatibility Type Abstraction).
If e1 ' e2 then Λa.e1 ' Λa.e2

236 STABILITY PROOFS

Lemma 19 (Compatibility Type Application).
If e1 ' e2 then e1 σ ' e2 σ

Lemma 20 (Compatibility Case Abstraction).
If ∀ i : e1 i ' e2 i then caseπF i : ψF → e1 i

i
' caseπF i : ψF → e2 i

i

Lemma 21 (Compatibility Expression Wrapper).
If e1 ' e2 then ṫ[e1] ' ṫ[e2]

Lemma 22 (Compatibility Helper Forwards).
If M [e1] ↪→⇓ v and e1 ↪→ e2 then M [e2] ↪→⇓ v

Lemma 23 (Compatibility Helper Backwards).
If M [e2] ↪→⇓ v and e1 ↪→ e2 then M [e1] ↪→⇓ v

The helper lemmas are proven by straightforward induction on the evaluation
step derivation. We will prove Lemma 18 as an example, as it is non-trivial.
The other compatibility lemmas are proven similarly.

We start by unfolding the definition of contextual equivalence in both the premise:
Γ `tm e1 : σ1, Γ ` σ1

inst δ−−−−→ ρ3 ṫ1, Γ `tm e2 : σ2, Γ ` σ2
inst δ−−−−→ ρ3 ṫ2,

∀M : Γ;σ3 7→ •; Bool, ∃v : M [ṫ1[e1]] ↪→⇓ v and M [ṫ2[e2]] ↪→⇓ v. Unfolding
the definition reduces the goal to be proven to Γ′ `tm Λa.e1 : σ′1, Γ′ `
σ′1

inst δ−−−−→ ρ′3 ṫ′1, Γ′ `tm Λa.e2 : σ′2, Γ′ ` σ′2 inst δ−−−−→ ρ′3 ṫ′2, ∀M ′ : Γ′;σ′3 7→
•; Bool, ∃v′ : M ′[ṫ′1[Λa.e1]] ↪→⇓ v′ and M ′[ṫ′2[Λa.e2]] ↪→⇓ v′.

The typing judgement goals follow directly from rule FTm-TyAbs, where we
take σ′1 = ∀ a.σ1, σ′2 = ∀ a.σ2 and Γ′ = [τ/a] Γ for some τ .

As we know Γ ` σ1
inst δ−−−−→ ρ3 ṫ1, it is easy to see that [τ/a] Γ `

[τ/a]σ1
inst δ−−−−→[τ/a] ρ3 [τ/a] ṫ1, and similarly for [τ/a]σ2. Using this, the

instantiation goals follow from rule InstT-SForall and rule InstT-Forall
with ρ′3 = [τ/a] ρ3, ṫ′1 = λe.([σ/a]ṫ1[e σ]) and ṫ′2 = λe.([σ/a]ṫ2[e σ]).

Finally, by inlining the definitions, the first halve of the third goal becomes
M ′[(λe.([σ/a]ṫ1[e σ]))[Λa.e1]] ↪→⇓ v′. This reduces to M ′[[σ/a]ṫ1[(Λa.e1)σ]] ↪→⇓
v′. By lemma 22 (note that we can consider the combination of a context and
an expression wrapper as a new context): M ′[[σ/a]ṫ1[[σ/a]e1]] ↪→⇓ v′. We can
now bring the substitutions to the front, and reduce the goal (by Lemma 23)
M ′′[ṫ1[e1]] ↪→⇓ v′ where we define M ′′ = λe.M ′[(Λa.e)σ] (note that we use
λtt as meta-notation here, to simplify our definition of M ′′). We perform
the same derivation for the second halve of the goal: M ′′[ṫ2[e2]] ↪→⇓ v′. As
M ′′ : Γ;σ3 7→ •; Bool, the goal follows directly from the unfolded premise, where
v′ = v.

CONTEXTUAL EQUIVALENCE 237

We introduce an additional lemma stating that instantiating the type of
expressions does not alter their behaviour:

Lemma 24 (Type Instantiation is Runtime Semantics Preserving).
If Γ `tm e : σ and Γ ` σ inst δ−−−−→ ρ ṫ then e ' ṫ[e]

The proof proceeds by induction on the instantiation relation:

Case rule InstT-SInst ṫ = [] :

Trivial case, as ṫ[e] = e, the goal follows directly from Lemma 13.

Case rule InstT-SForall ṫ = λe1.(ṫ′[e1 σ]) :

We know from the first premise, along with rule FTm-TyApp that Γ `tm
e σ : [σ/a]σ′ where σ = ∀ a.σ′. By applying the induction hypothesis we get
e σ ' ṫ′[e σ]. The goal to be proven is e ' (λe1.(ṫ′[e1 σ]))[e], which reduces to
e ' ṫ′[e σ]. By unfolding the definition of contextual equivalence in both the
goal and the induction hypothesis result (using Lemma 15), the remaining goals
are:

• Γ `tm e : σ1 : follows directly from the first premise.
• Γ ` ∀ a.σ′ inst S

99999K ρ
′ ṫ1 and Γ ` ρ′ inst S

99999K ρ ṫ2 : follows directly from
the premise if we take ρ′ = ρ, ṫ1 = ṫ and ṫ2 = [].

• M [ṫ1[e]] ↪→⇓ v and M [ṫ[e]] ↪→⇓ v : trivial as both sides are identical and
evaluation is deterministic.

Case rule InstT-SInfForall ṫ = λe1.(ṫ′[e1 σ]) :

The proof follows analogously to the previous case. We have thus proven
Lemma 24 under shallow instantiation.

Case rule InstT-Mono ṫ = [] :

Trivial case, as ṫ[e] = e, the goal follows directly from Lemma 13.

Case rule InstT-Function ṫ = λe1.λx : σ1.(ṫ′[e1 x]) :

It is clear that the goal does not hold in this case. Under deep instantiation,
full eta expansion is performed, which alters the evaluation behaviour. Consider
for example undefined and its expansion λx : σ.undefined x.

Finally, we introduce a lemma stating that evaluation preserves contextual
equivalence. However, in order to prove it, we first need to introduce the
common preservation lemma:

238 STABILITY PROOFS

Lemma 25 (Preservation).
If Γ `tm e : σ and e ↪→ e′ then Γ `tm e′ : σ

The preservation proof for System F is folklore, and proceeds by straightforward
induction on the evaluation relation.

Lemma 26 (Evaluation is Contextual Equivalence Preserving).
If e1 ' e2 and e2 ↪→ e′2 then e1 ' e′2

The proof follows by Lemma 25 (to cover type preservation) and Lemma 22 (to
cover the evaluation aspect).

B.3 Let-Inlining and Extraction, Continued

Property 3 (Let Inlining is Runtime Semantics Preserving).

• If Γ ` let x = e1 in e2 ⇒ ηε e1 and Γ ` [e1/x] e2 ⇒ ηε e2 then e1 ' e2

• If Γ ` let x = e1 in e2 ⇐ σ e1 and Γ ` [e1/x] e2 ⇐ σ e2 then e1 ' e2

We first need typing preservation lemmas before we can prove Property 3.

Lemma 27 (Expression Typing Preservation (Synthesis)).
If Γ ` e ⇒ η e then Γ `tm e : σ

Lemma 28 (Expression Typing Preservation (Checking)).
If Γ ` e ⇐ σ e then Γ `tm e : σ

Lemma 29 (Head Typing Preservation).
If Γ `H h ⇒ σ e then Γ `tm e : σ

Lemma 30 (Argument Typing Preservation).
If Γ `A arg ⇐ σ ⇒ σ′ argF then ∀ei ∈ argF : Γ `tm ei : σi

Lemma 31 (Declaration Typing Preservation).
If Γ ` decl ⇒ Γ′ x : σ = e then Γ `tm e : σ

Similarly to the helper lemmas for Property 1, these lemmas need to be proven
using mutual induction. The proofs follow through straightforward induction
on the typing derivation.

We continue by introducing another set of helper lemmas:

LET-INLINING AND EXTRACTION, CONTINUED 239

Lemma 32 (Expression Inlining is Runtime Semantics Preserving (Synthesis)).

If Γ1, x : ∀ {a}.ηε1,Γ2 ` e2 ⇒ ηε2 e2, Γ1 ` e1 ⇒ ηε1 e1 and Γ1,Γ2 `
[e1/x] e2 ⇒ ηε2 e3 where a = fv (ηε1) \ dom (Γ1) then e3 ' (λx : ∀ a.σ1.e2) e1

Lemma 33 (Expression Inlining is Runtime Semantics Preserving (Checking)).

If Γ1, x : ∀ {a}.ηε1,Γ2 ` e2 ⇐ σ2 e2, Γ1 ` e1 ⇒ ηε1 e1 and Γ1,Γ2 `
[e1/x] e2 ⇐ σ2 e3 where a = fv (ηε1) \ dom (Γ1) then e3 ' (λx : ∀ a.σ1.e2) e1

Lemma 34 (Head Inlining is Runtime Semantics Preserving).
If Γ1, x : ∀ {a}.ηε1,Γ2 `H h ⇒ σ e2, Γ1 ` e1 ⇒ ηε1 e1 and Γ1,Γ2 `H
[e1/x] h ⇒ σ e3 where a = fv (ηε1) \ dom (Γ1) then e3 ' (λx : ∀ a.σ1.e2) e1

Lemma 35 (Argument Inlining is Runtime Semantics Preserving).
If Γ1, x : ∀ {a}.ηε1,Γ2 `A arg ⇐ σ1 ⇒ σ2 argF 1, Γ1 ` e1 ⇒ ηε1 e1
and Γ1,Γ2 `A [e1/x] arg ⇐ σ1 ⇒ σ2 argF 2 where a = fv (ηε1) \ dom (Γ1)
then ∀ei ∈ argF 1, e

′
i ∈ argF 2 : e′i ' (λx : ∀ a.σ1.ei) e1

Lemma 36 (Declaration Inlining is Runtime Semantics Preserving).
If Γ1, x : ∀ {a}.ηε1,Γ2 ` decl ⇒ Γ3 y : σ2 = e2, Γ1 ` e1 ⇒ ηε1
e1 and Γ1,Γ2 ` [e1/x] decl ⇒ Γ3 y : σ2 = e3 where a = fv (ηε1) \
dom (Γ1) then e3 ' (λx : ∀ a.σ1.e2) e1

As is probably clear by now, these lemmas are proven through mutual induction.
The proof proceeds by structural induction on the first typing derivation. We
will focus on the non-trivial cases:

Case rule H-Var h = y where y = x :

The goal reduces to e1 ' (λx : ∀ a.σ1.x) e1, which follows directly from
Lemmas 13 and 26.

Case rule H-Var h = y where y 6= x :

The goal reduces to y ' (λx : ∀ a.σ1.y) e1. Since (λx : ∀ a.σ1.y) e1 ↪→ y, the
goal follows directly from Lemmas 13 and 26.

Case rule Tm-InfAbs e2 = λy.e4 :

The premise tells us Γ1, x : ∀ {a}.ηε1,Γ2, y : τ1 ` e4 ⇒ ηε4 e4 and Γ1,Γ2, y :
τ1 ` [e1/x] e4 ⇒ ηε4 e5. Applying the induction hypothesis gives us e5 '
(λx : ∀ a.σ1.e4) e1. The goal reduces to λy : σ1.e5 ' (λx : ∀ a.σ1.λy : σ1.e4) e1.
In order not to clutter the proof too much, we introduce an additional helper
lemma 37. The goal then follows from Lemmas 16 and 37.

Case rule Tm-InfTyAbs e2 = Λa.e4 :

240 STABILITY PROOFS

The premise tells us Γ1, x : ∀ {a}.ηε1,Γ2, a ` e4 ⇒ ηε4 e4, Γ1,Γ2, a `
[e1/x] e4 ⇒ ηε4 e5 and Γ1,Γ2 ` ∀ a.ηε4 inst δ−−−−→ ηε5 ṫ. Applying the
induction hypothesis gives us e5 ' (λx : ∀ a.σ1.e4) e1. The goal reduces to
ṫ[Λa.e5] ' (λx : ∀ a.σ1.ṫ[Λa.e4]) e1. Similarly to before, we avoid cluttering the
proof by introducing an additional helper lemma 38. The goal then follows from
Lemmas 18, 24 and 38.

Lemma 37 (Property 3 Term Abstraction Helper).
If Γ `tm λx : σ2.((λy : σ1.e2) e1) : σ3 and Γ `tm e1 : σ1 then λx : σ2.((λy :
σ1.e2) e1) ' (λy : σ1.λx : σ2.e2) e1

Lemma 38 (Property 3 Type Abstraction Helper).
If Γ `tm Λa.((λx : σ1.e2) e1) : σ2 and a /∈ fv (σ1) then Λa.((λx : σ1.e2) e1) '
(λx : σ1.Λa.e2) e1

Both lemmas follow from the definition of contextual equivalence.

We now return to proving Property 3. By case analysis (Either rule Tm-
InfLet or rule Tm-CheckLet, followed by rule Decl-NoAnnSingle) we
know Γ, x : ∀ {a}.ηε1 ` e2 ⇒ ηε e3 or Γ, x : ∀ {a}.ηε1 ` e2 ⇐ σ e3 where
e1 = (λx : ∀ a.σ1.e3) e4, Γ ` e1 ⇒ ηε1 e4 and a = fv (ηε1) \ dom (Γ). The
goal thus follows directly from Lemma 32 or 33. However, as Lemma 24 only
holds under shallow instantiation, we cannot prove Property 3 under deep
instantiation.

B.4 Type Signatures

Property 4b (Signature Property is Type Preserving).
If Γ ` x π = e ⇒ Γ′ and x : σ ∈ Γ′ then Γ ` x : σ; x π = e ⇒ Γ′

Before proving Property 4b, we first introduce a number of helper lemmas:

Lemma 39 (Skolemisation Exists).
If fv (σ) ∈ Γ then ∃r ,Γ′ such that Γ ` σ skol δ−−−−→ ρ; Γ′

The proof follows through careful examination of the skolemisation relation.

Lemma 40 (Skolemisation Implies Instantiation).
If Γ ` σ skol δ−−−−→ ρ; Γ′ then Γ′ ` σ inst δ−−−−→ ρ

The proof follows by straightforward induction on the skolemisation relation.
Note that as skolemisation binds all type variables in Γ′, they can then be used
for instantiation.

TYPE SIGNATURES 241

Lemma 41 (Inferred Type Binders Preserve Expression Checking).
If Γ ` e ⇐ σ then Γ ` e ⇐ ∀{a}.σ

The proof follows by straightforward induction on the typing derivation.
Lemma 42 (Pattern Synthesis Implies Checking).
If Γ `P π ⇒ ψ; ∆ then ∀σ′,∃σ : Γ `P π ⇐ σ ⇒ σ′; ∆ where type (ψ;σ′ σ)

The proof follows by straightforward induction on the pattern typing derivation.
Lemma 43 (Expression Synthesis Implies Checking).
If Γ ` e ⇒ ηε then Γ ` e ⇐ ηε

The proof follows by induction on the typing derivation. We will focus on the
non-trivial cases below:

Case rule Tm-InfAbs e = λx.e′ :

We know from the premise of the typing rule that Γ, x : τ1 ` e′ ⇒ ηε2 where ηε =
τ1 → ηε2. By rule Tm-CheckAbs, the goal reduces to Γ ` τ1 → ηε2

skol S
99999K τ1 →

ηε2; Γ (which follows directly by rule SkolT-SInst) and Γ, x : τ1 ` e′ ⇐ ηε2
(which follows by the induction hypothesis).

Case rule Tm-InfTyAbs e = Λa.e′ :

The typing rule premise tells us that Γ, a ` e′ ⇒ ηε1 and Γ ` ∀ a.ηε1 inst δ−−−−→ ηε2. By
rule Tm-CheckTyAbs, the goal reduces to ηε2 = ∀ {a}.∀ a.σ′ and Γ, {a}, a `
e′ ⇐ σ′. It is now clear that this property can never hold under eager
instantiation, as the forall type in ∀ a.ηε1 would always be instantiated away. We
will thus focus solely on lazy instantiation from here on out, where ηε2 = ∀ a.ηε1.
In this case, the goal follows directly from the induction hypothesis.

Case rule Tm-InfApp e = h arg :

We know from the typing rule premise that Γ `H h ⇒ σ, Γ `A arg ⇐ σ ⇒ σ′

and Γ ` σ′ inst δ−−−−→ ηε. Note that as we assume lazy instantiation, ηε = σ′.
By rule Tm-CheckInf, the goal reduces to Γ ` ηε skol δ−−−−→ ρ; Γ′ (follows by
Lemma 39), Γ′ ` h arg ⇒ ηε1 (follows by performing environment weakening
on the premise, with ηε1 = ηε) and Γ′ ` ηε1 inst δ−−−−→ ρ (given that ηε1 = ηε, this
follows by Lemma 40).

We now proceed with proving Property 4b, through case analysis on the
declaration typing derivation (rule Decl-NoAnnSingle):

We know from the typing rule premise that Γ `P π ⇒ ψ; ∆, Γ,∆ ` e ⇒ ηε,
type (ψ; ηε σ1) and σ = ∀ {a}.σ1 where a = fv (σ1) \ dom (Γ). By rule Decl-
Ann, the goal reduces to Γ `P π ⇐ ∀{a}.σ1 ⇒ σ2; ∆2 and Γ,∆2 ` e ⇐ σ2.

242 STABILITY PROOFS

We know from Lemma 42 that Γ `P π ⇐ σ1 ⇒ σ3; ∆ where type (ψ;σ3 σ1).
Furthermore, from Lemma 43 we get Γ,∆ ` e ⇐ ηε. Note that we thus only
prove Property 4b under lazy instantiation. We now proceed by case analysis
on π:

Case π = • :

The first goal now follows trivially by rule Pat-CheckEmpty with σ2 =
∀ {a}.σ1, σ1 = ηε and ∆ = ∆2 = •. The second goal follows by Lemma 41.

Case π 6= • :

The first goal follows by repeated application of rule Pat-CheckInfForall
with σ2 = σ3 = ηε. The second goal then follows directly from Lemma 43.

Property 5 (Signature Property is Runtime Semantics Preserving).
If Γ ` x πi = ei

i ⇒ Γ′ x : σ = e1 and Γ ` x : σ; x πi = ei
i ⇒ Γ′ x : σ =

e2 then e1 ' e2

We start by introducing a number of helper lemmas:

Lemma 44 (Pattern Typing Mode Preserves Translation).
If Γ `P π ⇒ ψ; ∆ πF 1 : ψF 1 and Γ `P π ⇐ σ ⇒ σ′; ∆ πF 2 :
ψF 2 where type (ψ;σ′ σ)
then πF 1 = πF 2 and ψF 1 = ψF 2

The proof follows by straightforward induction on the pattern type inference
derivation.

Lemma 45 (Compatibility One-Sided Type Abstraction).
If e1 ' e2 then e1 ' Λa.e2

The proof follows by the definition of contextual equivalence. Note that while
the left and right hand sides have different types, they still instantiate to a
single common type.

Lemma 46 (Partial Skolemisation Preserves Type Checking and Runtime
Semantics).
If Γ ` e ⇐ ∀{a}.σ e1 then Γ, a ` e ⇐ σ e2 where e1 ' e2.

The proof proceeds by induction on the type checking derivation. Note that
every case performs a (limited) form of skolemisation. Every case proceeds by
applying the induction hypothesis, followed by Lemma 45.

Lemma 47 (Typing Mode Preserves Runtime Semantics).
If Γ ` e ⇒ ηε e1 and Γ ` e ⇐ σ e2 where Γ ` ηε inst δ−−−−→ ρ ṫ1 and Γ `

TYPE SIGNATURES 243

σ inst δ−−−−→ ρ ṫ2
then e1 ' e2

The proof proceeds by induction on the first typing derivation. Each case
follows straightforwardly by applying the induction hypothesis, along with the
corresponding compatibility lemma (Lemmas 16 till 20).

We now turn to proving property 5, through case analysis on the first declaration
typing derivation:

Case rule Decl-NoAnnSingle :

We know from the premise of the first derivation that Γ `P π ⇒ ψ; ∆
πF 1 : ψF 1, Γ,∆ ` e ⇒ ηε e′1, type (ψ; ηε σ1), e1 = caseπF 1 : ψF 1 →
e′1 and σ = ∀ {a}.σ1 where a = fv (σ1)\dom (Γ). By case analysis on the second
derivation (rule Decl-Ann), we get Γ `P π ⇐ ∀{a}.σ1 ⇒ σ2; ∆ πF 2 : ψF 2,
Γ,∆ ` e ⇐ σ2 e′2 and e2 = caseπF 2 : ψF 2 → e′2.

We proceed by case analysis on the patterns π:

case π = • : We know from rule Pat-InfEmpty, rule Pat-CheckEmpty
and rule Type-Empty that σ2 = ∀ {a}.σ1 = ∀ {a}.ηε. By applying Lemma 46,
we get Γ, a ` e ⇐ ηε e3 where e′2 ' e3. The goal now follows by Lemma 47
(after environment weakening, where σ = ρ = ηε), and Lemma 15.

case π 6= • : By case analysis on the pattern checking derivation (rule Pat-
CheckInfForall), we know that Γ, a `P π ⇐ σ1 ⇒ σ2; ∆′ πF 2 : ψF

′
2

where ∆ = a,∆′ and ψF 2 = @a, ψF
′
2. By Lemma 42 (where we take σ = σ1),

we know that type (ψ;σ2 σ1). This thus means that σ2 = ηε. By Lemma 44,
the goal reduces to caseπF 1 : ψF 1 → e′1 ' caseπF 1 : ψF 1 → e′2. Applying
Lemma 20 reduces this goal further to e′1 ' e′2. This follows directly from
Lemma 47 (where σ = ρ = ηε).

Case rule Decl-NoAnnMulti :

We know from the premise of the first derivation that ∀i : Γ `P πi ⇒ ψ; ∆i
πF i : ψF , Γ,∆i ` ei ⇒ ηεi ei and Γ,∆i ` ηεi inst δ−−−−→ ρ′ ṫi . Furthermore,
e1 = caseπF i : ψF → ṫi [ei]

i
, type (ψ; ρ′ σ′) and σ = ∀ {a}.σ′ where a = fv (σ′)\

dom (Γ). By case analysis on the second derivation (rule Decl-Ann), we know
that ∀i : Γ `P πi ⇐ ∀{a}.σ′ ⇒ σi ; ∆i πF

′
i : ψF

′, Γ,∆i ` ei ⇐ σi e′i and

e2 = caseπF ′i : ψF
′ → e′i

i
.

We again perform case analysis on the patterns π:

case π = • : Similarly to last time, we know that σ′ = ρ′ and ∀i : σi =

244 STABILITY PROOFS

∀ {a}.ρ′. We know by Lemma 46 that ∀i : Γ, a ` ei ⇐ ρ′ e′′i where e′i ' e′′i .
The goal now follows by Lemma 47 (where we take σ = ρ = ρ′) and Lemma 15.

case π 6= • : Similarly to the previous case, we can derive that ∀i : Γ, a `P
π ⇐ σ′ ⇒ σi ; ∆′i πF

′
i : ψF

′′ where ∆i = a,∆′i and ψF
′ = @a, ψF

′′. We again
derive by Lemma 42 that type (ψ;σi σ

′) and thus that σi = ρ′. By Lemma 44,
the goal reduces to caseπF i : ψF → ṫi [ei]

i
' caseπF i : ψF → e′i

i
. We reduce

this goal further by applying Lemma 20 to ∀i : ṫi [ei] ' e′i . This follows directly
from Lemma 47 (where σ = ρ = ρ′).

Note however, that as Lemma 47 only holds under shallow instantiation, that
the same holds true for Property 5.

Property 6 (Type Signatures are Runtime Semantics Preserving).
If Γ ` x : σ1; x πi = ei

i ⇒ Γ1 x : σ1 = e1 and Γ ` x : σ2; x πi = ei
i ⇒ Γ1

x : σ2 = e2 where Γ ` σ1
inst δ−−−−→ ρ ṫ1 and Γ ` σ2

inst δ−−−−→ ρ ṫ2 then ṫ1[e1] '
ṫ2[e2]

We start by introducing a number of helper lemmas:

Lemma 48 (Substitution in Expressions is Type Preserving (Synthesis)).
If Γ, a ` e ⇒ ηε e then Γ ` [τ/a] e ⇒ [τ/a] ηε [τ/a] e

Lemma 49 (Substitution in Expressions is Type Preserving (Checking)).
If Γ, a ` e ⇐ σ e then Γ ` [τ/a] e ⇐ [τ/a]σ [τ/a] e

Lemma 50 (Substitution in Heads is Type Preserving).
If Γ, a `H h ⇒ σ e then Γ `H [τ/a] h ⇒ [τ/a]σ [τ/a] e

Lemma 51 (Substitution in Arguments is Type Preserving).
If Γ, a `A arg ⇐ σ ⇒ σ′ argF then Γ `A [τ/a] arg ⇐ [τ/a]σ ⇒ [τ/a]σ′
[τ/a] argF
Lemma 52 (Substitution in Declarations is Type Preserving).
If Γ, a ` decl ⇒ Γ, a, x : σ x : σ = e then Γ ` [τ/a] decl ⇒ Γ, x : [τ/a]σ x :
σ = [τ/a] e

The proof proceeds by mutual induction on the typing derivation. While the
number of cases gets pretty large, each is quite straightforward.

Lemma 53 (Type Instantiation Produces Equivalent Expressions (Synthesis)).

If Γ1 ` e ⇒ ηε1 e1, Γ2 ` e ⇒ ηε2 e2 and ∃ a ⊆ fv (ηε1) ∪ fv (ηε2)
such that Γ′ = [τ/a] Γ1 = [τ/a] Γ2 and Γ′ ` ∀ a.ηε1 inst δ−−−−→ ρ ṫ1 and Γ′ `
∀ a.ηε2 inst δ−−−−→ ρ ṫ2
then ṫ1[Λa.e1] ' ṫ2[Λa.e2]

TYPE SIGNATURES 245

Lemma 54 (Type Instantiation Produces Equivalent Expressions (Checking)).

If Γ1 ` e ⇐ σ1 e1 and Γ2 ` e ⇐ σ2 e2 and ∃ a ⊆ fv (σ1) ∪ fv (σ2)
such that Γ′ = [τ/a] Γ1 = [τ/a] Γ2 and Γ′ ` ∀ a.σ1

inst δ−−−−→ ρ ṫ1 and Γ′ `
∀ a.σ2

inst δ−−−−→ ρ ṫ2
then ṫ1[Λa.e1] ' ṫ2[Λa.e2]

Lemma 55 (Type Instantiation Produces Equivalent Expressions (Head
Judgement)).
If Γ1 `H h ⇒ σ1 e1, Γ2 `H h ⇒ σ2 e2 and ∃ a ⊆ fv (ηε1) ∪ fv (ηε2)
such that Γ′ = [τ/a] Γ1 = [τ/a] Γ2 and Γ′ ` ∀ a.σ1

inst δ−−−−→ ρ ṫ1 and Γ′ `
∀ a.σ2

inst δ−−−−→ ρ ṫ2
then ṫ1[Λa.e1] ' ṫ2[Λa.e2]

Note that we define [τ/a] Γ as removing a from the environment Γ and
substituting any occurrence of a in types bound to term variables. Furthermore,
we use a1 ∪ a2 as a shorthand for list concatenation, removing duplicates. The
proof proceeds by induction on the first typing derivation. Note that Lemmas 53,
54 and 55 have to be proven using mutual induction. However, the proof for
Lemma 55 is trivial, as every case besides rule H-Inf is deterministic. As usual,
we will focus on the non-trivial cases:

Case rule Tm-CheckAbs e = λx.e′ :

We know from the premise of the first and second (as the relation is syntax
directed) typing derivation that Γ1 ` σ1

skol S
99999K σ4 → σ5; Γ′1 ṫ′1, Γ2 `

σ2
skol S
99999K σ

′
4 → σ′5; Γ′2 ṫ′2, Γ′1, x : σ4 ` e′ ⇐ σ5 e3 and Γ′2, x : σ′4 ` e′ ⇐

σ′5 e4, where e1 = ṫ′1[λx : σ4.e3] and e2 = ṫ′2[λx : σ′4.e4].

At this point, it is already clear that Lemma 54 can not hold under deep
instantiation, as instantiation performs full eta expansion. We will thus focus
on shallow instantiation from here on out.

By case analysis on the skolemisation and instantiation premises, it is clear
that Γ′1 = Γ1, a1, Γ′2 = Γ2, a2 and ρ = [τ1/a1] (σ4 → σ5) = [τ2/a2] (σ′4 →
σ′5) = σ3 → σ′3. In order to apply the induction hypothesis, we take a′ as
a ∪ a1 ∪ a2. Note that this does not alter the instantiation to ρ in any way, as
these variables would already have been instantiated. We apply the induction
hypothesis with Γ1 ` ∀ a′.σ5

inst δ−−−−→σ′3 ṫ3 and Γ2 ` ∀ a′.σ′5 inst δ−−−−→σ′3 ṫ4
(after weakening), producing ṫ3[Λa′.e3] ' ṫ4[Λa′.e4]. Under shallow instantiation,
these two instantiations follow directly from the premise with ṫ3 = ṫ1 and ṫ4 = ṫ2.

The goal reduces to ṫ1[Λa.ṫ′1[λx : σ4.e3]] ' ṫ2[Λa.ṫ′2[λx : σ′4.e4]]. By the definition
of skolemisation, this further reduces to ṫ1[Λa.Λa1.λx : σ4.e3] ' ṫ2[Λa.Λa2.λx :

246 STABILITY PROOFS

σ′4.e4]. Finally, the goal follows by the induction hypothesis and compatibility
Lemmas 18, 16 and 21, along with transitivity Lemma 15.

Case rule Tm-CheckTyAbs e = Λa.e′ :

We know the premise of the typing derivation that σ1 = ∀ {a}1.∀ a.σ′1,
σ2 = ∀ {a}.∀ a.σ′2, Γ1, a1, a ` e′ ⇐ σ′1 e′1, Γ2, a2, a ` e′ ⇐ σ′2
e′2, e1 = Λa1.Λa.e′1 and e2 = Λa2.Λa.e′2. By case analysis on the type
instantiation (rule InstT-SForall and rule InstT-SInfForall), we get Γ′ `
[τ1/a] [τ ′1/a1] [τ1/a]σ′1 inst δ−−−−→ ρ ṫ′1 and Γ′ ` [τ2/a] [τ ′2/a2] [τ2/a]σ′2 inst δ−−−−→ ρ
ṫ′2 where ṫ1 = λe.(ṫ′1[e σ1 σ

′
1 σ1]) and ṫ2 = λe.(ṫ′2[e σ2 σ

′
2 σ2]).

The goal to be proven is ṫ1[Λa.Λa1.Λa.e′1] ' ṫ2[Λa.Λa2.Λa.e′2]. This reduces to
ṫ′1[(Λa.Λa1.Λa.e′1)σ1 σ

′
1 σ1] ' ṫ′2[(Λa.Λa2.Λa.e′2)σ2 σ

′
2 σ2].

We now define a substitution θ = [τ1/a].[τ2/a].[τ ′1/a1].[τ ′2/a2].[τ1/a].[τ2/a].
From the instantiation relation (and the fact that both types instantiate to
the same type r , we conclude that if [τi/a] ∈ θ and [τj/a] ∈ θ that τi = τj . By
applying Lemma 49, we transform the premise to [τ1/a] Γ1 ` θ e′ ⇐ θ σ′1 θ e′1
and [τ2/a] Γ2 ` θ e′ ⇐ θ σ′2 θ e′2.

By applying the induction hypothesis, we get that ṫ′1[θ e′1] ' ṫ′2[θ e′2]. The goal
follows directly from the definition of θ.

Case rule Tm-CheckInf :

We know from the premise of the typing derivation that Γ1 ` σ1
skol δ−−−−→ ρ1; Γ′1

ṫ′1, Γ2 ` σ2
skol δ−−−−→ ρ2; Γ′2 ṫ′2, Γ′1 ` e ⇒ ηε1 e′1, Γ′2 ` e ⇒ ηε2 e′2, Γ′1 `

ηε1
inst δ−−−−→ ρ1 ṫ′′1 , Γ′2 ` ηε2 inst δ−−−−→ ρ2 ṫ′′2 , e1 = ṫ′1[ṫ′′1 [e′1]] and e2 = ṫ′′2 [ṫ′2[e′2]].

The goal to be proven is thus ṫ1[Λa.ṫ′1[ṫ′′1 [e′1]]] ' ṫ2[Λa.ṫ′2[ṫ′′2 [e′2]]].

From the definition of shallow skolemisation, we know that Γ′1 = Γ1, a1, Γ′2 =
Γ2, a2, ṫ′1 = λe.Λa1.e and ṫ′2 = λe.Λa2.e. We now take a′ = a ∪ a1 ∪ a2. As σ1
and σ2 instantiate to the same type ρ, it is not hard to see from the definition
of skolemisation that Γ′1 ` ∀ a′.ηε1 inst δ−−−−→ ρ ṫ3 and Γ′2 ` ∀ a′.ηε2 inst δ−−−−→ ρ ṫ4.
By applying Lemma 53, we thus get ṫ3[Λa′.e′1] ' ṫ4[Λa′.e′2]. The goal follows
through careful examination of the skolemisation and instantiation premises.

Lemma 56 (Pattern Checking Implies Synthesis).
If Γ `P π ⇐ σ ⇒ σ′; ∆ πF : ψF then ∃ψ : Γ `P π ⇒ ψ; ∆ πF :
ψF where type (ψ;σ′ σ)

The proof follows by straightforward induction on the pattern typing derivation.

We now go back to proving Property 6, and proceed by case analysis on
both typing derivations (rule Decl-Ann). We know from the premise that

PATTERN INLINING AND EXTRACTION 247

Γ `P πi ⇐ σ1 ⇒ σi 1; ∆i 1 πF i : ψF 1, Γ `P πi ⇐ σ2 ⇒ σi 2; ∆i 2
πF i : ψF 2, Γ,∆i 1 ` ei ⇐ σi 1 ei 1, Γ,∆i 2 ` ei ⇐ σi 2 ei 2, e1 =
caseπF i : ψF 1 → ei 1

i
and e2 = caseπF i : ψF 2 → ei 2

i
. The goal to be proven

is ṫ1[caseπF i : ψF 1 → ei 1
i
] ' ṫ2[caseπF i : ψF 2 → ei 2

i
]. Lemma 20 reduces

this to ∀i : ṫ1[ei 1] ' ṫ2[ei 2].

We take ai = dom (∆i 1) ∪ dom (∆i 2) \ dom (Γ), and apply weakening to get
Γ, ai ` ei ⇐ σi 1 ei 1 and Γ, ai ` ei ⇐ σi 2 ei 2. The goal now follows
directly from Lemma 54 with ai = •, if we can show that Γ, ai ` σi 1

inst δ−−−−→ ρ′
ṫ1 and Γ, ai ` σi 2

inst δ−−−−→ ρ′ ṫ2 for some r ′ (Note that Lemma 54 only holds
under shallow instantiation).

We know from Lemma 56 that ∃ψF : Γ `P πi ⇒ ψ; ∆i πF i : ψF such
that type (ψ;σi 1 σ1) and type (ψ;σi 2 σ2). The remaining goal follows from the
definition of the type relation, and shallow instantiation.

B.5 Pattern Inlining and Extraction

Property 7 (Pattern Inlining is Type Preserving).
If Γ ` x π = e1 ⇒ Γ′ and wrap (π; e1 e2) then Γ ` x = e2 ⇒ Γ′

We first introduce a helper lemma to prove pattern inlining in expressions
preserves the type:

Lemma 57 (Pattern Inlining in Expressions is Type Preserving (Synthesis)).
If Γ `P π ⇒ ψ; ∆ and Γ,∆ ` e1 ⇒ ηε1 where wrap (π; e1 e2)
then Γ ` e2 ⇒ ηε2 and type (ψ; ηε1 ηε2)

The proof proceeds by induction on the pattern typing derivation. We will focus
on the non-trivial cases below. Note that the rule Pat-InfCon is an impossible
case as wrap (K π; e1 e2) is undefined.

Case rule Pat-InfVar π = x, π′, ψ = τ1, ψ
′ and ∆ = x : τ1,∆′ :

We know from the rule premise that Γ, x : τ1 `P π′ ⇒ ψ
′; ∆′. Furthermore,

by inlining the definitions of ∆ and π in the lemma premise, we get Γ, x :
τ1,∆′ ` e1 ⇒ ηε1 and wrap (x, π′; e1 λx.e′2) and thus (by rule PatWrap-Var)
wrap (π′; e1 e′2). By the induction hypothesis, we get Γ, x : τ1 ` e′2 ⇒ ηε3 and
type (ψ′; ηε1 ηε3). The goal follows by rule Tm-InfAbs and rule Type-Var.

Case rule Pat-InfTyVar π = @a, π′, ψ = @a, ψ′ and ∆ = a,∆′ :

248 STABILITY PROOFS

We know from the rule premise that Γ, a `P π′ ⇒ ψ
′; ∆′. Again, by

inlining the definitions in the lemma premise, we get Γ, a,∆′ ` e1 ⇒ ηε1 and
wrap (@a, π′; e1 Λa.e′2) and thus (by rule PatWrap-TyVar) wrap (π′; e1 e′2).
By the induction hypothesis, we get Γ, a ` e′2 ⇒ ηε3 and type (ψ′; ηε1 ηε3).

The goal to be proven is Γ ` Λa.e′2 ⇒ ∀ a.ηε3 where type (@a, ψ′; ηε1 ∀ a.ηε3)
(follows by rule Type-TyVar). However, under eager instantiation, this goal
can never hold as rule Tm-InfTyAbs would instantiate the forall binder away.
We can thus only prove this lemma under lazy instantiation, where the goal
follows trivially from rule Tm-InfTyAbs.

We now proceed with proving Property 7, through case analysis on the
declaration typing relation (rule Decl-NoAnnSingle). We know from the
premise of the first derivation that Γ `P π ⇒ ψ; ∆, Γ,∆ ` e1 ⇒ ηε1, type (ψ; ηε1 σ)
and Γ′ = Γ, x : ∀ {a}.σ where a = fv (σ) \ dom (Γ). The goal to be proven
thus becomes Γ `P • ⇒ •; • (follows directly from rule Pat-InfEmpty) and
Γ ` e2 ⇒ ηε2 where ηε2 = σ (follows from Lemma 57). Note that as we require
Lemma 57, we can only prove Property 7 under lazy instantiation.

Property 9 (Pattern Extraction is Type Preserving).
If Γ ` x = e2 ⇒ Γ′ and wrap (π; e1 e2) then Γ ` x π = e1 ⇒ Γ′

We first introduce another helper lemma to prove that pattern extraction from
expressions preserves the typing:

Lemma 58 (Pattern Extraction from Expressions is Type Preserving
(Synthesis)).
If Γ ` e2 ⇒ ηε2 and ∃ e1, π such that wrap (π; e1 e2)
then Γ `P π ⇒ ψ; ∆ and Γ,∆ ` e1 ⇒ ηε1 where type (ψ; ηε1 ηε2)

The proof proceeds by induction on the e2 typing derivation. As usual, we will
focus on the non-trivial cases:

Case rule Tm-InfAbs e2 = λx.e′2 and ηε2 = τ2 → ηε3 :

We know from the rule premise that Γ, x : τ2 ` e′2 ⇒ ηε3. It is clear by case
analysis on wrap (π; e1 λx.e′2) that π = x, π′ and wrap (π′; e1 e′2). By applying
the induction hypothesis, we get Γ, x : τ2 `P π′ ⇒ ψ

′; ∆′, Γ, x : τ2,∆′ ` e1 ⇒ ηε1
and type (ψ′; ηε1 ηε3). The goal thus follows straightforwardly by rule Pat-InfVar
and rule Type-Var.

Case rule Tm-InfTyAbs e2 = Λa.e′2 :

We know from the rule premise that Γ, a ` e′2 ⇒ ηε3 and Γ ` ∀ a.ηε3 inst δ−−−−→ ηε2.
Furthermore, it is clear by case analysis on wrap (π; e1 Λa.e′2) that π = @a, π′

PATTERN INLINING AND EXTRACTION 249

and wrap (π′; e1 e′2). By the induction hypothesis, we get Γ, a `P π′ ⇒ ψ
′; ∆′,

Γ, a,∆′ ` e1 ⇒ ηε1 and type (ψ′; ηε1 ηε3).

The goal to be proven is Γ `P @a, π′ ⇒ @a, ψ′; a,∆′ (follows by rule Pat-
InfTyVar), Γ, a,∆′ ` e1 ⇒ ηε1 (follows by the induction hypothesis) and
type (@a, ψ′; ηε1 ηε2). However, it is clear that this final goal does not hold under
eager instantiation, as rule Tm-InfTyAbs instantiates the forall binder away.
Under lazy instantiation, the remaining goal follows directly from the premise.

Case rule Tm-InfApp e2 = h arg and arg = • and h = e :

The goal follows directly by the induction hypothesis.

Case rule Tm-InfApp e2 = h arg and arg 6= • or h 6= e :

It is clear from the definition of wrap (π; e1 h arg) that π = •. The goal thus
follows trivially.

We now return to prove Property 9 by case analysis on the declaration typing
derivation (rule Decl-NoAnnSingle). We know from the derivation premise
that Γ ` e2 ⇒ ηε2 and σ = ∀ {a}.ηε2 where a = fv (ηε2) \ dom (Γ). The goal
follows directly from Lemma 58. Note that as Lemma 58 only holds under lazy
instantiation, the same holds true for Property 9.

Property 8 (Pattern Inlining / Extraction is Runtime Semantics Preserving).
If Γ ` x π = e1 ⇒ Γ′ x : σ = e1, wrap (π; e1 e2), and Γ ` x = e2 ⇒ Γ′ x :
σ = e2 then e1 ' e2

We start by introducing a helper lemma, proving pattern inlining preserves the
runtime semantics for expressions.

Lemma 59 (Pattern Inlining in Expressions is Runtime Semantics Preserving).

If Γ `P π ⇒ ψ; ∆ πF : ψF and Γ,∆ ` e1 ⇒ ηε1 e1 and Γ ` e2 ⇒ ηε2
e2 where wrap (π; e1 e2)
then caseπF : ψF → e1 ' e2

The proof proceeds by induction on the pattern typing derivation. We will
focus on the non-trivial cases. Note that, as wrap (K π; e1 e2) is undefined,
rule Pat-InfCon is an impossible case.

Case rule Pat-InfVar π = x, π′, ψ = τ1, ψ
′ , ∆ = x : τ1,∆′, πF = x : σ1, πF

′

and ψF = σ1, ψF
′ :

We know from the pattern typing derivation premise that Γ, x : τ1 `P π′ ⇒
ψ
′; ∆′ πF

′ : ψF
′. By inlining the definitions and rule PatWrap-Var, we get

250 STABILITY PROOFS

e2 = λx.e′2 and wrap (π′; e1 e′2). By case analysis on the e2 typing derivation
(rule Tm-InfAbs), we know Γ, x : τ1 ` e′2 ⇒ ηε3 e′2 where ηε2 = τ1 → ηε3 and
e2 = λx : σ1.e

′
2. By applying the induction hypothesis, we get caseπF ′ : ψF

′ →
e1 ' e′2. The goal to be proven is λx : σ1.caseπF ′ : ψF

′ → e1 = λx : σ1.e
′
2, and

follows directly from Lemma 16.

Case rule Pat-InfTyVar π = @a, π′, ψ = @a, ψ′ , ∆ = a,∆′, πF = @a, πF ′
and ψF = @a, ψF

′ :

We know from the pattern typing derivation premise that Γ, a `P π′ ⇒ ψ
′; ∆′

πF
′ : ψF

′. Similarly to the previous case, by inlining and rule PatWrap-
TyVar, we get e2 = Λa.e′2 and wrap (π′; e1 e′2). By case analysis on the
e2 typing derivation (rule Tm-InfTyAbs), we get Γ, a ` e′2 ⇒ ηε3 e′2,
Γ ` ∀ a.ηε3 inst δ−−−−→ ηε2 ṫ and e2 = ṫ[Λa.e′2]. Applying the induction hypothesis
tells us that caseπF ′ : ψF

′ → e1 ' e′2.

The goal to be proven is Λa.caseπF ′ : ψF
′ → e1 ' ṫ[Λa.e′2]. By applying

Lemma 18 to the result of the induction hypothesis, we get Λa.caseπF ′ : ψF
′ →

e1 ' Λa.e′2. Under lazy instantiation, the goal follows directly from this result,
as ṫ = []. Under eager deep instantiation, it is clear that the goal does not hold,
as ṫ might perform eta expansion, thus altering the runtime semantics. Under
eager shallow instantiation, the goal follows straightforwardly, as ṫ can only
perform type applications. Note that this implies that Λa.caseπF ′ : ψF

′ → e1
and ṫ[Λa.e′2] could thus have different types, but can always instantiate to the
same type.

We now return to proving Property 8, by case analysis on the first declaration
typing relation (rule Decl-NoAnnSingle). We know from the derivation
premise that Γ `P π ⇒ ψ; ∆ πF : ψF , Γ,∆ ` e1 ⇒ ηε1 e′1, e1 = caseπF :
ψF → e′1, type (ψ; ηε1 σ′), σ = ∀ {a}.σ′ where a = fv (σ′)\dom (Γ). The premise
of the second declaration typing derivations tells us that Γ ` e2 ⇒ ηε2 e2.
The goal now follows directly from Lemma 59. Note that as Lemma 59 does
not hold under eager deep instantiation, the same is true for Property 8.

B.6 Single vs. Multiple Equations

Property 10 (Single/multiple Equations is Type Preserving).
If Γ ` x π = e ⇒ Γ, x : σ then Γ ` x π = e, x π = e ⇒ Γ′

The proof proceeds by case analysis on the declaration typing derivation
(rule Decl-NoAnnSingle). From the derivation premise, we get Γ `P

η-EXPANSION 251

numargs (σ) = m (Explicit Argument Counting)

Numargs-TyVar

numargs (a) = 0

Numargs-Con

numargs (T σ) = 0

Numargs-Arrow
numargs (σ2) = m

numargs (σ1 → σ2) = m+ 1

Numargs-Forall
numargs (σ) = m

numargs (∀ a.σ) = m

Numargs-InfForall
numargs (σ) = m

numargs (∀ {a}.σ) = m

Figure B.2: Counting Explicit Arguments

π ⇒ ψ; ∆, Γ,∆ ` e ⇒ ηε, type (ψ; ηε σ1) and σ = ∀ {a}1.σ1 where
a1 = fv (σ1)\dom (Γ). The goal to be proven thus reduces to Γ,∆ ` ηε inst δ−−−−→ ρ,
type (ψ; ρ σ2) and σ = ∀ {a}2.σ2 where a2 = fv (σ2) \ dom (Γ). It is clear that
the property can not hold under lazy instantiation, as rule Decl-NoAnnMulti
performs an additional instantiation step, thus altering the type. Under eager
instantiation, ηε is already an instantiated type by the type inference relation,
making the instantiation in the goal a no-op (by definition). The goal is thus
trivially true.

B.7 η-expansion

Property 11b (η-expansion is Type Preserving).

• If Γ ` e ⇒ ηε where numargs(ηε) = n and Γ ` ηε inst δ−−−−→ τ then Γ `
λxn.e xn ⇒ ηε

• If Γ ` e ⇐ σ where numargs(r) = n then Γ ` λxn.e xn ⇐ σ

A formal definition of numargs is shown in Figure B.2. We prove Property 11b
by first introducing a slightly more general lemma:

Lemma 60 (η-expansion is Type Preserving - Generalised).

• If Γ ` e ⇒ ηε where 0 6 n 6 numargs(ηε) and Γ ` ηε inst δ−−−−→ τ then Γ `
λxn.e xn ⇒ ηε

• If Γ ` e ⇐ σ where 0 6 n 6 numargs(ρ) then Γ ` λxn.e xn ⇐ σ

252 STABILITY PROOFS

The proof proceeds by induction on the integer n.

Case n = 0 :

This case is trivial, as it follows directly from the premise.

Case n = m+ 1 6 numargs(ηε) :

case synthesis mode : We know from the induction hypothesis that
Γ ` λxm.e xm ⇒ ηε. We perform case analysis on this result (m repeated
applications of rule Tm-InfAbs) to get Γ, xi : τi

i<m ` e xm ⇒ ηε1 where
ηε = τi

i<m → ηε1. Performing case analysis again on this result (rule Tm-
InfApp), gives us Γ, xi : τi

i<m `H e ⇒ σ1, Γ, xi : τi
i<m `A xm ⇐ σ1 ⇒ σ2

and Γ, xi : τi
i<m ` σ2

inst δ−−−−→ ηε1.

The goal to be proven is Γ ` λxm+1.e xm+1 ⇒ ηε, which (by rule TmInfAbs)
reduces to Γ, xi : τi

i<m, x : τ ` e xm+1 ⇒ ηε2, where ηε = τi
i<m → τ → ηε2.

Note that this requires proving that ηε1 = τ → ηε2. While we know that
m < numargs(ηε), we can only prove this under eager deep instantiation. Under
lazy instantiation, type inference does not instantiate the result type at all.
Under eager shallow, it is instantiated, but only up to the first function type.
From here on out, we will thus assume eager deep instantiation. Furthermore,
note that as even deep instantiation does not instantiate argument types, we
need the additional premise that ηε instantiates into a monotype, in order to
prove this goal.

This result in turn (by rule Tm-InfApp) reduces to Γ, xi : τi
i<m, x : τ `H

e ⇒ σ1 (follows by weakening), Γ, xi : τi
i<m, x : τ `A x, xm ⇐ σ1 ⇒ σ3

(follows by rule Arg-Inst, rule Arg-App and the fact that ηε1 = τ → ηε2) and
Γ, xi : τi

i<m, x : τ ` σ3
inst δ−−−−→ ηε2 (follows by the definition of instantiation).

case checking mode : We know from the induction hypothesis that
Γ ` λxm.e xm ⇐ σ. The proof proceeds similarly to the synthesis mode case,
by case analysis on this result (rule Tm-CheckAbs). One additional step is
that rule Tm-CheckInf is applied to type e xm. The derivation switches to
synthesis mode at this point, and becomes completely identical to the previous
case.

The proof for Property 11b now follows directly by Lemma 60, by taking
n = numargs(ηε).

Appendix C

Coherence Proofs

C.1 Logical Relations

In the definitions for the logical relations below, γ = γ′, δ 7→ (d1, d2) and
φ = φ′, x 7→ (e1, e2) are substitutions which map all dictionary variables δ ∈ Γ
and term variables x ∈ Γ onto two (possibly different) dictionaries and terms
respectively. Notation-wise, we adopted the convention that γ1 maps the
dictionary variable δ to the leftmost value dv1 and γ2 substitutes δ for the
rightmost value dv2. Similarly for φ1 and φ2.

The third kind of substitution R = R′, a 7→ (σ, r) maps all type variables a ∈ Γ
onto closed types σ, while also storing a relation r . This relation r is an arbitrary
member of the set of all relations Rel[σ] which offer the following property:

Rel[σ] = {r ∈ P(v×v) | ∀(v1, v2) ∈ r : Σ; ΓC ; • `tm v1 : σ∧Σ; ΓC ; • `tm v2 : σ}

C.1.1 Dictionary Relation

(Σ1 : dv1,Σ2 : dv2) ∈ VJQKΓC (Closed Dictionary Value Relation)

253

254 COHERENCE PROOFS

(Σ1 : Dσm dn 1,Σ2 : Dσm dn 2) ∈ VJQKΓC

, Σ1; ΓC ; • `d Dσm dn 1 : Q ∧ Σ2; ΓC ; • `d Dσm dn 2 : Q

∀d1 i , d2 i : (Σ1 : d1 i ,Σ2 : d2 i) ∈ EJ[σm/am]CiKΓC
i<n

where(D : ∀am.Cn ⇒ Q′).m 7→ e1 ∈ Σ1 ∧Q = [σm/am]Q′

(Σ1 : d1,Σ2 : d2) ∈ EJCKΓC (Closed Dictionary Relation)

(Σ1 : d1,Σ2 : d2) ∈ EJC1 ⇒ C2KΓC

, Σ1; ΓC ; • `d d1 : C1 ⇒ C2 ∧ Σ2; ΓC ; • `d d2 : C1 ⇒ C2

∧ ∀d3, d4 : (Σ1 : d3,Σ2 : d4) ∈ EJC1KΓC ⇒ (Σ1 : d1 d3,Σ2 : d2 d4) ∈ EJC2KΓC

(Σ1 : d1,Σ2 : d2) ∈ EJ∀a.C ′KΓC

, Σ1; ΓC ; • `d d1 : ∀a.C ′ ∧ Σ2; ΓC ; • `d d2 : ∀a.C ′

∧ ∀σ : ΓC ; • `ty σ ⇒ (Σ1 : d1 σ,Σ2 : d2 σ) ∈ EJ[σ/a]C ′KΓC

(Σ1 : d1,Σ2 : d2) ∈ EJQKΓC

, Σ1; ΓC ; • `d d1 : Q ∧ Σ2; ΓC ; • `d d2 : Q

∧ ∃dv1, dv2, d1 −→∗ dv1, d2 −→∗ dv2, (Σ1 : dv1,Σ2 : dv2) ∈ VJQKΓC

ΓC ; Γ ` Σ1 : d1 'log Σ2 : d2 : C (Logical Equivalence for Open Dictionaries)

ΓC ; Γ ` Σ1 : d1 'log Σ2 : d2 : C

, ∀R ∈ FJΓKΓC , γ ∈ HJΓKΣ1,Σ2,ΓC

R ,

(Σ1 : γ1(R(d1)),Σ2 : γ2(R(d2))) ∈ EJR(C)KΓC

LOGICAL RELATIONS 255

C.1.2 Expression Relation

(Σ1 : v1,Σ2 : v2) ∈ VJσKΓC
R (Closed Expression Value Relation)

(Σ1 : True,Σ2 : True) ∈ VJBoolKΓC

R

(Σ1 : False,Σ2 : False) ∈ VJBoolKΓC

R

(Σ1 : v1,Σ2 : v2) ∈ VJaKΓC

R

, (a 7→ (σ, r)) ∈ R ∧ Σ1; ΓC ; • `tm v1 : σ ∧ Σ2; ΓC ; • `tm v2 : σ

∧ (v1, v2) ∈ r

(Σ1 : λx : σ1.e1,Σ2 : λx : σ1.e2) ∈ VJσ1 → σ2KΓC

R

, Σ1; ΓC ; • `tm λx : σ.e1 : R(σ1 → σ2)

∧ Σ2; ΓC ; • `tm λx : σ.e2 : R(σ1 → σ2)

∧ ∀(Σ1 : e3,Σ2 : e4) ∈ EJσ1KΓC

R :

(Σ1 : (λx : σ.e1) e3,Σ2 : (λx : σ.e2) e4) ∈ EJσ2KΓC

R

(Σ1 : λδ : C.e1,Σ2 : λδ : C.e2) ∈ VJC ⇒ σKΓC

R

, Σ1; ΓC ; • `tm λδ : C.e1 : R(C ⇒ σ) ∧ Σ2; ΓC ; • `tm λδ : C.e2 : R(C ⇒ σ)

∧ ∀(Σ1 : d1,Σ2 : d2) ∈ EJR(C)KΓC :

(Σ1 : (λδ : C.e1) d1,Σ2 : (λδ : C.e2) d2) ∈ EJσKΓC

R

(Σ1 : Λa.e1,Σ2 : Λa.e2) ∈ VJ∀a.σKΓC

R

, Σ1; ΓC ; • `tm Λa.e1 : R(∀a.σ) ∧ Σ2; ΓC ; • `tm Λa.e2 : R(∀a.σ)

∧ ∀σ′,∀r ∈ Rel[σ′] : ΓC ; • `ty σ′ ⇒

(Σ1 : (Λa.e1)σ′,Σ2 : (Λa.e2)σ′) ∈ EJσKΓC

R,a 7→(σ′,r)

(Σ1 : e1,Σ2 : e2) ∈ EJσ1KΓC
R (Closed Expression Relation)

256 COHERENCE PROOFS

(Σ1 : e1,Σ2 : e2) ∈ EJσKΓC

R

, Σ1; ΓC ; • `tm e1 : R(σ) ∧ Σ2; ΓC ; • `tm e2 : R(σ)

∧ ∃v1, v2,Σ1 ` e1 −→∗ v1,Σ2 ` e2 −→∗ v2, (Σ1 : v1,Σ2 : v2) ∈ VJσKΓC

R

ΓC ; Γ ` Σ1 : e1 'log Σ2 : e2 : σ (Logical Equivalence for Open Expressions)

ΓC ; Γ ` Σ1 : e1 'log Σ2 : e2 : σ

, ∀R ∈ FJΓKΓC , φ ∈ GJΓKΣ1,Σ2,ΓC

R , γ ∈ HJΓKΣ1,Σ2,ΓC

R ,

(Σ1 : γ1(φ1(R(e1))),Σ2 : γ2(φ2(R(e2)))) ∈ EJσKΓC

R

Σ1 : M1 'log Σ2 : M2 : (ΓC ; Γ⇒ σ) 7→ (ΓC ; Γ′ ⇒ σ′) (Logical Equivalence for
Contexts)

Σ1 : M1 'log Σ2 : M2 : (ΓC ; Γ⇒ σ) 7→ (ΓC ; Γ′ ⇒ σ′)

, ∀e1, e2 : ΓC ; Γ ` Σ1 : e1 'log Σ2 : e2 : σ

⇒ ΓC ; Γ′ ` Σ1 : M1[e1] 'log Σ2 : M2[e2] : σ′

LOGICAL RELATIONS 257

Definition 14 (Interpretation of type variables in type contexts).

• ∈ FJ•KΓC

R ∈ FJΓKΓC

R ∈ FJΓ, x : σKΓC

R ∈ FJΓKΓC

r ∈ Rel[σ]
ΓC ; • `ty σ

R, a 7→ (σ, r) ∈ FJΓ, aKΓC

R ∈ FJΓKΓC

R ∈ FJΓ, δ : CKΓC

Definition 15 (Interpretation of term variables in type contexts).

• ∈ GJ•KΣ1,Σ2,ΓC

R

φ ∈ GJΓKΣ1,Σ2,ΓC

R

φ ∈ GJΓ, aKΣ1,Σ2,ΓC

R

φ ∈ GJΓKΣ1,Σ2,ΓC

R

(Σ1 : e1,Σ2 : e2) ∈ EJσKΓC

R

φ, x 7→ (e1, e2) ∈ GJΓ, x : σKΣ1,Σ2,ΓC

R

φ ∈ GJΓKΣ1,Σ2,ΓC

R

φ ∈ GJΓ, δ : CKΣ1,Σ2,ΓC

R

Definition 16 (Interpretation of dictionary variables dictionary contexts).

• ∈ HJ•KΣ1,Σ2,ΓC

R

γ ∈ HJΓKΣ1,Σ2,ΓC

R

γ ∈ HJΓ, aKΣ1,Σ2,ΓC

R

γ ∈ HJΓKΣ1,Σ2,ΓC

R

γ ∈ HJΓ, x : σKΣ1,Σ2,ΓC

R

γ ∈ HJΓKΣ1,Σ2,ΓC

R

(Σ1 : d1,Σ2 : d2) ∈ EJR(C)KΓC

γ, δ 7→ (d1, d2) ∈ HJΓ, δ : CKΣ1,Σ2,ΓC

R

C.1.3 Environment Relation

ΓC ` Σ1 'log Σ2 (Logical Equivalence for Environments)

ctxLog-empty

ΓC ` • 'log •

ctxLog-cons
ΓC ` Σ1 'log Σ2

ΓC ; • ` Σ1 : e1 'log Σ2 : e2 : σ′

ΓC ` Σ1, (D : ∀aj .Ci ⇒ TC σ).m 7→ e1 'log Σ2, (D : ∀aj .Ci ⇒ TC σ).m 7→ e2

258 COHERENCE PROOFS

C.2 Strong Normalization Relations

As opposed to Section C.1, the relations and substitutions in the strong
normalization relations described below, are unary. The substitutions γSN =
γSN

′
, δ 7→ d and φSN = φSN

′
, x 7→ e map all dictionary variables δ ∈ Γ

and term variables x ∈ Γ onto well-typed dictionaries d and expressions
e ∈ SN JσKΣ,ΓC

RSN . The final kind of substitution RSN = RSN
′
, a 7→ (σ, r) maps

all type variables a ∈ Γ onto closed types σ, while also storing a relation r . This
relation r is an arbitrary member of the set of all relations Rel[σ] which offer
the following property:

Rel[σ] = {r ∈ P(e) | ∀e ∈ r : Σ; ΓC ; • `tm e : σ}

We adopted the convention that RSN 1(a) maps the type variable a onto the
closed type σ and RSN 2(a) denotes the contained set of expressions r .

STRONG NORMALIZATION RELATIONS 259

C.2.1 Dictionary Relation

d ∈ SN JCKΣ,ΓC (Strong Normalization Relation for Dictionaries)

d ∈ SN JTC σKΣ,ΓC

, Σ; ΓC ; • `d d : TC σ ∧ ∃D,σj , di : d −→∗ Dσj di

where Σ = Σ1, (D : ∀aj .Ci ⇒ TC σq).m 7→ e,Σ2

∧ (m : TC a : σm) ∈ ΓC ∧ ΓC ; •, aj `ty σj
j

∧ di ∈ SN J[σj/aj]CiKΣ,ΓC
i
∧ σ = [σj/aj]σq

∧ e ∈ SN J∀aj .Ci ⇒ [σq/a]σmKΣ1,ΓC
•

d ∈ SN JC1 ⇒ C2KΣ,ΓC

, Σ; ΓC ; • `d d : C1 ⇒ C2 ∧ ∃dv : d −→∗ dv

∧ ∀d′ : d′ ∈ SN JC1KΣ,ΓC ⇒ d d′ ∈ SN JC2KΣ,ΓC

d ∈ SN J∀a.CKΣ,ΓC

, Σ; ΓC ; • `d d : ∀a.C ∧ ∃dv : d −→∗ dv

∧ ∀σ : ΓC ; • `ty σ ⇒ d σ ∈ SN J[σ/a]CKΣ,ΓC

C.2.2 Expression Relation

e ∈ SN JσKΣ,ΓC

RSN (Strong Normalization Relation)

260 COHERENCE PROOFS

e ∈ SN JBoolKΣ,ΓC

RSN

, Σ; ΓC ; • `tm e : Bool ∧ ∃v : Σ ` e −→∗ v

e ∈ SN JaKΣ,ΓC

RSN

, Σ; ΓC ; • `tm e : RSN 1(a) ∧ ∃v : Σ ` e −→∗ v

∧ v ∈ RSN 2(a)

e ∈ SN Jσ1 → σ2K
Σ,ΓC

RSN

, Σ; ΓC ; • `tm e : RSN 1(σ1 → σ2) ∧ ∃v : Σ ` e −→∗ v

∧ ∀e′ : e′ ∈ SN Jσ1K
Σ,ΓC

RSN ⇒ e e′ ∈ SN Jσ2K
Σ,ΓC

RSN

e ∈ SN JC ⇒ σKΣ,ΓC

RSN

, Σ; ΓC ; • `tm e : RSN 1(C ⇒ σ) ∧ ∃v : Σ ` e −→∗ v

∧ ∀d : d ∈ SN JRSN 1(C)KΣ,ΓC ⇒ e d ∈ SN JσKΣ,ΓC

RSN

e ∈ SN J∀a.σKΣ,ΓC

RSN

, Σ; ΓC ; • `tm e : RSN 1(∀a.σ) ∧ ∃v : Σ ` e −→∗ v

∧ ∀σ′, r ∈ Rel[σ′] : e σ′ ∈ SN JσKΣ,ΓC

RSN ,a 7→(σ′,r)

Definition 17 (Interpretation of type variables in type contexts for strong
normalization).

• ∈ FSN J•KΣ,ΓC

RSN ∈ FSN JΓKΣ,ΓC

RSN ∈ FSN JΓ, x : σKΣ,ΓC

RSN ∈ FSN JΓKΣ,ΓC

r = SN JσKΣ,ΓC

RSN

ΓC ; • `ty RSN 1(σ)
RSN , a 7→ (RSN 1(σ), r) ∈ FSN JΓ, aKΣ,ΓC

RSN ∈ FSN JΓKΣ,ΓC

RSN ∈ FSN JΓ, δ : CKΣ,ΓC

EQUIVALENCE RELATIONS 261

Definition 18 (Interpretation of term variables in type contexts for strong
normalization).

• ∈ GSN J•KΣ,ΓC

RSN

φSN ∈ GSN JΓKΣ,ΓC

RSN

φSN ∈ GSN JΓ, aKΣ,ΓC

RSN

φSN ∈ GSN JΓKΣ,ΓC

RSN

e ∈ SN JσKΣ,ΓC

RSN

φSN , x 7→ e ∈ GSN JΓ, x : σKΣ,ΓC

RSN

φSN ∈ GSN JΓKΣ,ΓC

RSN

φSN ∈ GSN JΓ, δ : CKΣ,ΓC

RSN

Definition 19 (Interpretation of dictionary variables dictionary contexts for
strong normalization).

• ∈ HSN J•KΣ,ΓC

RSN

γSN ∈ HSN JΓKΣ,ΓC

RSN

γSN ∈ HSN JΓ, aKΣ,ΓC

RSN

γSN ∈ HSN JΓKΣ,ΓC

RSN

γSN ∈ HSN JΓ, x : σKΣ,ΓC

RSN

γSN ∈ HSN JΓKΣ,ΓC

RSN

d ∈ SN JRSN 1(C)KΣ,ΓC

γSN , δ 7→ d ∈ HSN JΓ, δ : CKΣ,ΓC

RSN

C.3 Equivalence Relations

C.3.1 Kleene Equivalence Relations

Σ1 : e1 ' Σ2 : e2 (Kleene Equivalence for FD Expressions)

Σ1 : e1 ' Σ2 : e2 , ∃v : Σ1 ` e1 −→∗ v ∧ Σ2 ` e2 −→∗ v

e1 ' e2 (Kleene Equivalence for F{} Expressions)

e1 ' e2 , ∃v : e1 −→∗ v ∧ e2 −→∗ v

C.3.2 Contextual Equivalence Relations

ΓC ; Γ ` Σ1 : e1 'ctx Σ2 : e2 : σ (Contextual Equivalence for FD Expressions)

262 COHERENCE PROOFS

ΓC ; Γ ` Σ1 : e1 'ctx Σ2 : e2 : σ

, ∀M1 : (Σ1; ΓC ; Γ⇒ σ) 7→ (Σ1; ΓC ; • ⇒ Bool)

∧ ∀M2 : (Σ2; ΓC ; Γ⇒ σ) 7→ (Σ2; ΓC ; • ⇒ Bool)

∧ Σ1 : M1 'log Σ2 : M2 : (ΓC ; Γ⇒ σ) 7→ (ΓC ; • ⇒ Bool)

⇒ Σ1 : M1[e1] ' Σ2 : M2[e2]

P ; ΓC ; Γ ` e1 'ctx e2 : τ (Contextual Equivalence for F{} Expressions)

P ; ΓC ; Γ ` e1 'ctx e2 : τ

, ∀M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; • ⇒ Bool) M1

∧M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; • ⇒ Bool) M2

⇒M1[e1] 'M2[e2]

ΓC ; Γ ` Σ1 : e1 'ctx Σ2 : e2 : σ (Contextual Equivalence for F{} Expressions in
FD context)

ΓC ; Γ ` Σ1 : e1 'ctx Σ2 : e2 : σ

, ∀M1 : (Σ1; ΓC ; Γ⇒ σ) 7→ (Σ1; ΓC ; • ⇒ Bool) M1

∧ ∀M2 : (Σ2; ΓC ; Γ⇒ σ) 7→ (Σ2; ΓC ; • ⇒ Bool) M2

∧ Σ1 : M1 'log Σ2 : M2 : (ΓC ; Γ⇒ σ) 7→ (ΓC ; • ⇒ Bool)

⇒M1[e1] 'M2[e2]

C.4 λ⇒TC Theorems

C.4.1 Conjectures

We are confident that the following lemmas can be proven using well-known
proof techniques.

λ⇒
TC THEOREMS 263

Lemma 61 (Type Variable Substitution in λ⇒TC Constraint Typing).
If ΓC ; Γ1, a,Γ2 `MC C C and ΓC ; Γ1 `Mty τ σ then ΓC ; Γ1, [τ/a]Γ2 `MC
[τ/a]C [σ/a]C.

Lemma 62 (Type Well-Formedness Environment Weakening).
If ΓC1; Γ1 `Mty σ σ and `Mctx •; ΓC1,ΓC2; Γ1,Γ2 •; ΓC ; Γ then
ΓC1,ΓC2; Γ1,Γ2 `Mty σ σ.

Lemma 63 (Class Constraint Well-Formedness Environment Weakening).
If ΓC1; Γ1 `MQ Q Q′ and `Mctx •; ΓC1,ΓC2; Γ1,Γ2 •; ΓC ; Γ then
ΓC1,ΓC2; Γ1,Γ2 `MQ Q Q′.

Lemma 64 (Constraint Well-Formedness Environment Weakening).
If ΓC1; Γ1 `MC C C ′ and `Mctx •; ΓC1,ΓC2; Γ1,Γ2 •; ΓC ; Γ then
ΓC1,ΓC2; Γ1,Γ2 `MC C C ′.

Lemma 65 (Context Well-Formedness Class Environment Weakening).
If `Mctx P ; ΓC1; Γ Σ; ΓC1; Γ and `Mctx •; ΓC1,ΓC2; Γ •; ΓC1,ΓC2; Γ then
`Mctx P ; ΓC1,ΓC2; Γ Σ; ΓC1,ΓC2; Γ.

Lemma 66 (Context Well-Formedness Typing Environment Weakening).
If `Mctx P ; ΓC ; Γ1 Σ; ΓC ; Γ1 and `Mctx •; ΓC ; Γ1,Γ2 •; ΓC ; Γ1,Γ2 then
`Mctx P ; ΓC ; Γ1,Γ2 Σ; ΓC ; Γ1,Γ2.

C.4.2 Lemmas

Lemma 67 (Determinism of Context Typing).

• IfM : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ1) M1 andM : (P ; ΓC ; Γ⇒
τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M2
then τ1 = τ2.

264 COHERENCE PROOFS

• IfM : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ1) M1 andM : (P ; ΓC ; Γ⇒
τ) 7→ (P ; ΓC ; Γ′ ⇐ τ2) M2
then τ1 = τ2.

• IfM : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ1) M1 andM : (P ; ΓC ; Γ⇐
τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M2
then τ1 = τ2.

• IfM : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ1) M1 andM : (P ; ΓC ; Γ⇐
τ) 7→ (P ; ΓC ; Γ′ ⇐ τ2) M2
then τ1 = τ2.

Proof. By straightforward induction on the 1st typing derivation, in combination
with case analysis on the second derivation.

Lemma 68 (Class Constraint Elaboration to FD Uniqueness).
If ΓC ; Γ `MQ Q Q1 and ΓC ; Γ `MQ Q Q2, then Q1 = Q2.

Proof. By mutual induction on both well-formedness derivations, together with
Lemma 69.

Lemma 69 (Type Elaboration to FD Uniqueness).
If ΓC ; Γ `Mty σ σ1 and ΓC ; Γ `Mty σ σ2, then σ1 = σ2.

Proof. By mutual induction on both well-formedness derivations, together with
Lemma 68.

Lemma 70 (Constraint Elaboration to FD Uniqueness).
If ΓC ; Γ `MC C C1 and ΓC ; Γ `MC C C2, then C1 = C2.

Proof. By straightforward induction on both well-formedness derivations, in
combination with Lemma 68.

λ⇒
TC THEOREMS 265

Lemma 71 (Environment Elaboration to FD Uniqueness).
If `Mctx P ; ΓC ; Γ Σ1; ΓC1; Γ2 and `Mctx P ; ΓC ; Γ Σ2; ΓC2; Γ2, then

ΓC1 = ΓC2 and Γ1 = Γ2.

Proof. By straightforward induction on both well-formedness derivations, in
combination with Lemmas 68, 69 and 70.

Lemma 72 (Environment Well-Formedness of λ⇒TC Typing).

• If P ; ΓC ; Γ `tm e⇒ τ e then `ctx P ; ΓC ; Γ Γ.

• If P ; ΓC ; Γ `tm e⇐ τ e then `ctx P ; ΓC ; Γ Γ.

Proof. By straightforward induction on the typing derivation.

Lemma 73 (Environment Well-Formedness of λ⇒TC Typing through FD).

• If P ; ΓC ; Γ `Mtm e⇒ τ e then `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ.

• If P ; ΓC ; Γ `Mtm e⇐ τ e then `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ.

Proof. By straightforward induction on the typing derivation.

Lemma 74 (Well-Formedness of λ⇒TC Typing Result).

• If P ; ΓC ; Γ `Mtm e⇒ τ e then ΓC ; Γ `Mty τ σ.

• If P ; ΓC ; Γ `Mtm e⇐ τ e then ΓC ; Γ `Mty τ σ.

Proof. By straightforward induction on the typing derivation.

Lemma 75 (Preservation of Environment Term Variables from λ⇒TC to FD).

266 COHERENCE PROOFS

• If (x : σ) ∈ Γ and `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ then (x : σ) ∈ Γ where
ΓC ; Γ `Mty σ σ.

• If x /∈ dom(Γ) and `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ then x /∈ dom(Γ).

Proof. By straightforward induction on the environment elaboration derivation.

Lemma 76 (Preservation of Environment Type Variables from λ⇒TC to FD).

• If a ∈ Γ and `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ then a ∈ Γ.

• If a /∈ Γ and `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ then a /∈ Γ.

Proof. By straightforward induction on the environment elaboration derivation.

Lemma 77 (Preservation of Environment Dictionary Variables from λ⇒TC
to FD).

• If (δ : C) ∈ Γ and `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ then (δ : C) ∈ Γ where
ΓC ; Γ `MC C C.

• If δ /∈ dom(Γ) and `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ then δ /∈ dom(Γ).

Proof. By straightforward induction on the environment elaboration derivation.

Lemma 78 (Preservation of Environment Classes from λ⇒TC to FD).

• If (m : Ci ⇒ TC a : σ) ∈ ΓC and `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ then
(m : TC a : σ) ∈ ΓC where ΓC ; Γ `Mty σ σ.

• If m /∈ dom(ΓC) and `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ then m /∈ dom(ΓC).

Proof. By straightforward induction on the environment elaboration derivation.

λ⇒
TC THEOREMS 267

Lemma 79 (Preservation of Environment Instances from λ⇒TC to FD).

• If (D : C).m 7→ Γ′ : e ∈ P and `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ then (D :
C).m 7→ e ∈ Σ and Σ; ΓC ; Γ `d D : C where ΓC ; Γ `MC C C.

• If D /∈ dom(P) and `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ then D /∈ dom(Σ).

Proof. By case analysis the environment elaboration derivation. This theorem
is mutually proven with Theorems 21, 26, 27 and 28 (Figure C.1). Note that at
the dependency from Theorem 28 to 21, and from Lemma 79 to Theorem 21,
the size of P is strictly decreasing, whereas P remains constant at every other
dependency. Furthermore, Theorem 26 and 27 perform induction over a (finite)
derivation. Consequently, the size of P is strictly decreasing in every possible
cycle. The induction thus remains well-founded.

Since we know that (D : C).m 7→ Γ′ : e ∈ P , we know from rule sCtx-pgmInst
that

ΓC ; • `MC C C (C.1)

(m : C ′m ⇒ TC a : σ) ∈ ΓC (C.2)

P 1; ΓC ; Γ′ `Mtm e⇐ τ1 e (C.3)

ΓC ; •, a `Mty σ σ (C.4)

Σ = Σ1, (D : C).m 7→ e′,Σ2 (C.5)

`Mctx P 1; ΓC ; Γ Σ1; ΓC ; Γ (C.6)

where e′ is obtained by abstracting over the typing environment Γ′. By rule D-
con, the remaining goals to be proven are

(m : TC a : σm) ∈ ΓC (C.7)

`ctx Σ; ΓC ; Γ (C.8)

ΓC ; •, aj `C Ci
i (C.9)

Σ1; ΓC ; •, aj , δi : Ci `tm e′ : [σq/a]σm (C.10)

268 COHERENCE PROOFS

Note here that C = ∀aj .Ci ⇒ TC σq and e = Λaj .λδi : Ci .e
′. Goal C.7 follows

from Lemma 78 and Equation C.2. Goal C.8 follows by Theorem 28 and the
second hypothesis. By applying Theorem 25 to Equation C.1 we get

ΓC ; Γ `C C

Goal C.9 follows from this result through repeated case analysis (rule iC-forall
and rule iC-arrow). Finally, Goal C.10 follows by applying Theorem 21
to Equation C.3, followed by repeated case analysis (rule iTm-forallI and
rule iTm-constrI).

Lemma 80 (Environment Well-Formedness Strengthening).
If `ctx P ; ΓC ; Γ Γ then `ctx P ; ΓC ; • •.

Proof. By case analysis on the hypothesis, the last rules used to construct
it must be (possibly zero) consecutive applications of rule sCtxT-pgmInst.
Revert those rules, to obtain `ctx •; ΓC ; Γ Γ. By further case analysis
(rule sCtxT-tyEnvTm, rule sCtxT-tyEnvTy and rule sCtxT-tyEnvD),
we get `ctx •; ΓC ; • •. The goal follows by consecutively re-applying rule
rule sCtxT-pgmInst with the appropriate premises.

Lemma 81 (Environment Well-Formedness with FD Elaboration
Strengthening).
If `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ then `Mctx P ; ΓC ; • Σ; ΓC ; •.

Proof. By case analysis on the hypothesis, the last rules used to construct
it must be (possibly zero) consecutive applications of rule sCtx-pgmInst.
Revert those rules, to obtain `Mctx •; ΓC ; Γ •; ΓC ; Γ. By further case analysis
(rule sCtx-tyEnvTm, rule sCtx-tyEnvTy and rule sCtx-tyEnvD), we
get `Mctx •; ΓC ; • •; ΓC ; •. The goal follows by consecutively re-applying rule
rule sCtx-pgmInst with the appropriate premises.

C.4.3 Typing Preservation

Theorem 21 (Typing Preservation - Expressions).

λ⇒
TC THEOREMS 269

Thm 21

Thm 28

Thm 26 Thm 27

Lemma 79

Figure C.1: Dependency graph for Typing Preservation Theorems

• If P ; ΓC ; Γ `Mtm e⇒ τ e, and ΓC ; Γ `Mty τ σ, then `Mctx P ; ΓC ; Γ
Σ; ΓC ; Γ, and Σ; ΓC ; Γ `tm e : σ.

• If P ; ΓC ; Γ `Mtm e⇐ τ e, and ΓC ; Γ `Mty τ σ, then `Mctx P ; ΓC ; Γ
Σ; ΓC ; Γ, and Σ; ΓC ; Γ `tm e : σ.

Proof. This theorem is mutually proven with Theorems 26, 27, and 28, as well as
Lemma 79. This mutual dependency is illustrated in Figure C.1, where an arrow
from A to B denotes A being dependent on B. Note that at the dependency
from Theorem 28 to 21, and from Lemma 79 to Theorem 21, the size of P
is strictly decreasing, whereas P remains constant at every other dependency.
Furthermore, Theorem 26 and 27 perform induction over a (finite) derivation.
Consequently, the size of P is strictly decreasing in every possible cycle. The
induction thus remains well-founded.

By applying Lemma 73 to the 1st hypothesis, we get:

`Mctx P ; ΓC ; Γ Σ; ΓC ; Γ (C.11)

We continue by induction on the lexicographic order of the tuple (size of the
expression, typing mode). Regarding typing mode, we define type checking to
be larger than type inference. In each mutual dependency, we know that the
tuple size decreases, meaning that the induction is well-founded.

Part 1

rule sTm-inf-true

sTm-inf-true
`Mctx P ; ΓC ; Γ Σ; ΓC ; Γ

P ; ΓC ; Γ `Mtm True ⇒ Bool True

270 COHERENCE PROOFS

By rule sTy-bool, we know that:

ΓC ; Γ `Mty Bool Bool

The goal to be proven is the following:

Σ; ΓC ; Γ `tm True : Bool

From Theorem 28, we know that:

`ctx Σ; ΓC ; Γ

The goal follows from rule iTm-true.

rule sTm-inf-false

sTm-inf-false
`Mctx P ; ΓC ; Γ Σ; ΓC ; Γ

P ; ΓC ; Γ `Mtm False ⇒ Bool False
Similar to the rule sTm-inf-true case.
rule sTm-inf-let

sTm-inf-let
x /∈ dom(Γ)

unambig(∀aj .Ci ⇒ τ1)
closure(ΓC ;Ci) = Ck

ΓC ; Γ `Mty ∀aj .Ck ⇒ τ1 ∀aj .Ck ⇒ σ

δk fresh
P ; ΓC ; Γ, aj , δk : Ck `Mtm e1 ⇐ τ1 e1

P ; ΓC ; Γ, x : ∀aj .Ck ⇒ τ1 `Mtm e2 ⇒ τ2 e2
e = let x : ∀aj .Ck ⇒ σ = Λaj .λδk : Ck .e1 in e2

P ; ΓC ; Γ `Mtm let x : ∀aj .Ci ⇒ τ1 = e1 in e2 ⇒ τ2 e

Given
ΓC ; Γ `Mty τ2 σ2

The goal to be proven is the following:

Σ; ΓC ; Γ `tm let x : ∀aj .Ck ⇒ σ = Λaj .λδk : Ck .e1 in e2 : σ2

By case analysis on Equation C.11 (rule sCtx-pgmInst), we know:

`Mctx •; ΓC ; Γ •; ΓC ; Γ (C.12)

From the rule premise we know that:

ΓC ; Γ `Mty ∀aj .Ck ⇒ τ1 ∀aj .Ck ⇒ σ (C.13)

Applying Theorem 25 to Equations C.12 and C.13, we get that:

ΓC ; Γ `ty ∀aj .Ck ⇒ σ (C.14)

λ⇒
TC THEOREMS 271

By repeated case analysis on Equation C.13 (rule sTy-scheme and
rule sTy-qual), we get that:

aj /∈ Γ

ΓC ; Γ, aj `MC Ck Ck
k

Applying these results, together with Equation C.12, to rule sCtx-
tyEnvTy and rule sCtx-tyEnvD, we get:

`Mctx •; ΓC ; Γ, aj , δk : Ck •; ΓC ; Γ, aj , δk : Ck (C.15)

By weakening (Lemma 66) on Equations C.11 and C.15, we get:

`Mctx P ; ΓC ; Γ, aj , δk : Ck Σ; ΓC ; Γ, aj , δk : Ck (C.16)

The rule premise also gives us that:

P ; ΓC ; Γ, aj , δk : Ck `Mtm e1 ⇐ τ1 e1 (C.17)

By applying induction hypothesis with Equations C.13 and C.17, we get
that:

Σ; ΓC ; Γ, aj , δk : Ck `tm e1 : σ

Because of rule iTm-constrI and rule iTm-forallI, it is equivalent to
say that:

Σ; ΓC ; Γ `tm Λaj .λδk : Ck .e1 : ∀aj .Ck ⇒ σ (C.18)

Through a similar analysis, we get that:

Σ; ΓC ; Γ, x : ∀aj .Ck ⇒ σ `tm e2 : σ2 (C.19)

By rule iTm-let, in combination with Equations C.14, C.18 and C.19,
the goal has been proven.
rule sTm-inf-ArrE

sTm-inf-ArrE
P ; ΓC ; Γ `Mtm e1 ⇒ τ1 → τ2 e1
P ; ΓC ; Γ `Mtm e2 ⇐ τ1 e2

P ; ΓC ; Γ `Mtm e1 e2 ⇒ τ2 e1 e2

From the rule premise:

P ; ΓC ; Γ `Mtm e1 ⇒ τ1 → τ2 e1 (C.20)

P ; ΓC ; Γ `Mtm e2 ⇐ τ1 e2 (C.21)

272 COHERENCE PROOFS

The goal to be proven is the following:

Σ; ΓC ; Γ `tm e1 e2 : σ2

where ΓC ; Γ `Mty τ2 σ2.
Because the typing result is well-formed (Lemma 74), we know:

ΓC ; Γ `Mty τ1 → τ2 σ1 → σ2

By applying the induction hypothesis on Equations C.20 and C.21, we
know respectively:

Σ; ΓC ; Γ `tm e1 : σ1 → σ2

Σ; ΓC ; Γ `tm e2 : σ1

The goal follows from rule iTm-arrE.

rule sTm-inf-Ann

sTm-inf-Ann
P ; ΓC ; Γ `Mtm e⇐ τ e

P ; ΓC ; Γ `Mtm e :: τ ⇒ τ e
Follows directly from the induction hypothesis.

Part 2
rule sTm-check-var

sTm-check-var
(x : ∀aj .Ci ⇒ τ) ∈ Γ
unambig(∀aj .Ci ⇒ τ)

P ; ΓC ; Γ �M [[τ j/aj]Ci] di
i

ΓC ; Γ `Mty τ j σj
j

`Mctx P ; ΓC ; Γ Σ; ΓC ; Γ
P ; ΓC ; Γ `Mtm x⇐ [τ j/aj]τ xσj di

From the rule premise:

(x : ∀aj .Ci ⇒ τ) ∈ Γ

By repeated case analysis on Equation C.11 (rule sCtx-pgmInst), we
get that:

`Mctx •; ΓC ; Γ •; ΓC ; Γ (C.22)
By case analysis on Equation C.22 (rule sCtx-tyEnvTm), we know:

(x : ∀aj .Ci ⇒ τ) ∈ Γ (C.23)

ΓC ; Γ1 `Mty ∀aj .Ci ⇒ τ ∀aj .Ci ⇒ σ (C.24)

λ⇒
TC THEOREMS 273

where Γ = Γ1, x : ∀aj .Ci ⇒ τ ,Γ2.
By applying Lemma 75 to Equation C.23, we get:

(x : ∀aj .Ci ⇒ σ) ∈ Γ (C.25)

Furthermore, from the rule premise, we know that:

ΓC ; Γ `Mty τ j σj
j

(C.26)

By Typing Preservation - Types (Theorem 25), together with Equa-
tion C.22, we have:

ΓC ; Γ `ty σj
j (C.27)

Similarly, the rule premise tells us that:

P ; ΓC ; Γ �M [[τ j/aj]Ci] di
i

(C.28)

By applying weakening (Lemma 62) to Equation C.24, we get:

ΓC ; Γ `Mty ∀aj .Ci ⇒ τ ∀aj .Ci ⇒ σ (C.29)

By repeated case analysis on Equation C.29 (rule sTy-qual), we get
that:

ΓC ; Γ, aj `MC Ci Ci
i

(C.30)
By applying Lemma 61 on Equations C.30 and C.26, we get:

ΓC ; Γ `MC [τ j/aj]Ci [σj/aj]Ci
i

(C.31)

By Typing Preservation - Constraint Entailment (Theorem 26), applied
to Equations C.28, C.11 and C.31, we have:

Σ; ΓC ; Γ `d di : [σj/aj]Ci
i (C.32)

The goal to be proven is the following:

Σ; ΓC ; Γ `tm xσj di : [σj/aj]σ

where ΓC ; Γ `Mty [τ j/aj]τ [σj/aj]σ.
From Equation C.25, by applying rule iTm-var, we get

Σ; ΓC ; Γ `tm x : ∀aj .Ci ⇒ σ (C.33)

By Equations C.27, C.33 and rule iTm-forallE, we get:

Σ; ΓC ; Γ `tm xσj : [σj/aj]Ci ⇒ [σj/aj]σ (C.34)

274 COHERENCE PROOFS

By Equations C.32 and C.34, in combination with rule rule iTm-constrE,
we get

Σ; ΓC ; Γ `tm xσj di : [σj/aj]σ (C.35)
which is exactly the goal.
rule sTm-check-meth

sTm-check-meth
(m : C ′k ⇒ TC a : ∀aj .Ci ⇒ τ ′) ∈ ΓC

unambig(∀aj , a.Ci ⇒ τ ′)
P ; ΓC ; Γ �M [TC τ] d

ΓC ; Γ `Mty τ σ

P ; ΓC ; Γ �M [[τ j/aj][τ/a]Ci] di
i

ΓC ; Γ `Mty τ j σj
j

`Mctx P ; ΓC ; Γ Σ; ΓC ; Γ
P ; ΓC ; Γ `Mtm m⇐ [τ j/aj][τ/a]τ ′ d.mσj di

The goal to be proven is the following:

Σ; ΓC ; Γ `tm d.mσj di : [σj/aj][σ/a]σ′ (C.36)

where ΓC ; •, aj , a `Mty τ ′ σ′.
From the rule premise, we get that:

P ; ΓC ; Γ �M [TC τ] d (C.37)

ΓC ; Γ `Mty τ σ (C.38)

By repeated case analysis on Equation C.11 (rule sCtx-clsEnv), together
with the 1st rule premise, we get:

ΓC1; •, a `Mty ∀aj .Ci ⇒ τ ′ σ′′

where ΓC = ΓC1,m : C ′k ⇒ TC a : ∀aj .Ci ⇒ τ ′,ΓC2.
Following rule sQ-TC, in combination with this result, Equation C.38
and the 1st rule premise, we have:

ΓC ; Γ `MQ TC τ TC σ (C.39)

Applying Typing Preservation - Constraints Proving (Theorem 26) on
Equations C.37 and C.39, we get:

Σ; ΓC ; Γ `d d : TC σ (C.40)

Furthermore, we know from the rule premise that:

(m : C ′k ⇒ TC a : ∀aj .Ci ⇒ τ ′) ∈ ΓC

λ⇒
TC THEOREMS 275

Consequently, by repeated case analysis on Equation C.11 (rule sCtx-
clsEnv), we know that:

(m : TC a : σ′′) ∈ ΓC (C.41)

By Equations C.40 and C.41, in combination with rule rule iTm-method,
we get:

Σ; ΓC ; Γ `tm d.m : [σ/a]σ′′

The rest of the proof is similar to case rule sTm-check-var.
rule sTm-check-ArrI

sTm-check-ArrI
x /∈ dom(Γ)

P ; ΓC ; Γ, x : τ1 `Mtm e⇐ τ2 e

ΓC ; Γ `Mty τ1 σ

P ; ΓC ; Γ `Mtm λx.e⇐ τ1 → τ2 λx : σ.e
The second hypothesis is:

`Mctx P ; ΓC ; Γ Σ; ΓC ; Γ

It is easy to verify that

`Mctx P ; ΓC ; Γ, x : τ1 Σ; ΓC ; Γ, x : σ

The goal follows directly by applying the induction hypothesis, in
combination with rule rule iTm-arrI.

rule sTm-check-Inf

sTm-check-Inf
P ; ΓC ; Γ `Mtm e⇒ τ e

P ; ΓC ; Γ `Mtm e⇐ τ e
Follows directly from the induction hypothesis.

Theorem 22 (Typing Preservation - Instance).
If P ; ΓC `Minst inst : P ′, and `Mctx P ; ΓC ; • Σ; ΓC ; • then we have `Mctx
P , P ′; ΓC ; • Σ,Σ′; ΓC ; •.

Proof. We restate the rule for typing instance declarations for reference:

276 COHERENCE PROOFS

sInst-inst
(m : C ′i ⇒ TC a : ∀aj .Cy ⇒ τ1) ∈ ΓC

bk = fv(τ)
ΓC ; •, bk `Mty τ σ

closure(ΓC ;Cp) = Cq
unambig(∀bk .Cq ⇒ TC τ)

ΓC ; •, bk `MC Cq Cq
q

P ; ΓC ; •, bk , δq : Cq �M [[τ/a]C ′i] di
i

P ; ΓC ; •, bk , δq : Cq, aj , δy : [τ/a]Cy `Mtm e⇐ [τ/a]τ1 e
D fresh

δy fresh δq fresh
(D′ : ∀b′m.C

′
n ⇒ TC τ2).m′ 7→ Γ′ : e′ /∈ P where [τ ′m/b

′
m]τ2 = [τ ′k/bk]τ

P ′ = (D : ∀bk .Cq ⇒ TC τ).m 7→ •, bk , δq : Cq, aj , δy : [τ/a]Cy : e
P ; ΓC `Minst instance Cp ⇒ TC τ where {m = e} : P ′

By inversion of rule rule sInst-inst, we know that:

P ′ = (D : ∀bk .Cq ⇒ TC τ).m 7→ •, bk , δq : Cq, aj , δy : [τ/a]Cy : e

Therefore our goal is

`Mctx P , (D : ∀bk .Cq ⇒ TC τ).m 7→ •, bk , δq : Cq, aj , δy : [τ/a]Cy : e; ΓC ; • Σ,Σ′; ΓC ; •
(C.42)

From the hypothesis, we know that:

`Mctx P ; ΓC ; • Σ; ΓC ; • (C.43)

Goal C.42 follows directly from rule sCtx-pgmInst with

Σ′ = (D : ∀bk .Cq ⇒ TC σ).m 7→ Λbk .λδq : Cq.Λaj .λδy : [σ/a]Cy.e

λ⇒
TC THEOREMS 277

if we can show the following:

unambig(∀bk .Cq ⇒ TC τ) (C.44)

ΓC ; • `MC ∀bk .Cq ⇒ TC τ ∀bk .Cq ⇒ TC σ (C.45)

(m : C ′i ⇒ TC a : ∀aj .Cy ⇒ τ1) ∈ ΓC (C.46)

P ; ΓC ; •, bk , δq : Cq, aj , δy : [τ/a]Cy `Mtm e⇐ [τ/a]τ1 e (C.47)

ΓC ; •, a `Mty ∀aj .Cy ⇒ τ1 σ′ (C.48)

D /∈ dom(P) (C.49)

(D′ : ∀b′k .C
′′
y ⇒ TC τ ′′).m′ 7→ Γ′ : e′ /∈ P (C.50)

where[τ j/bj]τ = [τ ′k/b
′
k]τ ′′ (C.51)

`Mctx P ; ΓC ; • Σ; ΓC ; • (C.52)

Goal C.52 is exactly Equation C.43, which we already have. Goals C.44 and
C.46 follow directly from the premise of rule sInst-inst. The premise also tells
us that D is freshly generated, which satisfies Goal C.49. Similarly Goals C.47,
C.50 and C.51 can be proven directly from the rule premise.

From the premise, we know:

ΓC ; •, bk `Mty τ σ (C.53)

ΓC ; •, bk `MC Cq Cq
q

(C.54)

Goal C.45 follows directly from the definition of well-formedness of constraints
and types. Goals C.47 and C.48 remain to be proven.

From the rule premise, we know that

(m : C ′i ⇒ TC a : ∀aj .Cy ⇒ τ1) ∈ ΓC (C.55)

From the definition of well-formedness of the source context, we know that:

ΓC1; •, a `Mty ∀aj .Cy ⇒ τ1 σ′

ΓC = ΓC1,ΓC2

By weakening of class environment (Lemma 62), we can prove Goal C.48.

278 COHERENCE PROOFS

Theorem 23 (Typing Preservation - Classes).
If ΓC `Mcls cls : ΓC ′, and `Mctx P ; ΓC ; • Σ; ΓC ; •, then we have `Mctx
P ; ΓC ,ΓC ′; • Σ; ΓC ,ΓC ′; •.

Proof. We restate the rule for class declaration typing for reference:

sCls-cls
m /∈ dom(ΓC)

closure(ΓC ;Cm) = Cn
ΓC ; •, a `Mty ∀aj .Cn ⇒ τ σ

unambig(∀aj , a.Cn ⇒ τ)
ΓC ; •, a `MC Ci Ci

i<q

@TC ′ : (m : C ′w ⇒ TC ′ b : σ′) ∈ ΓC
@m′ : (m′ : C ′w ⇒ TC a : σ′) ∈ ΓC

ΓC ′ = m : Cq ⇒ TC a : ∀aj .Cn ⇒ τ

ΓC `Mcls class Cq ⇒ TC awhere {m : ∀aj .Cm ⇒ τ} : ΓC ′

By case analysis, we know that ΓC ′ is of the form

•,m : Cq ⇒ TC a : ∀aj .Cn ⇒ τ

The goal to be proven is the following:

`Mctx P ; ΓC ,m : Cq ⇒ TC a : ∀aj .Cn ⇒ τ ; • Σ; ΓC ,m : TC a : σ; • (C.56)

We can derive from rule sCtx-clsEnv that

`Mctx •; ΓC ,m : Cq ⇒ TC a : ∀aj .Cn ⇒ τ ; • •; ΓC ,m : TC a : σ; • (C.57)

assuming we can show that:

ΓC ; •, a `Mty ∀aj .Cn ⇒ τ σ (C.58)

aj , a = fv(τ) (C.59)

ΓC ; •, a `MQ TC i a Qi
i

(C.60)

m /∈ dom(ΓC) (C.61)

TC b /∈ dom(ΓC) (C.62)

`Mctx •; ΓC ; • •; ΓC ; • (C.63)

λ⇒
TC THEOREMS 279

Goals C.58 till C.62 follow directly from the premises and from the hypothesis.
Goal C.63 follows by repeated inversion on the second hypothesis. Finally,
Goal C.56 follows from Equation C.57 by the definition of environment well-
formedness and the second hypothesis.

Theorem 24 (Typing Preservation - Programs).
If P ; ΓC `Mpgm pgm : τ ;P ′; ΓC ′ e, and `Mctx P ; ΓC ; • Σ; ΓC ; •, and
ΓC ,ΓC ′; • `Mty τ σ then we have `Mctx P , P ′; ΓC ,ΓC ′; • Σ,Σ′; ΓC ,ΓC ′; •,
and we have Σ,Σ′; ΓC ,ΓC ′; • `tm e : σ.

Proof. By structural induction on the typing derivation.

rule sPgmCls

sPgm-cls
ΓC `Mcls cls : ΓC ′

P ; ΓC ,ΓC ′ `Mpgm pgm : τ ;P ′; ΓC ′′ e

P ; ΓC `Mpgm cls; pgm : τ ;P ′; ΓC ′,ΓC ′′ e
We know that

`Mctx P ; ΓC ; • Σ; ΓC ; •

By inversion it follows that:

`Mctx •; ΓC ; • •; ΓC ; •

By Typing Preservation - Classes (Theorem 23), we know

`Mctx •; ΓC ,ΓC ′; • •; ΓC ,ΓC ′; •

Through weakening (Lemma 65), we know that

`Mctx P ; ΓC ,ΓC ′; • Σ; ΓC ,ΓC ′; •

The goal follows directly from the induction hypothesis.

rule sPgm-Inst

sPgm-inst
P ; ΓC `Minst inst : P ′

P , P ′; ΓC `Mpgm pgm : τ ;P ′′; ΓC ′ e

P ; ΓC `Mpgm inst; pgm : τ ;P ′, P ′′; ΓC ′ e
We know that

`Mctx P ; ΓC ; • Σ; ΓC ; •

By Typing Preservation - Instance (Theorem 22), we know that

`Mctx P , P
′; ΓC ; • Σ,Σ′; ΓC ; • (C.64)

280 COHERENCE PROOFS

The goal follows directly from the induction hypothesis.

rule sPgm-expr

sPgm-expr
P ; ΓC ; • `Mtm e⇒ τ e

P ; ΓC `Mpgm e : τ ; •; • e
Follows directly from Typing Preservation - Expressions (Theorem 21).

Theorem 25 (Typing Preservation - Types and Constraints).

• If ΓC ; Γ `Mty σ σ, and `Mctx •; ΓC ; Γ •; ΓC ; Γ, then ΓC ; Γ `ty σ.

• If ΓC ; Γ `MQ Q Q, and `Mctx •; ΓC ; Γ •; ΓC ; Γ, then ΓC ; Γ `Q Q .

• If ΓC ; Γ `MC C C, and `Mctx •; ΓC ; Γ •; ΓC ; Γ, then ΓC ; Γ `C C .

Proof. By induction on the lexicographic order of the tuple (size of ΓC , the
derivation height of type well-formedness and the constraint well-formedness).
In each mutual dependency (with the exception of going from part 3 to part 2),
the size of the tuple is decreasing, so we know that the induction is well-founded.

Part 1

rule sTy-bool

sTy-bool

ΓC ; Γ `Mty Bool Bool
Follows directly by rule iTy-bool.

rule sTy-var

sTy-var
a ∈ Γ

ΓC ; Γ `Mty a a

It is easy to verify that for any environment for which `Mctx P ; ΓC ; Γ
Σ; ΓC ; Γ holds, a ∈ Γ implies a ∈ Γ. Therefore, the goal follows from
rule iTy-var.

rule sTy-arrow

sTy-arrow
ΓC ; Γ `Mty τ1 σ1
ΓC ; Γ `Mty τ2 σ2

ΓC ; Γ `Mty τ1 → τ2 σ1 → σ2
By induction hypothesis, we get

ΓC ; Γ `ty σ1

ΓC ; Γ `ty σ2

λ⇒
TC THEOREMS 281

The goal follows directly from rule iTy-Arrow.

rule sTy-qual

sTy-qual
ΓC ; Γ `MC C C

ΓC ; Γ `Mty ρ σ

ΓC ; Γ `Mty C ⇒ ρ C ⇒ σ
By induction hypothesis, we get

ΓC ; Γ `ty σ

By Part 2 of this lemma, we get

ΓC ; Γ `C C

The goal follows directly from rule iTy-Qual.

rule sTy-scheme

sTy-scheme
a /∈ Γ

ΓC ; Γ, a `Mty σ σ

ΓC ; Γ `Mty ∀a.σ ∀a.σ
Given `Mctx •; ΓC ; Γ •; ΓC ; Γ, by rule sCtx-tyEnvTy, we know that
`Mctx •; ΓC ; Γ, a •; ΓC ; Γ, a By induction hypothesis, we get

ΓC ; Γ, a `ty σ

The goal follows directly by rule iTy-scheme.

Part 2

rule sQ-TC

sQ-TC
ΓC ; Γ `Mty τ σ

ΓC = ΓC1,m : Ci ⇒ TC a : σ,ΓC2
ΓC1; •, a `Mty σ σ′

ΓC ; Γ `MQ TC τ TC σ

By Part 1 of this lemma, we know that

ΓC ; Γ `ty σ (C.65)

It is easy to verify that given any environment for which

`Mctx •; ΓC ; Γ •; ΓC ; Γ

ΓC = ΓC1,m : Ci ⇒ TC a : σ,ΓC2 (C.66)

then

ΓC = ΓC1,m : TC a : σ′,ΓC2

`Mctx •; ΓC1; • •; ΓC1; •

ΓC1; •, a `Mty σ σ′

282 COHERENCE PROOFS

By rule sCtx-TyEnvTy, we get

`Mctx •; ΓC1; •, a •; ΓC1; •, a

The size of ΓC1 is trivially smaller than ΓC . So by induction hypothesis,
we have

ΓC ; •, a `ty σ′ (C.67)

The goal follows directly from rule sQ-TC, and Equations C.65, C.66,
C.67.

Part 3

rule sC-forall

sC-forall
ΓC ; Γ, a `MC C C

a /∈ Γ
ΓC ; Γ `MC ∀a.C ∀a.C

By rule sCtx-tyEnvTy, we know that `Mctx •; ΓC ; Γ, a •; ΓC ; Γ, a. By
the induction hypothesis, we then get

ΓC ; Γ, a `C C

The goal follows by rule iC-forall.

rule sC-arrow

sC-arrow
ΓC ; Γ `MC C1 C1
ΓC ; Γ `MC C2 C2

ΓC ; Γ `MC C1 ⇒ C2 C1 ⇒ C2
By the induction hypothesis, we get

ΓC ; Γ `C C1

ΓC ; Γ `C C2

The goal follows by rule iC-arrow.

rule sC-classconstr

sC-classconstr
ΓC ; Γ `MQ Q Q

ΓC ; Γ `MC Q Q
The goal follows directly by Part 2 of this lemma.

Theorem 26 (Typing Preservation - Constraint Entailment).
If P ; ΓC ; Γ �M [C] d, and `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ, and ΓC ; Γ `MC C C,
then Σ; ΓC ; Γ `d d : C.

λ⇒
TC THEOREMS 283

Proof. By induction on the constraint resolution derivation tree. This theorem is
mutually proven with Theorems 21, 27, and 28, as well as Lemma 79 (Figure C.1).
Note that at the dependency from Theorem 28 to 21, and from Lemma 79 to
Theorem 21, the size of P is strictly decreasing, whereas P remains constant at
every other dependency. Furthermore, this theorem and Theorem 27 perform
induction over a (finite) derivation. Consequently, the size of P is strictly
decreasing in every possible cycle. The induction thus remains well-founded.

rule sEntail-arrow

sEntail-arrow
P ; ΓC ; Γ, δ1 : C1 �

M [C2] d

ΓC ; Γ `MC C1 C1

P ; ΓC ; Γ �M [C1 ⇒ C2] λδ1 : C1.d
Case analysis on the third hypothesis (rule sC-arrow) gives us

ΓC ; Γ `MC C1 C1

ΓC ; Γ `MC C2 C2

Applying Lemma 66 in combination with rule sCtx-tyEnvD, results in

`Mctx P ; ΓC ; Γ, δ : C1 Σ; ΓC ; Γ, δ : C1

Using these results, we can apply the induction hypothesis to obtain

Σ; ΓC ; Γ, δ : C1 `d d : C2

The goal now follows by rule D-dabs (the well-formedness of C1 is derived
through Theorem 25).

rule sEntail-forall

sEntail-forall
P ; ΓC ; Γ, a �M [C] d

P ; ΓC ; Γ �M [∀a.C] Λa.d
Case analysis on the third hypothesis (rule sC-forall) gives us

ΓC ; Γ, a `MC C C

Applying Lemma 66 in combination with rule sCtx-tyEnvTy, results in

`Mctx P ; ΓC ; Γ, a Σ; ΓC ; Γ, a

Using these results, we can apply the induction hypothesis to obtain

Σ; ΓC ; Γ, a `d d : C

The goal now follows by rule D-tyabs.

rule sEntail-inst

sEntail-inst
P = P 1, (D : C).m 7→ Γ′ : e, P 2
`Mctx P ; ΓC ; Γ Σ; ΓC ; Γ

P ; ΓC ; Γ; [•; • ` D : C] �M Q • ` d
P ; ΓC ; Γ �M [Q] d

284 COHERENCE PROOFS

As we know that (D : C).m 7→ Γ′ : e ∈ P and `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ, if
follows from rule sCtx-pgmInst that

ΓC ; • `MC C C

By Weakening Lemma 64:

ΓC ; Γ `MC C C

It follows from Lemma 79 that

Σ; ΓC ; Γ `d D : C

Using these results, the goal follows directly from Theorem 27.

rule sEntail-local

sEntail-local
(δ : C) ∈ Γ

`Mctx P ; ΓC ; Γ Σ; ΓC ; Γ
P ; ΓC ; Γ; [•; • ` δ : C] �M Q • ` d

P ; ΓC ; Γ �M [Q] d

As we know that (δ : C) ∈ Γ and `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ, we can easily derive
from rule sCtx-tyEnvD and Weakening Lemma 64 that

ΓC ; Γ `MC C C

It follows from Lemma 77 that

Σ; ΓC ; Γ `d δ : C

Using these results, the goal follows directly from Theorem 27.

Theorem 27 (Typing Preservation - Constraint Matching).
If P ; ΓC ; Γ; [a; δ : C ` d1 : C1] �M Q2 τ ` d2,
and `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ,
and ΓC ; Γ `MQ Q2 Q2, and ΓC ; Γ, a `MC C1 C1,

and ΓC ; Γ, a `MC Ci Ci
i
and ΓC ; Γ `Mty τ j σj

j

and Σ; ΓC ; Γ, a, δ : C `d d1 : C1, then Σ; ΓC ; Γ, δ : [σ/a]C `d d2 : Q2.

Proof. By induction on the constraint matching derivation. This theorem is
mutually proven with Theorems 21, 26, and 28, as well as Lemma 79 (Figure C.1).
Note that at the dependency from Theorem 28 to 21, and from Lemma 79 to
Theorem 21, the size of P is strictly decreasing, whereas P remains constant at
every other dependency. Furthermore, this theorem and Theorem 26 perform
induction over a (finite) derivation. Consequently, the size of P is strictly

λ⇒
TC THEOREMS 285

decreasing in every possible cycle. The induction thus remains well-founded.

rule sMatch-arrow

sMatch-arrow
P ; ΓC ; Γ; [a; δ : C, δ1 : C1 ` d0 δ1 : C2] �M Q τ ` d2

P ; ΓC ; Γ �M [[τ/a]C1] d1

P ; ΓC ; Γ; [a; δ : C ` d0 : C1 ⇒ C2] �M Q τ ` [d1/δ1]d2
Case analysis on the fourth hypothesis ΓC ; Γ, a `MC C ′2 ⇒ C ′′2 C ′2 ⇒ C ′′2
(rule sC-arrow) gives us

ΓC ; Γ, a `MC C ′2 C ′2

ΓC ; Γ, a `MC C ′′2 C ′′2

Note that from the 7th hypothesis we have that

Σ; ΓC ; Γ, a, δ : C `d d0 : C ′2 ⇒ C ′′2

By rule D-var it is easy to see that

Σ; ΓC ; Γ, a, δ : C, δ1 : C ′2 `d δ1 : C ′2

Combining these results (using Weakening Lemma 96) with rule D-dapp gives
us

Σ; ΓC ; Γ, a, δ : C, δ1 : C ′2 `d d0 δ1 : C ′′2
By the induction hypothesis we get that

Σ; ΓC ; Γ, δ : [σ/a]C, δ1 : [σ/a]C ′2 `d d2 : Q2 (C.68)

By Lemma 61, in combination with the 6th hypothesis

ΓC ; Γ `MC [τ/a]C ′2 [σ/a]C ′2

We can then apply Theorem 26 on the 2nd rule hypothesis:

Σ; ΓC ; Γ `d d1 : [σ/a]C ′2

The goal now follows by applying Substitution Lemma 91 in Equation C.68,
using this result.

rule sMatch-forall

sMatch-forall
P ; ΓC ; Γ; [a, a; δ : C ` d0 a : C] �M Q τ , τ ` d1

P ; ΓC ; Γ; [a; δ : C ` d0 : ∀a.C] �M Q τ ` d1
Case analysis on the fourth hypothesis ΓC ; Γ, a `MC ∀a.C

′
2 ∀a.C

′
2 (rule sC-

forall) gives us
ΓC ; Γ, a, a `MC C ′2 C ′2

286 COHERENCE PROOFS

By rule D-tyapp and the (weakened) 7th hypothesis, together with rule iTy-
var:

Σ; ΓC ; Γ, a, a `d d0 a : C ′2
By the induction hypothesis we get

Σ; ΓC ; Γ, δ : [σ/a][σ/a]C `d d1 : Q2

However, the 5th hypothesis tells us that C is well formed under Γ, a. The goal
thus follows directly from this result.
rule sMatch-classconstr

sMatch-classconstr
τ1 = [τ/a]τ0

ΓC ; Γ `Mty τ i σi
i

P ; ΓC ; Γ; [a; δ : C ` d0 : TC τ0] �M TC τ1 τ ` [σ/a]d0

As we know from the 7th hypothesis that

Σ; ΓC ; Γ, a, δ : C `d d0 : TC σ0

the goal
Σ; ΓC ; Γ, δ : [σ/a]C `d [σ/a]d0 : TC [σ/a]σ0

follows directly from Lemma 93.

Theorem 28 (Typing Preservation - Environment Well-Formedness).
If `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ, then `ctx Σ; ΓC ; Γ.

Proof. By induction on the well-formedness derivation. This theorem is mutually
proven with Theorems 21, 26, and 27, as well as Lemma 79 (Figure C.1). Note
that at the dependency from Theorem 28 to 21, and from Lemma 79 to
Theorem 21, the size of P is strictly decreasing, whereas P remains constant at
every other dependency. Furthermore, Theorem 26 and 27 perform induction
over a (finite) derivation. Consequently, the size of P is strictly decreasing in
every possible cycle. The induction thus remains well-founded.

rule sCtx-empty

sCtx-empty

`Mctx •; •; • •; •; •
Follows directly by rule iCtx-empty.

rule sCtx-tyEnvTm

sCtx-tyEnvTm
ΓC ; Γ `Mty σ σ
x /∈ dom(Γ)

`Mctx •; ΓC ; Γ •; ΓC ; Γ
`Mctx •; ΓC ; Γ, x : σ •; ΓC ; Γ, x : σ

λ⇒
TC THEOREMS 287

By induction hypothesis, we know

`ctx •; ΓC ; Γ

By Typing Preservation - Types and Class Constraints (Theorem 25), we know

ΓC ; Γ `ty σ

Since x /∈ dom(Γ), it is easy to verify that x /∈ dom(Γ). Therefore the goal
follows directly by rule iCtx-tyEnvTm.

rule sCtx-tyEnvTy

sCtx-tyEnvTy
a /∈ Γ

`Mctx •; ΓC ; Γ •; ΓC ; Γ
`Mctx •; ΓC ; Γ, a •; ΓC ; Γ, a

By induction hypothesis, we know

`ctx •; ΓC ; Γ

Since we know a /∈ Γ, it is easy to verify that a /∈ Γ. Therefore the goal follows
directly by rule iCtx-tyEnvTy.

rule sCtx-tyEnvD

sCtx-tyEnvD
ΓC ; Γ `MC C C
δ /∈ dom(Γ)

`Mctx •; ΓC ; Γ •; ΓC ; Γ
`Mctx •; ΓC ; Γ, δ : C •; ΓC ; Γ, δ : C

By induction hypothesis, we know

`ctx •; ΓC ; Γ

By Typing Preservation - Types and Class Constraints (Theorem 25), we know

ΓC ; Γ `C C

Since δ /∈ dom(Γ), it is easy to verify that δ /∈ dom(Γ). Therefore the goal
follows directly by rule iCtx-tyEnvD.
rule sCtx-clsEnv

sCtx-clsEnv
ΓC ; •, a `Mty ∀aj .Ci ⇒ τ σ

aj , a = fv(τ)
ΓC ; •, a `MC Ci Qi

i

m /∈ dom(ΓC)
TC b /∈ dom(ΓC)

`Mctx •; ΓC ; • •; ΓC ; •
`Mctx •; ΓC ,m : Ci ⇒ TC a : ∀aj .Ci ⇒ τ ; • •; ΓC ,m : TC a : σ; •

288 COHERENCE PROOFS

By induction hypothesis, we know

`ctx •; ΓC ; •

By rule sCtx-tyEnvTy, we know that

`Mctx •; ΓC ; •, a •; ΓC ; •, a

Then by Typing Preservation - Types and Class Constraints (Theorem 25), we
know

ΓC ; •, a `ty σ

It is easy to verify that given m /∈ dom(ΓC),TC b /∈ dom(ΓC), we can derive
m /∈ dom(ΓC),TC b /∈ dom(ΓC).

The goal follows directly by rule iCtx-ClsEnv.
rule sCtx-pgmInst

sCtx-pgmInst
unambig(∀bj .Ci ⇒ TC τ)

ΓC ; • `MC ∀bj .Ci ⇒ TC τ ∀bj .Ci ⇒ TC σ

(m : C ′m ⇒ TC a : ∀ak .Cy ⇒ τ ′) ∈ ΓC
P ; ΓC ; •, bj , δi : Ci , ak , δy : [τ/a]Cy `Mtm e⇐ [τ/a]τ ′ e

ΓC ; •, a `Mty ∀ak .Cy ⇒ τ ′ ∀ak .Cy ⇒ σ′

D /∈ dom(P)
(D′ : ∀b′k .C

′′
y ⇒ TC τ ′′).m′ 7→ Γ′ : e′ /∈ P

where[τ j/bj]τ = [τ ′k/b
′
k]τ ′′

`Mctx P ; ΓC ; Γ Σ; ΓC ; Γ
Σ′ = Σ, (D : ∀bj .Ci ⇒ TC σ).m 7→ Λbj .λδi : Ci .Λak .λδy : [σ/a]Cy.e

`Mctx P , (D : ∀bj .Ci ⇒ TC τ).m 7→ •, bj , δi : Ci , ak , δy : [τ/a]Cy : e; ΓC ; Γ Σ′; ΓC ; Γ
By induction hypothesis, we know that

`ctx Σ; ΓC ; Γ (C.69)

Also, since we know that

`Mctx P ; ΓC ; Γ Σ; ΓC ; Γ

by applying inversion, we get:

`Mctx •; ΓC ; Γ •; ΓC ; Γ (C.70)

From the premise, we already know

ΓC ; • `MC ∀bj .Ci ⇒ TC τ ∀bj .Ci ⇒ TC σ (C.71)

λ⇒
TC THEOREMS 289

Then by Typing Preservation - Types and Class Constraints (Theorem 25) on
Equations C.70 and C.71, we know

ΓC ; • `C ∀bj .Ci ⇒ TC σ (C.72)

From the 3rd rule premise, we know that

(m : C ′m ⇒ TC a : ∀ak .Cy ⇒ τ ′) ∈ ΓC (C.73)

By inversion on Equation C.70 (rule sCtx-clsEnv), together with Equa-
tion C.73, we get

(m : TC a : σ1) ∈ ΓC (C.74)

ΓC1; •, a `Mty ∀ak .Cy ⇒ τ ′ σ1 (C.75)

ΓC = ΓC1,ΓC2 (C.76)

By applying weakening (Lemma 62) on Equation C.75, we have

ΓC ; •, a `Mty ∀ak .Cy ⇒ τ ′ σ1 (C.77)

From the 5th rule premise, we know that

ΓC ; •, a `Mty ∀ak .Cy ⇒ τ ′ ∀ak .Cy ⇒ σ′ (C.78)

Because the elaboration of types is deterministic (Lemma 69), combining
Equations C.77 and C.78, we know that σ1 = ∀ak .Cy ⇒ σ′. By rewriting
Equation C.74, we get

(m : TC a : ∀ak .Cy ⇒ σ′) ∈ ΓC (C.79)

By applying Theorem 21 to the 4th rule premise, we get:

Σ; ΓC ; •, bj , δi : Ci , ak , δy : [σ/a]Cy `tm e : [σ/a]σ′ (C.80)

Lemma 113, applied to this result, gives us:

`ctx Σ; ΓC ; •, bj , δi : Ci , ak , δy : [σ/a]Cy (C.81)

Furthermore, by applying rule iTm-constrI and rule iTm-forallI to
Equation C.80, in combination with inversion on Equation C.81, we get

Σ; ΓC ; • `tm Λbj .λδi : Ci .Λak .λδy : [σ/a]Cy.e : ∀bj .Ci ⇒ ∀ak .[σ/a]Cy ⇒ [σ/a]σ′

which is equivalent to

Σ; ΓC ; • `tm Λbj .λδi : Ci .Λak .λδy : [σ/a]Cy.e : ∀bj .Ci ⇒ [σ/a](∀ak .Cy ⇒ σ′)
(C.82)

290 COHERENCE PROOFS

Given

unambig(∀bj .Ci ⇒ TC τ)

D /∈ dom(P)

(D′ : ∀b′k .C
′′
y ⇒ TC τ ′′).m′ 7→ Γ′ : e′ /∈ P

where[τ j/bj]τ = [τ ′k/b
′
k]τ ′′

It is easy to verify that

unambig(∀bj .Ci ⇒ TC σ) (C.83)

D /∈ dom(Σ) (C.84)

(D′ : ∀a′m.C
′′
n ⇒ TC σ′′).m′ 7→ e′ /∈ Σ (C.85)

where[σj/aj]σ = [σ′m/a′m]σ′′ (C.86)

The goal follows by combining Equations C.69, C.72, C.79, C.82, C.83, C.84,
C.85, C.86, and the rule rule iCtx-MEnv.

FD THEOREMS 291

C.5 FD Theorems

C.5.1 Conjectures

We are confident that the following lemmas can be proven using well-known
proof techniques.

Lemma 82 (Type Variable Substitution in Types).
If ΓC ; Γ1, a,Γ2 `ty σ1 σ1 and ΓC ; Γ1 `ty σ2 σ2 then
ΓC ; Γ1, [σ2/a]Γ2 `ty [σ2/a]σ1 [σ2/a]σ1.

Lemma 83 (Type Variable Substitution in Class Constraints).
If ΓC ; Γ1, a,Γ2 `Q Q σ and ΓC ; Γ1 `ty σ′ σ′ then ΓC ; Γ1, [σ′/a]Γ2 `Q
[σ′/a]Q [σ′/a]σ.

Lemma 84 (Type Variable Substitution in Constraints).
If ΓC ; Γ1, a,Γ2 `C C σ and ΓC ; Γ1 `ty σ′ σ′ then ΓC ; Γ1, [σ′/a]Γ2 `C
[σ′/a]C [σ′/a]σ.

Lemma 85 (Variable Substitution).
If Σ; ΓC ; Γ1, x : σ2,Γ2 `tm e1 : σ1 e1 and Σ; ΓC ; Γ1,Γ2 `tm e2 : σ2 e2
then Σ; ΓC ; Γ1,Γ2 `tm [e2/x]e1 : σ1 [e2/x]e1.

Lemma 86 (Reverse Variable Substitution).
If Σ; ΓC ; Γ `tm [e2/x]e1 : σ1 and Σ; ΓC ; Γ `tm e2 : σ2 then
Σ; ΓC ; Γ, x : σ2 `tm e1 : σ1.

Lemma 87 (Dictionary Variable Substitution).
If Σ; ΓC ; Γ1, δ : C,Γ2 `tm e : σ e and Σ; ΓC ; Γ1,Γ2 `d d : C e′ then
Σ; ΓC ; Γ1,Γ2 `tm [d/δ]e : σ [e′/δ]e.

Lemma 88 (Reverse Dictionary Variable Substitution).
If Σ; ΓC ; Γ `tm [d/δ]e : σ and Σ; ΓC ; Γ `d d : C then Σ; ΓC ; Γ, δ : C `tm e : σ.

292 COHERENCE PROOFS

Lemma 89 (Type Variable Substitution).
If Σ; ΓC ; Γ1, a,Γ2 `tm e : σ e and ΓC ; Γ1 `ty σ′ σ′ then
Σ; ΓC ; Γ1, [σ′/a]Γ2 `tm [σ′/a]e : [σ′/a]σ [σ′/a]e.

Lemma 90 (Reverse Type Variable Substitution).
If Σ; ΓC ; Γ `tm [σ′/a]e : [σ′/a]σ then Σ; ΓC ; Γ, a `tm e : σ.

Lemma 91 (Dictionary Variable Substitution in Dictionaries).
If Σ; ΓC ; Γ1, δ : C ′,Γ2 `d d : C and Σ; ΓC ; Γ1,Γ2 `d d : C ′ then
Σ; ΓC ; Γ1,Γ2 `d [d/δ]d : C.

Lemma 92 (Reverse Dictionary Variable Substitution in Dictionaries).
If Σ; ΓC ; Γ `d [d/δ]d : C and Σ; ΓC ; Γ `d d : C ′ then Σ; ΓC ; Γ, δ : C ′ `d d : C.

Lemma 93 (Type Variable Substitution in Dictionaries).
If Σ; ΓC ; Γ1, a,Γ2 `d d : C and ΓC ; Γ1 `ty σ then Σ; ΓC ; Γ1, [σ/a]Γ2 `d
[σ/a]d : [σ/a]C.

Lemma 94 (Reverse Type Variable Substitution in Dictionaries).
If Σ; ΓC ; Γ `d [σ/a]d : [σ/a]C then Σ; ΓC ; Γ, a `d d : C.

Lemma 95 (Expression Well-Typed Method Environment Weakening).
If Σ1; ΓC ; Γ `tm e : σ and `ctx Σ1,Σ2; ΓC ; Γ then Σ1,Σ2; ΓC ; Γ `tm e : σ.

Lemma 96 (Dictionary Well-Formedness Weakening).
If Σ; ΓC ; Γ1 `d d : C and `ctx Σ; ΓC ; Γ1,Γ2 then Σ; ΓC ; Γ1,Γ2 `d d : C.

Lemma 97 (Type Well-Formedness Dictionary Environment Weakening).
If `ctx Σ; ΓC1; Γ1 and ΓC1; Γ1 `ty σ σ and `ctx Σ; ΓC1,ΓC2; Γ1,Γ2, then
ΓC1,ΓC2; Γ1,Γ2 `ty σ σ.

Lemma 98 (Class Constraint Well-Formedness Environment Weakening).
If ΓC1; Γ1 `Q Q σ and `ctx Σ; ΓC1,ΓC2; Γ1,Γ2 then ΓC1,ΓC2; Γ1,Γ2 `Q
Q σ.

FD THEOREMS 293

Lemma 99 (Constraint Well-Formedness Environment Weakening).
If ΓC1; Γ1 `C C σ and `ctx Σ; ΓC1,ΓC2; Γ1,Γ2 then ΓC1,ΓC2; Γ1,Γ2 `C
C σ.

Lemma 100 (Logical Equivalence Environment Weakening).
If ΓC1; Γ1 ` Σ1 : e1 'log Σ2 : e2 : σ and `ctx Σ1,Σ′1; ΓC1,ΓC2; Γ1,Γ2 and
`ctx Σ2,Σ′2; ΓC1,ΓC2; Γ1,Γ2,
then ΓC1,ΓC2; Γ1,Γ2 ` Σ1,Σ′1 : e1 'log Σ2,Σ′2 : e2 : σ.

Lemma 101 (Strong Normalization Relation Method Environment
Weakening).
If e ∈ SN JσKΣ1,ΓC

RSN and `ctx Σ1,Σ2; ΓC ; Γ then e ∈ SN JσKΣ1,Σ2,ΓC

RSN .

Lemma 102 (Strong Normalization Relation Substitution Weakening).
If e ∈ SN JσKΣ,ΓC

RSN 1
and r j ∈ Rel[σj]

j
then e ∈ SN JσKΣ,ΓC

RSN 1,aj 7→(σj ,rj).

C.5.2 Lemmas

Lemma 103 (Environment Well-Formedness Strengthening).
If `ctx Σ; ΓC ; Γ then `ctx Σ; ΓC ; •.

Proof. By case analysis on the hypothesis, the last rules used to construct it
must be (possibly zero) consecutive applications of rule iCtx-MEnv. Revert
those rules, to obtain `ctx •; ΓC ; Γ. By further case analysis (with rule iCtx-
tyEnvTm, rule iCtx-tyEnvTy and rule iCtx-tyEnvD), we get `ctx •; ΓC ; •.
The goal follows by consecutively re-applying rule rule iCtx-MEnv with the
appropriate premises.

Lemma 104 (Variable Strengthening in Dictionaries).
If Σ; ΓC ; Γ1, x : σ,Γ2 `d d : C then Σ; ΓC ; Γ1,Γ2 `d d : C.

Proof. By straightforward induction on the well-formedness derivation.

294 COHERENCE PROOFS

Lemma 105 (Variable Strengthening in Types).
If ΓC ; Γ1, x : σ,Γ2 `ty σ′ then ΓC ; Γ1,Γ2 `ty σ′.

Proof. By straightforward induction on the well-formedness derivation.

Lemma 106 (Dictionary Variable Strengthening in Constraints).
If ΓC ; Γ1, δ : C1,Γ2 `C C2 then ΓC ; Γ1,Γ2 `C C2 .

Proof. By straightforward induction on the well-formedness derivation.

Lemma 107 (Method Type Well-Formedness).
If `ctx Σ; ΓC ; Γ and ΓC = ΓC1,m : TC a : σ,ΓC2 then there is a σ such, that
ΓC1; •, a `ty σ σ.

Proof. By straightforward induction on the environment well-formedness
derivation.

Lemma 108 (Method Environment Well-Formedness).
If `ctx Σ; ΓC ; Γ and (D : ∀aj .Ci ⇒ TC σ).m 7→ e ∈ Σ, where i = 1 . . . n,
then there are unique a, σm, σm and σi, such that (m : TC a : σm) ∈ ΓC
and ΓC ; •, a `ty σm σm and Σ; ΓC ; • `tm e : ∀aj .Ci ⇒ [σ/a]σm e

and ΓC ; •, aj `C Ci σi
i. and ΓC ; •, aj `Q TC σ [σ/a]{m : σm} and

ΓC ; •, aj `ty σ σ.

Proof. By straightforward induction on the environment well-formedness
derivation.

Lemma 109 (Determinism of Dictionary Evaluation).
If d −→ d1 and d −→ d2 then d1 = d2.

Proof. By straightforward induction on the evaluation derivation.

FD THEOREMS 295

Lemma 110 (Determinism of Evaluation).
If Σ ` e −→ e1 and Σ ` e −→ e2 then e1 = e2.

Proof. By straightforward induction on the evaluation derivation.

Lemma 111 (Preservation of Environment Type Variables from FD to F{}).

• If a ∈ Γ and ΓC ; Γ Γ then a ∈ Γ.

• If a /∈ Γ and ΓC ; Γ Γ then a /∈ Γ.

Proof. By straightforward induction on the environment elaboration derivation.

Lemma 112 (Well-Formedness of FD Typing Result).
If Σ; ΓC ; Γ `tm e : σ e then ΓC ; Γ `ty σ σ.

Proof. By straightforward induction on the typing derivation.

Lemma 113 (Context Well-Formedness of FD Typing).
If Σ; ΓC ; Γ `tm e : σ then `ctx Σ; ΓC ; Γ.

Proof. By straightforward induction on the typing derivation.

Lemma 114 (Context Well-Formedness of Dictionary Typing).
If Σ; ΓC ; Γ `d d : C then `ctx Σ; ΓC ; Γ.

Proof. By straightforward induction on the dictionary typing derivation.

296 COHERENCE PROOFS

C.5.3 Type Safety

Theorem 29 (Dictionary Preservation).
If Σ; ΓC ; Γ `d d : C, and d −→ d′, then Σ; ΓC ; Γ `d d′ : C.

Proof. By induction on the typing derivation.

rule D-var

D-var
(δ : C) ∈ Γ
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `d δ : C
δ cannot be reduced, so impossible case.

rule D-con

D-con
Σ = Σ1, (D : ∀aj .Ci ⇒ TC σq).m 7→ Λaj .λδi : Ci .e,Σ2

(m : TC a : σm) ∈ ΓC
`ctx Σ; ΓC ; Γ

ΓC ; •, aj `C Ci
i

Σ1; ΓC ; •, aj , δi : Ci `tm e : [σq/a]σm

Σ; ΓC ; Γ `d D : ∀aj .Ci ⇒ TC σq
D is already a value, so impossible case.

rule D-dabs

D-dabs
Σ; ΓC ; Γ, δ : C1 `d d : C2

ΓC ; Γ `C C1

Σ; ΓC ; Γ `d λδ : C1.d : C1 ⇒ C2
λδ : C.d is already a value, so impossible case.

rule D-dapp

D-dapp
Σ; ΓC ; Γ `d d1 : C1 ⇒ C2

Σ; ΓC ; Γ `d d2 : C1

Σ; ΓC ; Γ `d d1 d2 : C2
By case analysis on the evaluation derivation, two options arise:

• Case rule iDictEval-app.
By applying the induction hypothesis to the 1st rule premise, we get

Σ; ΓC ; Γ `d d′1 : C1 ⇒ C2

The goal then follows directly from rule D-dapp.

• Case rule iDictEval-appAbs.
We know from the 1st hypothesis that

Σ; ΓC ; Γ `d λδ : C1.d
′
1 : C1 ⇒ C2

FD THEOREMS 297

By case analysis (rule D-dabs) we know

Σ; ΓC ; Γ, δ : C1 `d d′1 : C2

The goal follows from Lemma 91.

rule D-tyabs

D-tyabs
Σ; ΓC ; Γ, a `d d : C

Σ; ΓC ; Γ `d Λa.d : ∀a.C
Λa.d is already a value, so impossible case.

rule D-tyapp

D-tyapp
Σ; ΓC ; Γ `d d : ∀a.C

ΓC ; Γ `ty σ
Σ; ΓC ; Γ `d d σ : [σ/a]C

By case analysis on the evaluation derivation, two options arise:

• Case rule iDictEval-tyApp.
We apply the induction hypothesis to the 1st rule premise to get

Σ; ΓC ; Γ `d d′ : ∀a.C

The goal follows by rule D-tyApp.

• Case rule iDictEval-tyAppAbs.
We know from the 1st hypothesis that

Σ; ΓC ; Γ `d Λa.d : ∀a.C

By case analysis (rule D-tyAbs) we know

Σ; ΓC ; Γ, a `d d : C

The goal follows from Lemma 93.

Theorem 30 (Preservation).
If Σ; ΓC ; Γ `tm e : σ, and Σ ` e −→ e′, then Σ; ΓC ; Γ `tm e′ : σ.

Proof. By induction on the typing derivation.

rule iTm-true

iTm-true
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `tm True : Bool

298 COHERENCE PROOFS

True is already a value, so impossible case.

rule iTm-false

iTm-false
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `tm False : Bool
False is already a value, so impossible case.

rule iTm-var

iTm-var
(x : σ) ∈ Γ
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `tm x : σ
x cannot be reduced, so impossible case.

rule iTm-let

iTm-let
Σ; ΓC ; Γ `tm e1 : σ1

Σ; ΓC ; Γ, x : σ1 `tm e2 : σ2
ΓC ; Γ `ty σ1

Σ; ΓC ; Γ `tm let x : σ1 = e1 in e2 : σ2
By inversion on the evaluation (rule iEval-let), we get that

e′ = [e1/x]e2

Given

Σ; ΓC ; Γ `tm e1 : σ1

Σ; ΓC ; Γ, x : σ1 `tm e2 : σ2

The goal follows directly from Lemma 85.

rule iTm-method

iTm-method
Σ; ΓC ; Γ `d d : TC σ
(m : TC a : σ′) ∈ ΓC

Σ; ΓC ; Γ `tm d.m : [σ/a]σ′
By inversion on the evaluation derivation, two options arise:

• rule iEval-method.
By applying Theorem 29 to the 1st rule premise, we get

Σ; ΓC ; Γ `d d′ : TC σ

The goal thus follows directly from rule iTm-method.

• rule iEval-methodVal.
The goal to be proven thus becomes:

Σ; ΓC ; • `tm e σm dn : [σ/a]σ′ (C.87)

FD THEOREMS 299

We know from the 1st rule premise that

Σ; ΓC ; Γ `d Dσm dn : TC σ (C.88)

By inversion on Equation C.88 (rule D-con), we know that

(D : ∀am.Cn ⇒ TC σ1).m 7→ Λam.λδn : Cn.e ∈ Σ (C.89)

σ = [σm/am]σ1 (C.90)

Σ; ΓC ; Γ `d di : [σm/am]Ci
i<n (C.91)

ΓC ; Γ `ty σi
i<m (C.92)

`ctx Σ; ΓC ; Γ (C.93)

By combining this result with Equation C.89, through inversion (rule iCtx-
MEnv), we know that

Σ1; ΓC ; • `tm Λam.λδn : Cn.e : ∀am.Cn ⇒ [σ1/a]σ′ (C.94)

where Σ = Σ1, (D : ∀am.Cn ⇒ TC σ1).m 7→ Λam.λδn : Cn.e,Σ2. By
rule iTm-forallE and Equations C.94 and C.92, we have

Σ1; ΓC ; • `tm e σm : [σm/am]Cn ⇒ [σm/am][σ1/a]σ′ (C.95)

By rule iTm-constrE and Equations C.95 and C.91, we have

Σ1; ΓC ; • `tm e σm dn : [σm/am][σ1/a]σ′ (C.96)

From the 2nd rule premise we know that

(m : TC a : σ′) ∈ ΓC (C.97)

Combining this result with Equation C.93, by inversion (rule iCtx-
clsEnv), we know

ΓC1; •, a `ty σ′ (C.98)

ΓC = ΓC1,ΓC2 (C.99)

Therefore, σm are not free variables in σ′. Equation C.95 thus simplifies
to

Σ1; ΓC ; • `tm e σm dn : [[σm/am]σ1/a]σ′ (C.100)

300 COHERENCE PROOFS

By applying Equation C.100 to Lemma 95, in combination with
Equation C.93, we get

Σ; ΓC ; • `tm e σm dn : [[σm/am]σ1/a]σ′

Goal C.87 follows by combining this result with Equation C.90.

rule iTm-arrI

iTm-arrI
Σ; ΓC ; Γ, x : σ1 `tm e : σ2

ΓC ; Γ `ty σ1

Σ; ΓC ; Γ `tm λx : σ1.e : σ1 → σ2
λx : σ1.e is already a value, so impossible case.

rule iTm-arrE

iTm-arrE
Σ; ΓC ; Γ `tm e1 : σ1 → σ2

Σ; ΓC ; Γ `tm e2 : σ1

Σ; ΓC ; Γ `tm e1 e2 : σ2
By inversion on the evaluation, we have two possible cases:

• Case rule iEval-app.
By induction hypothesis, we get

Σ; ΓC ; Γ `tm e′1 : σ1 → σ2

By rule iTm-arrE we get

Σ; ΓC ; Γ `tm e′1 e2 : σ2

• Case rule iEval-appAbs.
From premise, we know

Σ; ΓC ; Γ `tm λx : σ.e1 : σ → σ2

By inversion (rule iTm-arrI)

Σ; ΓC ; Γ, x : σ `tm e1 : σ2

By substitution (Lemma 85) we get

Σ; ΓC ; Γ `tm [e2/x]e1 : σ2

rule iTm-constrI

iTm-constrI
Σ; ΓC ; Γ, δ : C `tm e : σ

ΓC ; Γ `C C

Σ; ΓC ; Γ `tm λδ : C.e : C ⇒ σ
λδ : Q.e is already a value, so impossible case.

FD THEOREMS 301

rule iTm-constrE

iTm-constrE
Σ; ΓC ; Γ `tm e : C ⇒ σ

Σ; ΓC ; Γ `d d : C
Σ; ΓC ; Γ `tm e d : σ

Similar to case rule iTm-arrE. The only difference lies in applying Lemma 87.

rule iTm-forallI

iTm-forallI
Σ; ΓC ; Γ, a `tm e : σ

Σ; ΓC ; Γ `tm Λa.e : ∀a.σ
Λa.e is already a value, so impossible case.

rule iTm-forallE

iTm-forallE
Σ; ΓC ; Γ `tm e : ∀a.σ′

ΓC ; Γ `ty σ
Σ; ΓC ; Γ `tm e σ : [σ/a]σ′

Similar to case rule iTm-arrE. The only difference lies in applying Lemma 89.

Theorem 31 (Dictionary Progress).
If Σ; ΓC ; • `d d : C, then either d is a dictionary value, or there exists d′
such that d −→ d′.

Proof. By structural induction on the typing derivation.

rule D-var

D-var
(δ : C) ∈ Γ
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `d δ : C
with Γ = •.

δ cannot be well-typed in an empty typing context. Impossible case.

rule D-con

D-con
Σ = Σ1, (D : ∀aj .Ci ⇒ TC σq).m 7→ Λaj .λδi : Ci .e,Σ2

(m : TC a : σm) ∈ ΓC
`ctx Σ; ΓC ; Γ

ΓC ; •, aj `C Ci
i

Σ1; ΓC ; •, aj , δi : Ci `tm e : [σq/a]σm

Σ; ΓC ; Γ `d D : ∀aj .Ci ⇒ TC σq
with Γ = •.

D is a value.

rule D-dabs

D-dabs
Σ; ΓC ; Γ, δ : C1 `d d : C2

ΓC ; Γ `C C1

Σ; ΓC ; Γ `d λδ : C1.d : C1 ⇒ C2

302 COHERENCE PROOFS

with Γ = •.

λδ : C.d is a value.

rule D-dapp

D-dapp
Σ; ΓC ; Γ `d d1 : C1 ⇒ C2

Σ; ΓC ; Γ `d d2 : C1

Σ; ΓC ; Γ `d d1 d2 : C2
with Γ = •.

By applying the induction hypothesis on the 1st rule premise, we get either

• d1 is a value. Case analysis tells us that d1 = λδ : C1.d
′
1. By

rule iDictEval-appAbs, we thus know that

(λδ : C1.d
′
1) d2 −→ [d2/δ]d′1

• There exists an d′1, such that d1 −→ d′1. By rule iDictEval-app, we thus
get that

d1 d2 −→ d′1 d2

rule D-tyabs

D-tyabs
Σ; ΓC ; Γ, a `d d : C

Σ; ΓC ; Γ `d Λa.d : ∀a.C
with Γ = •.

Λa.d is a value.

rule D-tyapp

D-tyapp
Σ; ΓC ; Γ `d d : ∀a.C

ΓC ; Γ `ty σ
Σ; ΓC ; Γ `d d σ : [σ/a]C

with Γ = •.

By applying the induction hypothesis on the 1st rule premise, we get either

• d is a value. Through case analysis, we can see that d = Λa.d′. By
rule iDictEval-tyAppAbs, we thus get

(Λa.d′)σ −→ [σ/a]d′

• There exists an d′, such that d −→ d′. By rule iDictEval-tyApp, we
thus get

d σ −→ d′ σ

FD THEOREMS 303

Theorem 32 (Progress).
If Σ; ΓC ; • `tm e : σ, then either e is a value, or there exists e′ such that
Σ ` e −→ e′.

Proof. By structural induction on the typing derivation.

rule iTm-true

iTm-true
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `tm True : Bool
with Γ = •.

True is a value.

rule iTm-false

iTm-false
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `tm False : Bool
with Γ = •.

False is a value.

rule iTm-var

iTm-var
(x : σ) ∈ Γ
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `tm x : σ
with Γ = •.

x cannot be well-typed in an empty context. Impossible case.

rule iTm-let

iTm-let
Σ; ΓC ; Γ `tm e1 : σ1

Σ; ΓC ; Γ, x : σ1 `tm e2 : σ2
ΓC ; Γ `ty σ1

Σ; ΓC ; Γ `tm let x : σ1 = e1 in e2 : σ2
with Γ = •.

By rule iEval-let:
e′ = [e1/x]e2

rule iTm-method

iTm-method
Σ; ΓC ; Γ `d d : TC σ
(m : TC a : σ′) ∈ ΓC

Σ; ΓC ; Γ `tm d.m : [σ/a]σ′
with Γ = •.

Applying Theorem 31 to the 1st rule premise tells us that either:

304 COHERENCE PROOFS

• d is a value. As it has a class constraint type, we know that d = Dσm dn .
Repeated inversion on the 1st rule premise (rule D-con) teaches us that

(D : ∀am.Cn ⇒ TC σ1).m 7→ e1 ∈ Σ

By rule iEval-methodVal:

e′ = e1 σm dn

• There exists a d′ such that d −→ d′. By rule iEval-method:

e′ = d′.m

rule iTm-arrI

iTm-arrI
Σ; ΓC ; Γ, x : σ1 `tm e : σ2

ΓC ; Γ `ty σ1

Σ; ΓC ; Γ `tm λx : σ1.e : σ1 → σ2
with Γ = •.

λx : σ1.e is a value.

rule iTm-arrE

iTm-arrE
Σ; ΓC ; Γ `tm e1 : σ1 → σ2

Σ; ΓC ; Γ `tm e2 : σ1

Σ; ΓC ; Γ `tm e1 e2 : σ2

with Γ = •.

From the 1st rule premise:

Σ; ΓC ; Γ `tm e1 : σ1 → σ2 (C.101)

By applying the induction hypothesis on Equation C.101, we know that either:

• e1 is a value. Because it has an arrow type, we know:

e1 = (λx : σ.e1) e2

By rule iEval-appAbs:
e′ = [e2/x]e1

• There exists an e′1 where Σ ` e1 −→ e′1. By rule iEval-app:

e′ = e′1 e2

FD THEOREMS 305

rule iTm-constrI

iTm-constrI
Σ; ΓC ; Γ, δ : C `tm e : σ

ΓC ; Γ `C C

Σ; ΓC ; Γ `tm λδ : C.e : C ⇒ σ
with Γ = •.

λδ : C.e is a value.

rule iTm-constrE

iTm-constrE
Σ; ΓC ; Γ `tm e : C ⇒ σ

Σ; ΓC ; Γ `d d : C
Σ; ΓC ; Γ `tm e d : σ

with Γ = •.

From the 1st rule premise:

Σ; ΓC ; Γ `tm e : C ⇒ σ (C.102)

By applying the induction hypothesis on Equation C.102, we know that either:

• e1 is a value. By case analysis, we know:

e1 = (λδ : C.e)

By rule iEval-DAppAbs:
e′ = [d/δ]e

• There exists an e′ where Σ ` e −→ e′ By rule iEval-DApp:

Σ ` e d −→ e′ d

rule iTm-forallI

iTm-forallI
Σ; ΓC ; Γ, a `tm e : σ

Σ; ΓC ; Γ `tm Λa.e : ∀a.σ
with Γ = •.

Λa.e is a value.

rule iTm-forallE

iTm-forallE
Σ; ΓC ; Γ `tm e : ∀a.σ′

ΓC ; Γ `ty σ
Σ; ΓC ; Γ `tm e σ : [σ/a]σ′

with Γ = •.

From the 1st rule premise:

Σ; ΓC ; Γ `tm e : ∀a.σ′ (C.103)

By applying the induction hypothesis on Equation C.103, we know that either:

306 COHERENCE PROOFS

• e1 is a value. By case analysis, we know:

e1 = (Λa.e)

By rule iEval-tyAppAbs:

e′ = [σ/a]e

• There exists an e′1 where Σ ` e −→ e′. By rule iEval-tyApp:

e′ = e′1 σ

FD THEOREMS 307

C.5.4 Strong Normalization

Theorem 33 (Strong Normalization).
If Σ; ΓC ; • `tm e : σ then all possible evaluation derivations for e terminate :
∃v : Σ ` e −→∗ v.

Proof. By Theorem 36 and 38, with RSN = •, φSN = •, γSN = •, since Γ = •,
it follows that:

∃v : Σ ` e −→∗ v

Furthermore, since evaluation in FD is deterministic (Lemma 110), there is
exactly 1 possible evaluation derivation. Consequently, all derivations terminate.

Theorem 34 (Strong Normalization - Dictionaries).
If Σ; ΓC ; • `d d : C then all possible evaluation derivations for d terminate :
∃dv : d −→∗ dv.

Proof. By Theorem 35 and 37, with RSN = •, γSN = •, since Γ = •, it follows
that:

∃dv : d −→∗ dv

Furthermore, since evaluation in FD is deterministic (Lemma 110), there is
exactly 1 possible evaluation derivation. Consequently, all derivations terminate.

Lemma 115 (Well Typedness from Strong Normalization).
e ∈ SN JσKΣ,ΓC

RSN , then Σ; ΓC ; • `tm e : RSN 1(σ)

Proof. The goal is baked into the relation. It follows by simple induction on σ.

Lemma 116 (Strong Normalization for dictionaries preserved by
forward/backward reduction).
Suppose Σ; ΓC ; • `d d1 : RSN 1(C), and d1 −→ d2, then

• If d1 ∈ SN JCKΣ,ΓC , then d2 ∈ SN JCKΣ,ΓC .

• If d2 ∈ SN JCKΣ,ΓC , then d1 ∈ SN JCKΣ,ΓC .

308 COHERENCE PROOFS

Proof. Part 1 By induction on C.
C = TC σ

d1 ∈ SN JTC σKΣ,ΓC , Σ; ΓC ; • `d d1 : TC σ

∧ ∃D,σj , di : d1 −→∗ Dσj di

where Σ = Σ1, (D : ∀aj .Ci ⇒ TC σq).m 7→ e,Σ2

and (m : TC a : σm) ∈ ΓC

and ΓC ; •, aj `ty σj
j

and di ∈ SN J[σj/aj]CiKΣ,ΓC
i

and σ = [σj/aj]σq

∧ e ∈ SN J∀aj .Ci ⇒ [σq/a]σmKΣ1,ΓC
•

We know from the rule premise that d1 −→∗ Dσj di for some D, σj and
di . By inversion on this fact, we know that either

• d1 = Dσj di : Impossible case as d1 is now a value, which contradicts
the hypothesis that d1 −→ d2.

• d1 −→ d2 and d2 −→∗ Dσj di : As dictionary evaluation is
deterministic (Lemma 109), we thus need to prove that

Σ; ΓC ; • `d d2 : TC σ (C.104)

d2 −→∗ Dσj di (C.105)

Σ = Σ1, (D : ∀aj .Ci ⇒ TC σq).m 7→ e,Σ2 (C.106)

(m : TC a : σm) ∈ ΓC (C.107)

ΓC ; •, aj `ty σj
j (C.108)

di ∈ SN J[σj/aj]CiKΣ,ΓC
i

(C.109)

σ = [σj/aj]σq (C.110)

e ∈ SN J∀aj .Ci ⇒ [σq/a]σmKΣ1,ΓC
• (C.111)

Goal C.104 follows by preservation Theorem 29. Goals C.105
till C.111 are given by the rule premise.

FD THEOREMS 309

C = C1 ⇒ C2

d1 ∈ SN JC1 ⇒ C2KΣ,ΓC , Σ; ΓC ; • `d d1 : C1 ⇒ C2

∧ ∃dv : d1 −→∗ dv

∧ ∀d′ : d′ ∈ SN JC1KΣ,ΓC ⇒ d1 d
′ ∈ SN JC2KΣ,ΓC

Applying Preservation Theorem 29 to both hypotheses gives us that
Σ; ΓC ; • `d d2 : RSN 1(C1 ⇒ C2). As dictionary evaluation is
deterministic (Lemma 109) and we d1 −→∗ dv, we know that d2 −→∗ dv.
Given any d′ where d′ ∈ SN JC1KΣ,ΓC , we know that d1 d

′ −→ d2 d
′,

as d1 −→ d2. Applying the induction hypothesis thus gives that
d2 d

′ ∈ SN JC2KΣ,ΓC .
C = ∀a.C′

d1 ∈ SN J∀a.C ′KΣ,ΓC , Σ; ΓC ; • `d d1 : ∀a.C ′

∧ ∃dv : d1 −→∗ dv

∧ ∀σ : ΓC ; • `ty σ ⇒ d1 σ ∈ SN J[σ/a]C ′KΣ,ΓC

Applying Preservation Theorem 29 to both hypotheses gives us that
Σ; ΓC ; • `d d2 : RSN 1(∀a.C ′). As dictionary evaluation is deterministic
(Lemma 109) and we d1 −→∗ dv, we know that d2 −→∗ dv. Given any σ
where ΓC ; • `ty σ, we know that d1 σ −→ d2 σ, as d1 −→ d2. Applying
the induction hypothesis thus gives that d2 σ ∈ SN J[σ/a]C ′KΣ,ΓC .

Part 2 Similar to Part 1.

Lemma 117 (Strong Normalization for expressions preserved by
forward/backward reduction).
Suppose Σ; ΓC ; • `tm e1 : RSN 1(σ), and Σ ` e1 −→ e2, then

• If e1 ∈ SN JσKΣ,ΓC

RSN , then e2 ∈ SN JσKΣ,ΓC

RSN .

• If e2 ∈ SN JσKΣ,ΓC

RSN , then e1 ∈ SN JσKΣ,ΓC

RSN .

310 COHERENCE PROOFS

Proof. Part 1 By induction on σ.

σ = Bool
e1 ∈ SN JBoolKΣ,ΓC

RSN , Σ; ΓC ; • `tm e1 : Bool

∧ ∃v : Σ ` e1 −→∗ v
By Preservation (Theorem 30), we know that Σ; ΓC ; • `tm e2 : Bool.
Because the evaluation in FD is deterministic (Lemma 110), given
Σ ` e1 −→∗ v, we have Σ ` e2 −→∗ v.

σ = a

e1 ∈ SN JaKΣ,ΓC

RSN , Σ; ΓC ; • `tm e1 : RSN 1(a)

∧ ∃v : Σ ` e1 −→∗ v

∧ v ∈ RSN 2(a)
Similar to Bool case.
σ = σ1 → σ2

e1 ∈ SN Jσ1 → σ2K
Σ,ΓC

RSN , Σ; ΓC ; • `tm e1 : RSN 1(σ1 → σ2)

∧ ∃v : Σ ` e1 −→∗ v

∧ ∀e′ : e′ ∈ SN Jσ1K
Σ,ΓC

RSN ⇒ e1 e
′ ∈ SN Jσ2K

Σ,ΓC

RSN

By Preservation (Theorem 30), we know that Σ; ΓC ; • `tm e2 :
RSN 1(σ1 → σ2). Because the evaluation in FD is deterministic

(Lemma 110), given Σ ` e1 −→∗ v, we have Σ ` e2 −→∗ v. Given any
e′ : e′ ∈ SN Jσ1K

Σ,ΓC

RSN , we know that Σ ` e1 −→ e2, so Σ ` e1 e
′ −→ e2 e

′.
By induction hypothesis, we get e2 e

′ ∈ SN Jσ2K
Σ,ΓC

RSN .
σ = C ⇒ σ′

e1 ∈ SN JC ⇒ σ′KΣ,ΓC

RSN , Σ; ΓC ; • `tm e1 : RSN 1(C ⇒ σ′)

∧ ∃v : Σ ` e1 −→∗ v

∧ ∀d : d ∈ SN JRSN 1(C)KΣ,ΓC ⇒ e1 d ∈ SN Jσ′KΣ,ΓC

RSN

By Preservation (Theorem 30), we know that Σ; ΓC ; • `tm e2 :
RSN 1(C ⇒ σ′). Because the evaluation in FD is deterministic

(Lemma 110), given Σ ` e1 −→∗ v, we have Σ ` e2 −→∗ v. Given
any d : d ∈ SN JRSN 1(C)KΣ,ΓC , we know that Σ ` e1 −→ e2, so
Σ ` e1 d −→ e2 d. By induction hypothesis, we get e2 d ∈ SN Jσ′KΣ,ΓC

RSN .
σ = ∀a.σ1

FD THEOREMS 311

e1 ∈ SN J∀a.σ1K
Σ,ΓC

RSN , Σ; ΓC ; • `tm e1 : RSN 1(∀a.σ1)

∧ ∃v : Σ ` e1 −→∗ v

∧ ∀σ2, r ∈ Rel[σ2] : e1 σ2 ∈ SN Jσ1K
Σ,ΓC

RSN ,a7→(σ2,r)

By Preservation (Theorem 30), we know that Σ; ΓC ; • `tm e2 :
RSN 1(∀a.σ1). Because the evaluation in FD is deterministic (Lemma 110),
given Σ ` e1 −→∗ v, we have Σ ` e2 −→∗ v. Given any σ2 and r ∈ Rel[σ2],
we know that Σ ` e1 −→ e2, so Σ ` e1 σ2 −→ e2 σ2. By induction
hypothesis, we get e2 σ2 ∈ SN Jσ1K

Σ,ΓC

RSN ,a 7→(σ2,r).

Part 2 Similar to Part 1.

Lemma 118 (Substitution for Context Interpretation).

• If Σ; ΓC ; Γ `tm e : σ then ∀RSN ∈ FSN JΓKΣ,ΓC , φSN ∈ GSN JΓKΣ,ΓC

RSN

and γSN ∈ HSN JΓKΣ,ΓC

RSN ,
we have Σ; ΓC ; • `tm γSN (φSN (RSN 1(e))) : RSN 1(σ).

• If Σ; ΓC ; Γ `d d : C then ∀RSN ∈ FSN JΓKΣ,ΓC and γSN ∈
HSN JΓKΣ,ΓC

RSN ,
we have Σ; ΓC ; • `d γSN (RSN 1(d)) : RSN 1(C).

• If ΓC ; Γ `ty σ then ∀RSN ∈ FSN JΓKΣ,ΓC ,
we have ΓC ; • `ty RSN 1(σ).

• If ΓC ; Γ `Q Q then ∀RSN ∈ FSN JΓKΣ,ΓC ,
we have ΓC ; • `Q RSN 1(Q) .

• If ΓC ; Γ `C C then ∀RSN ∈ FSN JΓKΣ,ΓC ,
we have ΓC ; • `C RSN 1(C) .

Proof. By induction on e, d σ, Q and C respectively. The goal follows from
Definitions 14, 15 and 16.

312 COHERENCE PROOFS

Lemma 119 (Compositionality for Strong Normalization).
Let r = SN Jσ2K

Σ,ΓC

RSN , then e ∈ SN Jσ1K
Σ,ΓC

RSN ,a 7→(RSN 1(σ2),r) if and only if
e ∈ SN J[σ2/a]σ1K

Σ,ΓC

RSN .

Proof. By induction on σ1.
Bool σ1 = Bool
Since [σ2/a]Bool = Bool, the goal follows directly.
Type variable σ1 = b

Depending on whether b is the same variable as a, we have two cases:

• If b = a, then [σ2/a]a = σ2.

Part 1: From left to right. If e ∈ SN JaKΣ,ΓC

RSN ,a 7→(RSN 1(σ2),r), it means
that:

∃v : Σ ` e −→∗ v (C.112)

v ∈ SN Jσ2K
Σ,ΓC

RSN (C.113)

Combining with Strong Normalization preserved by forward/back-
ward reduction (Lemma 117), the goal is proven by Equations C.112
and C.113:

e ∈ SN Jσ2K
Σ,ΓC

RSN (C.114)

Part 2: From right to left. From the hypothesis, we know that:

e ∈ SN Jσ2K
Σ,ΓC

RSN (C.115)

We want to prove that e ∈ SN JaKΣ,ΓC

RSN ,a 7→(RSN 1(σ2),r). By the
definition, this goal is equivalent to:

Σ; ΓC ; • `tm e : (RSN , a 7→ (RSN 1(σ2), r))(a) (C.116)

∃v : Σ ` e −→∗ v (C.117)

v ∈ (RSN , a 7→ (RSN 1(σ2), r))2 (a) (C.118)

Equation C.116 simplifies to:

Σ; ΓC ; • `tm e : RSN 1(σ2) (C.119)

FD THEOREMS 313

By Well-Typedness from Strong Normalization (Lemma 115),
Equation C.115 proves C.119. By Strong Normalization - Part
B (Theorem 38), Equation C.115 proves C.117.
We already know that (RSN , a 7→ (RSN 1(σ2), r))2 (a) = r =
SN Jσ2K

Σ,ΓC

RSN , so we simplify Equation C.118 to get

v ∈ SN Jσ2K
Σ,ΓC

RSN (C.120)

From Equation C.115 and Strong Normalization preserved by
forward/backward reduction (Lemma 117), we can prove Goal C.120.

• If b 6= a, since [σ2/a]b = b, the goal follows directly.

Function σ1 = σ11 → σ12

Part 1: From left to right. From the hypothesis, we get:

e ∈ SN Jσ11 → σ12K
Σ,ΓC

RSN ,a 7→(RSN 1(σ2),r)

We thus know that:

Σ; ΓC ; • `tm e : (RSN , a 7→ (RSN 1(σ2), r))(σ11 → σ12) (C.121)

∃v : Σ ` e −→∗ v (C.122)

∀e′ : e′ ∈ SN Jσ11K
Σ,ΓC

RSN ,a7→(RSN 1(σ2),r) ⇒ e e′ ∈ SN Jσ12K
Σ,ΓC

RSN ,a7→(RSN 1(σ2),r)
(C.123)

Our goal is to prove that e ∈ SN J[σ2/a]σ11 → [σ2/a]σ12K
Σ,ΓC

RSN . This is
equivalent to proving:

Σ; ΓC ; • `tm e : RSN 1([σ2/a]σ11 → [σ2/a]σ12) (C.124)

∃v : Σ ` e −→∗ v (C.125)

∀e′ : e′ ∈ SN J[σ2/a]σ11K
Σ,ΓC

RSN ⇒ e e′ ∈ SN J[σ2/a]σ12K
Σ,ΓC

RSN (C.126)

Goal C.124 and C.125 are proven directly by Equations C.121 and C.122.
Only Goal C.126 remains to be proven.
Given e′ ∈ SN J[σ2/a]σ11K

Σ,ΓC

RSN , the induction hypothesis tells us
that e′ ∈ SN Jσ11K

Σ,ΓC

RSN ,a7→(RSN 1(σ2),r). In combination with equation
Equation C.123, we get

e e′ ∈ SN Jσ12K
Σ,ΓC

RSN ,a7→(RSN 1(σ2),r) (C.127)

314 COHERENCE PROOFS

By induction hypothesis, we get:

e e′ ∈ SN J[σ2/a]σ12K
Σ,ΓC

RSN (C.128)

The goal has been proven.

Part 2: From right to left. Similar to Part 1.

Function over constraints σ1 = C ⇒ σ12

Part 1: From left to right. We know from the hypothesis that:

e ∈ SN JC ⇒ σ12K
Σ,ΓC

RSN ,a7→(RSN 1(σ2),r)

It follows that:

Σ; ΓC ; • `tm e : (RSN , a 7→ (RSN 1(σ2), r))(C ⇒ σ12) (C.129)

∃v : Σ ` e −→∗ v (C.130)

∀d : Σ; ΓC ; • `d d : (RSN , a 7→ (RSN 1(σ2), r))(C) (C.131)

⇒ e d ∈ SN Jσ12K
Σ,ΓC

RSN ,a 7→(RSN 1(σ2),r)

Our goal is to prove that e ∈ SN J[σ2/a]C ⇒ [σ2/a]σ12K
Σ,ΓC

RSN . This is
equivalent to proving:

Σ; ΓC ; • `tm e : RSN 1([σ2/a]C ⇒ [σ2/a]σ12) (C.132)

∃v : Σ ` e −→∗ v (C.133)

∀d′ : Σ; ΓC ; • `d d′ : RSN 1([σ2/a]C)⇒ e d′ ∈ SN J[σ2/a]σ12K
Σ,ΓC

RSN

(C.134)

Goals C.132 and C.133 are proven directly by Equations C.129 and
C.130. Only Goal C.134 remains to be proven. Given Σ; ΓC ; • `d d′ :
RSN 1([σ2/a]C), in combination with Equation C.131, we get that:

e d′ ∈ SN Jσ12K
Σ,ΓC

RSN ,a7→(RSN 1(σ2),r) (C.135)

By induction hypothesis, we get:

e d′ ∈ SN J[σ2/a]σ12K
Σ,ΓC

RSN (C.136)

The goal has been proven.

FD THEOREMS 315

Part 2: From right to left. Similar to Part 1.

Polymorphic types σ1 = ∀b.σ12

Part 1: From left to right. We know from the hypothesis that:

e ∈ SN J∀b.σ12K
Σ,ΓC

RSN ,a7→(RSN 1(σ2),r)

This implies that:

Σ; ΓC ; • `tm e : (RSN , a 7→ (RSN 1(σ2), r))(∀b.σ12) (C.137)

∃v : Σ ` e −→∗ v (C.138)

∀σ′, r = SN Jσ′KΣ,ΓC

RSN : e σ′ ∈ SN Jσ12K
Σ,ΓC

RSN ,a7→(RSN 1(σ2),r) (C.139)

Our goal is to prove that e ∈ SN J∀b.[σ2/a]σ12K
Σ,ΓC

RSN . This is equivalent
to proving:

Σ; ΓC ; • `tm e : RSN 1(∀b.[σ2/a]σ12) (C.140)

∃v : Σ ` e −→∗ v (C.141)

∀σ′, r = SN Jσ′KΣ,ΓC

RSN ⇒ e σ′ ∈ SN J[σ2/a]σ12K
Σ,ΓC

RSN (C.142)

Goals C.140 and C.141 are directly proven by Equations C.137 and C.138.
Only Goal C.142 remains to be proven. Given σ′ and r = SN Jσ′KΣ,ΓC

RSN ,
by feeding it to Equation C.139, we get that:

e σ′ ∈ SN Jσ12K
Σ,ΓC

RSN ,a 7→(RSN 1(σ2),r) (C.143)

By induction hypothesis, we get:

e σ′ ∈ SN J[σ2/a]σ12K
Σ,ΓC

RSN (C.144)

The goal has been proven.

Part 2: From right to left. Similar to Part 1.

316 COHERENCE PROOFS

Thm 35 Thm 36

Figure C.2: Dependency graph for Strong Normalization Theorems

Corollary 1 (Compositionality for Strong Normalization (Context
Interpretation)). Suppose RSN ∈ FSN JΓKΣ,ΓC , then e ∈ SN JσKΣ,ΓC

RSN if
and only if e ∈ SN JRSN 1(σ)KΣ,ΓC

• .

Proof. The choices from RSN ∈ FSN JΓKΣ,ΓC always satisfy the precondition
of Compositionality for Strong Normalization (Lemma 119). Therefore, we
can do induction on Γ and apply Compositionality for Strong Normalization
(Lemma 119), in combination with the induction hypothesis, to prove the goal.

Theorem 35 (Strong Normalization - Dictionaries - Part A).
If Σ; ΓC ; Γ `d d : C then ∀RSN ∈ FSN JΓKΣ,ΓC , γSN ∈ HSN JΓKΣ,ΓC

RSN ,
it holds that γSN (RSN 1(d)) ∈ SN JRSN 1(C)KΣ,ΓC .

Proof. By induction on the first hypothesis of the theorem. This theorem is
proven by mutual induction with Theorem 36, as illustrated in Figure C.2.
Note that at the dependency from Theorem 35 to 36, the size of Σ is strictly
decreasing, while Σ remains contant in the other direction. The induction thus
remains well-founded.

rule D-var

D-var
(δ : C) ∈ Γ
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `d δ : C
The 3rd theorem hypothesis tells us that γSN ∈ HSN JΓKΣ,ΓC

RSN . Furthermore, we
know from the rule premise that (δ : C) ∈ Γ. We can thus conclude by the
definition of HSN that δ 7→ d ∈ γSN for some d with d ∈ SN JRSN 1(C)KΣ,ΓC .

By definition of the SN relation, we know that d does not contain any
free variables in Γ. We thus know that γSN (RSN 1(d)) = d, and as a
result that γSN (RSN 1(δ)) = d. The goal to be proven thus becomes
d ∈ SN JRSN 1(C)KΣ,ΓC , which we have shown previously.

FD THEOREMS 317

rule D-con

D-con
Σ = Σ1, (D : ∀aj .Ci ⇒ TC σq).m 7→ Λaj .λδi : Ci .e,Σ2

(m : TC a : σm) ∈ ΓC
`ctx Σ; ΓC ; Γ

ΓC ; •, aj `C Ci
i

Σ1; ΓC ; •, aj , δi : Ci `tm e : [σq/a]σm

Σ; ΓC ; Γ `d D : ∀aj .Ci ⇒ TC σq
By simplifying the substitution, using that γSN (RSN 1(D)) = D and
RSN 1(∀aj .Ci ⇒ TC σq) = ∀aj .R

SN
1(Ci)⇒ TC RSN 1(σq), the goal becomes

D ∈ SN J∀aj .R
SN

1(Ci)⇒ TC RSN 1(σq)KΣ,ΓC

Repeatedly unfolding the definition of the SN relation in this goal reduces it to

∀k ∈ 0 . . . j : ∀σk : ΓC ; • `ty σk
k<j (C.145)

⇒ Σ; ΓC ; • `d Dσk : [σk/ak](∀an.R
SN

1(Ci)⇒ TC RSN 1(σq))
(C.146)

where n = j − k

∧ ∃dv : Dσk −→∗ dv (C.147)

∀k ∈ 0 . . . i : ∀dk : dk ∈ SN J[σj/aj]RSN 1(Ck)KΣ,ΓC
k<i

(C.148)

⇒ Σ; ΓC ; • `d Dσj dk : [σj/ak](RSN 1(Cn)⇒ TC RSN 1(σq)) (C.149)

where n = i− k

∧ ∃dv : Dσj dk −→∗ dv (C.150)

along with

Σ = Σ1, (D : ∀aj .Ci ⇒ TC σq).m 7→ e,Σ2 (C.151)

(m : TC a : σm) ∈ ΓC (C.152)

ΓC ; •, aj `ty σj
j (C.153)

di ∈ SN J[σj/aj]CiKΣ,ΓC
i

(C.154)

e ∈ SN J∀aj .Ci ⇒ [σq/a]σmKΣ,ΓC
• (C.155)

Goal C.146 follows by repeated application of rule D-tyapp, together with
the 1st hypothesis. Goal C.147 is trivial as Dσk is already a dictionary value.

318 COHERENCE PROOFS

Goal C.149 holds by (repeatedly) applying rule D-dapp to Equation C.146.
Note that the well-typedness of dk follows by the definition of the SN relation.
Goal C.150 trivially holds as Dσj dk is already a value. Goals C.151 and C.152
correspond to the 1st and 2nd rule premise, respectively. Goals C.153 and C.154
follow directly by Equations C.146 and C.149, respectively. And finally,
Goal C.155 follows by applying Theorem 36 to the 5th rule premise.

rule D-dabs

D-dabs
Σ; ΓC ; Γ, δ : C1 `d d : C2

ΓC ; Γ `C C1

Σ; ΓC ; Γ `d λδ : C1.d : C1 ⇒ C2
By simplifying the substitution, using that γSN (RSN 1((λδ : C1.d))) =
λδ : RSN 1(C1).(γSN (RSN 1(d))) andRSN 1(C1 ⇒ C2) = RSN 1(C1)⇒ RSN 1(C2),
the goal becomes

λδ : RSN 1(C1).(γSN (RSN 1(d))) ∈ SN JRSN 1(C1)⇒ RSN 1(C2)KΣ,ΓC

Unfolding the definition of the SN relation reduces the goal further to

Σ; ΓC ; • `d λδ : RSN 1(C1).(γSN (RSN 1(d))) : RSN 1(C1)⇒ RSN 1(C2)
(C.156)

∃dv : λδ : RSN 1(C1).(γSN (RSN 1(d))) −→∗ dv (C.157)

∀d′ : d′ ∈ SN JRSN 1(C1)KΣ,ΓC

⇒ (λδ : RSN 1(C1).(γSN (RSN 1(d)))) d′ ∈ SN JRSN 1(C2)KΣ,ΓC (C.158)

Goal C.156 follows by applying Lemma 118 to the 1st hypothesis. Goal C.157
holds trivially as λδ : RSN 1(C1).(γSN (RSN 1(d))) is already a dictionary value.
We thus focus on proving Goal C.158. Given

∀d′ : d′ ∈ SN JRSN 1(C1)KΣ,ΓC (C.159)

We need to prove

(λδ : RSN 1(C1).(γSN (RSN 1(d)))) d′ ∈ SN JRSN 1(C2)KΣ,ΓC (C.160)

Applying the induction hypothesis to the 1st rule premise gives us

γSN
′(RSN ′1(d)) ∈ SN JRSN

′
1(C1)KΣ,ΓC (C.161)

for any RSN ′ ∈ FSN JΓ, δ : C1KΣ,ΓC and γSN ′ ∈ HSN JΓ, δ : C1K
Σ,ΓC

RSN . Following
their respective definitions, we choose RSN ′ = RSN and γSN ′ = γSN , δ 7→ d′.

By rule iDictEval-appAbs, we have

(λδ : RSN 1(C1).(γSN (RSN 1(d)))) d′ −→ [d′/δ](γSN (RSN 1(d)))

FD THEOREMS 319

Furthermore, as d′ does not depend on any dictionary variables (by definition):

γSN , δ 7→ d′(RSN 1(d)) = [d′/δ](γSN (RSN 1(d)))

These results thus prove Goal C.160, by Lemma 116.

rule D-dapp

D-dapp
Σ; ΓC ; Γ `d d1 : C1 ⇒ C2

Σ; ΓC ; Γ `d d2 : C1

Σ; ΓC ; Γ `d d1 d2 : C2
By simplifying the substitutions, using that

γSN (RSN 1((d1 d2))) = (γSN (RSN 1(d1))) (γSN (RSN 1(d2)))

the goal becomes

(γSN (RSN 1(d1))) (γSN (RSN 1(d2))) ∈ SN JRSN 1(C2)KΣ,ΓC

Applying the induction hypothesis twice, to both rule premises, gives us

γSN (RSN 1(d1)) ∈ SN JRSN 1(C1 ⇒ C2)KΣ,ΓC (C.162)

γSN (RSN 1(d2)) ∈ SN JRSN 1(C1)KΣ,ΓC (C.163)

Noting that RSN 1(C1 ⇒ C2) = RSN 1(C1)⇒ RSN 1(C2), the definition of the
SN relation in Equation C.162 tells us that

∀d′ : d′ ∈ SN JRSN 1(C1)KΣ,ΓC ⇒ (γSN (RSN 1(d1))) d′ ∈ SN JRSN 1(C2)KΣ,ΓC

The goal thus follows directly from this result by taking d′ = γSN (RSN 1(d2))
and applying Equation C.163.

rule D-tyabs

D-tyabs
Σ; ΓC ; Γ, a `d d : C

Σ; ΓC ; Γ `d Λa.d : ∀a.C
By simplifying the substitution, using that γSN (RSN 1((Λa.d))) = Λa.(γSN (RSN 1(d)))
and RSN 1(∀a.C) = ∀a.RSN 1(C), the goal becomes

Λa.(γSN (RSN 1(d))) ∈ SN J∀a.RSN 1(C)KΣ,ΓC

Unfolding the definition of the SN relation reduces the goal further to

Σ; ΓC ; • `d Λa.(γSN (RSN 1(d))) : ∀a.RSN 1(C) (C.164)

∃dv : Λa.(γSN (RSN 1(d))) −→∗ dv (C.165)

∀σ : ΓC ; • `ty σ ⇒ (Λa.(γSN (RSN 1(d))))σ ∈ SN J[σ/a]RSN 1(C)KΣ,ΓC

(C.166)

320 COHERENCE PROOFS

Goal C.164 follows by applying Lemma 118 to the 1st hypothesis. Goal C.165
holds trivially as Λa.(γSN (RSN 1(d))) is already a dictionary value. We thus
focus on proving Goal C.166. Given

∀σ : ΓC ; • `ty σ (C.167)

We need to prove

(Λa.(γSN (RSN 1(d))))σ ∈ SN J[σ/a]RSN 1(C)KΣ,ΓC (C.168)

Applying the induction hypothesis to the 1st rule premise gives us

γSN
′(RSN ′1(d)) ∈ SN JRSN

′
1(C)KΣ,ΓC (C.169)

for any RSN ′ ∈ FSN JΓ, aKΣ,ΓC and γSN
′ ∈ HSN JΓ, aKΣ,ΓC

RSN . Following their
respective definitions, we choose γSN ′ = γSN and RSN ′ = RSN , a 7→ (σ, r), for
some r .

By rule iDictEval-tyAppAbs, we have

(Λa.(γSN (RSN 1(d))))σ −→ [σ/a](γSN (RSN 1(d)))

Furthermore, as σ does not depend on any variables (by definition):

γSN (RSN , a 7→ (σ, r)(d)) = [σ/a](γSN (RSN 1(d)))

These results thus prove Goal C.168, by Lemma 116.

rule D-tyapp

D-tyapp
Σ; ΓC ; Γ `d d : ∀a.C

ΓC ; Γ `ty σ
Σ; ΓC ; Γ `d d σ : [σ/a]C

By simplifying the substitutions, using that

γSN (RSN 1((d σ))) = (γSN (RSN 1(d))) (RSN 1(σ))

the goal becomes

(γSN (RSN 1(d))) (RSN 1(σ)) ∈ SN JRSN 1([σ/a]C)KΣ,ΓC

Applying the induction hypothesis, to the 1st rule premise, gives us

γSN (RSN 1(d)) ∈ SN JRSN 1(∀a.C)KΣ,ΓC (C.170)

Noting that RSN 1(∀a.C) = ∀a.RSN 1(C), the definition of the SN relation in
Equation C.170 tells us that

∀σ′ : (γSN (RSN 1(d)))σ′ ∈ SN JRSN 1([σ′/a]C)KΣ,ΓC

The goal thus follows directly from this result by taking σ′ = RSN 1(σ).

FD THEOREMS 321

Theorem 36 (Strong Normalization - Expressions - Part A).
If Σ; ΓC ; Γ `tm e : σ then ∀RSN ∈ FSN JΓKΣ,ΓC , φSN ∈ GSN JΓKΣ,ΓC

RSN and
γSN ∈ HSN JΓKΣ,ΓC

RSN ,
it holds that γSN (φSN (RSN 1(e))) ∈ SN JσKΣ,ΓC

RSN .

Proof. By induction on the first hypothesis of the theorem. This theorem is
proven by mutual induction with Theorem 35, as illustrated in Figure C.2.
Note that at the dependency from Theorem 35 to 36, the size of Σ is strictly
decreasing, while Σ remains contant in the other direction. The induction thus
remains well-founded.

rule iTm-true

iTm-true
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `tm True : Bool
We know γSN (φSN (RSN 1(True))) = True. So the goal is True ∈ SN JσKΣ,ΓC

RSN .
The goal follows directly since Σ; ΓC ; • `tm True : Bool and Σ ` True −→∗
True.

rule iTm-false

iTm-false
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `tm False : Bool
Similar to the rule iTm-true case.

rule iTm-var

iTm-var
(x : σ) ∈ Γ
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `tm x : σ
We know that φSN ∈ GSN JΓKΣ,ΓC

RSN and (x : σ) ∈ Γ, so we know that x 7→ e ∈
φSN for some e with e ∈ SN JσKΣ,ΓC

RSN . Since e ∈ SN JσKΣ,ΓC

RSN , we know from
the definition of the relation that e does not contain any free variables in Γ.
Consequently, γSN (φSN (RSN 1(e))) = e. Therefore, γSN (φSN (RSN 1(x))) = e.
Now our goal becomes e ∈ SN JσKΣ,ΓC

RSN , which we already know.

rule iTm-let

iTm-let
Σ; ΓC ; Γ `tm e1 : σ1

Σ; ΓC ; Γ, x : σ1 `tm e2 : σ2
ΓC ; Γ `ty σ1

Σ; ΓC ; Γ `tm let x : σ1 = e1 in e2 : σ2
By induction hypothesis, we know

γSN (φSN (RSN 1(e1))) ∈ SN Jσ1K
Σ,ΓC

RSN (C.171)

γSN (φSN 2(RSN 1(e2))) ∈ SN Jσ2K
Σ,ΓC

RSN (C.172)

322 COHERENCE PROOFS

Given Equation C.171, we can choose φSN 2 = φSN , x 7→ γSN (φSN (RSN 1(e1))).
Equation C.172 thus reduces to:

γSN (φSN , x 7→ γSN (φSN (RSN 1(e1)))(RSN 1(e2))) ∈ SN Jσ2K
Σ,ΓC

RSN (C.173)

Simplifying Equation C.173 results in:

[γSN (φSN (RSN 1(e1)))/x](γSN (φSN (RSN 1(e2)))) ∈ SN Jσ2K
Σ,ΓC

RSN (C.174)

Our goal is γSN (φSN (RSN 1(let x : σ1 = e1 in e2))) ∈ SN Jσ2K
Σ,ΓC

RSN .

We know that

γSN (φSN (RSN 1(let x : σ1 = e1 in e2)))

= let x : σ1 = (γSN (φSN (RSN 1(e1)))) in (γSN (φSN (RSN 1(e2)))) (C.175)

Σ ` let x : σ1 = (γSN (φSN (RSN 1(e1)))) in (γSN (φSN (RSN 1(e2))))

−→ [γSN (φSN (RSN 1(e1)))/x](γSN (φSN (RSN 1(e2)))) (C.176)

Consequently, by Substitution for Context Interpretation (Lemma 118), we
know that

Σ; ΓC ; • `tm e3 : RSN 1(σ2) (C.177)

where e3 = let x : σ1 = (γSN (φSN (RSN 1(e1)))) in (γSN (φSN (RSN 1(e2)))).
By Equations C.174, C.176 and C.177, in combination with Strong Normalization
preserved by forward/backward reduction (Lemma 117), we get that

let x : σ1 = (γSN (φSN (RSN 1(e1)))) in (γSN (φSN (RSN 1(e2)))) ∈ SN Jσ2K
Σ,ΓC

RSN

(C.178)

The goal follows from Equations C.175 and C.178.

rule iTm-method

iTm-method
Σ; ΓC ; Γ `d d : TC σ
(m : TC a : σ′) ∈ ΓC

Σ; ΓC ; Γ `tm d.m : [σ/a]σ′
The goal to be proven, adapted to this case, is

γSN (φSN (RSN 1(d.m))) ∈ SN J[σ/a]σ′KΣ,ΓC

RSN

for all RSN ∈ FSN JΓKΣ,ΓC , φSN ∈ GSN JΓKΣ,ΓC

RSN , γSN ∈ HSN JΓKΣ,ΓC

RSN .
Simplifying the substitutions reduces this to

(γSN (RSN 1(d))).m ∈ SN J[σ/a]σ′KΣ,ΓC

RSN (C.179)

FD THEOREMS 323

Applying Theorem 35 to the 1st rule premise, gives us

γSN (RSN 1(d)) ∈ SN JRSN 1(TC σ)KΣ,ΓC (C.180)

by choosing the same RSN and γSN as above. Unfolding the definition of the
SN relation in Equation C.180, and using the uniqueness of ΓC along with the
2nd rule premise, gives us

γSN (RSN 1(d)) −→∗ Dσj di (C.181)

Σ = Σ1, (D : ∀aj .Ci ⇒ TC σq).m 7→ e,Σ2 (C.182)

e ∈ SN J∀aj .Ci ⇒ [σq/a]σ′KΣ1,ΓC
• (C.183)

for some D, σj and di , where

ΓC ; •, aj `ty σj
j (C.184)

di ∈ SN J[σj/aj]CiKΣ,ΓC
i

(C.185)

σ = [σj/aj]σq (C.186)

Repeatedly applying rule iEval-method, in combination with Equation C.181
tells us that

Σ ` (γSN (RSN 1(d))).m −→∗ (Dσj di).m

Applying rule iEval-methodVal to this result, together with Equation C.182
gives us

Σ ` (γSN (RSN 1(d))).m −→∗ e σj di

Repeatedly applying Lemma 117 thus reduces Goal C.179 to

e σj di ∈ SN J[([σj/aj]σq)/a]σ′KΣ,ΓC

RSN

By Lemma 119, as we know that σ′ only depends on a, this goal is equivalent to

e σj di ∈ SN J[(σq)/a]σ′KΣ,ΓC

RSN ,aj 7→(σj ,rj) (C.187)

for any r j ∈ Rel[σj]
j . Applying Lemmas 101 and 102 to Equation C.183 gives

us
e ∈ SN J∀aj .Ci ⇒ [σq/a]σ′KΣ,ΓC

RSN (C.188)

By the definition of the SN relation, Goal C.187 follows from Equation C.188,
in combination with Equations C.184 and C.185.

324 COHERENCE PROOFS

rule iTm-arrI

iTm-arrI
Σ; ΓC ; Γ, x : σ1 `tm e : σ2

ΓC ; Γ `ty σ1

Σ; ΓC ; Γ `tm λx : σ1.e : σ1 → σ2
Because γSN (φSN (RSN 1((λx : σ1.e)))) = λx : RSN 1(σ1).(γSN (φSN (RSN 1(e)))),
our goal is to show that:

λx : RSN 1(σ1).(γSN (φSN (RSN 1(e)))) ∈ SN Jσ1 → σ2K
Σ,ΓC

RSN (C.189)

By definition, we need to prove the following goals:

Σ; ΓC ; • `tm λx : RSN 1(σ1).(γSN (φSN (RSN 1(e)))) : RSN 1(σ1 → σ2) (C.190)

∃v : Σ ` λx : RSN 1(σ1).(γSN (φSN (RSN 1(e)))) −→∗ v (C.191)

∀e′ : e′ ∈ SN Jσ1K
Σ,ΓC

RSN (C.192)

⇒ (λx : RSN 1(σ1).(γSN (φSN (RSN 1(e))))) e′ ∈ SN Jσ2K
Σ,ΓC

RSN

By Substitution for Context Interpretation (Lemma 118), we can easily prove
Equation C.190.

Furthermore, λx : RSN 1(σ1).(γSN (φSN (RSN 1(e)))) is already a value, which
proves Equation C.191. Now given

∀e′ : e′ ∈ SN Jσ1K
Σ,ΓC

RSN (C.193)

We need to show

(λx : RSN 1(σ1).(γSN (φSN (RSN 1(e))))) e′ ∈ SN Jσ2K
Σ,ΓC

RSN (C.194)

Let φSN ′ = φSN , x 7→ e′. By induction hypothesis, we have

γSN (φSN , x 7→ e′(RSN 1(e))) ∈ SN Jσ2K
Σ,ΓC

RSN (C.195)

We know that:

(λx : RSN 1(σ1).(γSN (φSN (RSN 1(e))))) e′

−→ [e′/x](γSN (φSN (RSN 1(e))))

= γSN (φSN , x 7→ e′(RSN 1(e)))

Consequently, by Strong Normalization preserved by forward/backward
reduction(Lemma 117), Equation C.195 proves C.194.

FD THEOREMS 325

rule iTm-arrE

iTm-arrE
Σ; ΓC ; Γ `tm e1 : σ1 → σ2

Σ; ΓC ; Γ `tm e2 : σ1

Σ; ΓC ; Γ `tm e1 e2 : σ2
By induction hypothesis, we have:

γSN (φSN (RSN 1(e1))) ∈ SN Jσ1 → σ2K
Σ,ΓC

RSN (C.196)

γSN (φSN (RSN 1(e2))) ∈ SN Jσ1K
Σ,ΓC

RSN (C.197)

By the definition of Equation C.196, applying Equation C.197 results in:

(γSN (φSN (RSN 1(e1)))) (γSN (φSN (RSN 1(e2)))) ∈ SN Jσ2K
Σ,ΓC

RSN

which is exactly our goal since

γSN (φSN (RSN 1((e1 e2)))) = (γSN (φSN (RSN 1(e1)))) (γSN (φSN (RSN 1(e2))))

rule iTm-constrI

iTm-constrI
Σ; ΓC ; Γ, δ : C `tm e : σ

ΓC ; Γ `C C

Σ; ΓC ; Γ `tm λδ : C.e : C ⇒ σ

Because γSN (φSN (RSN 1((λδ : C.e)))) = λδ : RSN 1(C).(γSN (φSN (RSN 1(e)))),
our goal is to show that:

λδ : RSN 1(C).(γSN (φSN (RSN 1(e)))) ∈ SN JC ⇒ σKΣ,ΓC

RSN (C.198)

By definition, we need to prove the following goals:

Σ; ΓC ; • `tm λδ : RSN 1(C).(γSN (φSN (RSN 1(e)))) : RSN 1(C ⇒ σ) (C.199)

∃v : Σ ` λδ : RSN 1(C).(γSN (φSN (RSN 1(e)))) −→∗ v (C.200)

∀d : d ∈ SN JRSN 1(C)KΣ,ΓC (C.201)

⇒ (λδ : RSN 1(C).(γSN (φSN (RSN 1(e))))) d ∈ SN JσKΣ,ΓC

RSN

By Substitution for Context Interpretation (Lemma 118), we can easily prove
Equation C.199.

Furthermore, λδ : RSN 1(C).(γSN (φSN (RSN 1(e)))) is already a value, which
proves Equation C.200. Now given

∀d : d ∈ SN JRSN 1(C)KΣ,ΓC (C.202)

We need to show

(λδ : RSN 1(C).(γSN (φSN (RSN 1(e))))) d ∈ SN JσKΣ,ΓC

RSN (C.203)

326 COHERENCE PROOFS

Let γSN ′ = γSN , δ 7→ d. By induction hypothesis, we have

γSN , δ 7→ d(φSN (RSN 1(e))) ∈ SN JσKΣ,ΓC

RSN (C.204)

We know that:

(λδ : RSN 1(C).(γSN (φSN (RSN 1(e))))) d

−→ [d/δ](γSN (φSN (RSN 1(e))))

= γSN , δ 7→ d(φSN (RSN 1(e)))

Consequently, by Strong Normalization preserved by forward/backward
reduction (Lemma 117), Equation C.204 proves C.203.

rule iTm-constrE

iTm-constrE
Σ; ΓC ; Γ `tm e : C ⇒ σ

Σ; ΓC ; Γ `d d : C
Σ; ΓC ; Γ `tm e d : σ

Applying the induction hypothesis to the 1st rule premise gives us

γSN (φSN (RSN 1(e))) ∈ SN JC ⇒ σKΣ,ΓC

RSN (C.205)

Applying Theorem 35 to the 2nd rule premise gives us

γSN (RSN 1(d)) ∈ SN JRSN 1(C)KΣ,ΓC (C.206)

By the definition of Equation C.205, applying Equation C.206 results in:

(γSN (φSN (RSN 1(e)))) (γSN (RSN 1(d))) ∈ SN JσKΣ,ΓC

RSN

which is exactly our goal since

γSN (φSN (RSN 1((e d)))) = (γSN (φSN (RSN 1(e)))) (γSN (RSN 1(d)))

rule iTm-forallI

iTm-forallI
Σ; ΓC ; Γ, a `tm e : σ

Σ; ΓC ; Γ `tm Λa.e : ∀a.σ
Because γSN (φSN (RSN 1((Λa.e)))) = Λa.(γSN (φSN (RSN 1(e)))), our goal is to
show that:

Λa.(γSN (φSN (RSN 1(e)))) ∈ SN J∀a.σKΣ,ΓC

RSN (C.207)

By definition, we need to prove the following goals:

Σ; ΓC ; • `tm Λa.(γSN (φSN (RSN 1(e)))) : RSN 1(∀a.σ) (C.208)

∃v : Σ ` Λa.(γSN (φSN (RSN 1(e)))) −→∗ v (C.209)

∀σ′, r = SN Jσ′KΣ,ΓC

RSN ⇒ (Λa.(γSN (φSN (RSN 1(e)))))σ′ ∈ SN JσKΣ,ΓC

RSN ,a 7→(σ′,r)
(C.210)

FD THEOREMS 327

By Substitution for Context Interpretation (Lemma 118), we can easily prove
Equation C.208.

Furthermore, Σ ` Λa.(γSN (φSN (RSN 1(e)))) −→∗ v is already a value, which
proves Equation C.209. Now given

∀σ′, r = SN Jσ′KΣ,ΓC

RSN (C.211)

We need to show

(Λa.(γSN (φSN (RSN 1(e)))))σ′ ∈ SN JσKΣ,ΓC

RSN ,a 7→(σ′,r) (C.212)

Let RSN ′ = RSN , a 7→ (σ′, r). By induction hypothesis, we have:

γSN (φSN (RSN , a 7→ (σ′, r)1(e))) ∈ SN JσKΣ,ΓC

RSN ,a7→(σ′,r) (C.213)

We know that:

(Λa.(γSN (φSN (RSN 1(e)))))σ′

−→ [σ′/a](γSN (φSN (RSN 1(e))))

= γSN (φSN (RSN , a 7→ (σ′, r)1(e)))

Consequently, by Strong Normalization preserved by forward/backward
reduction(Lemma 117), Equation C.213 proves C.212.

rule iTm-forallE

iTm-forallE
Σ; ΓC ; Γ `tm e : ∀a.σ′

ΓC ; Γ `ty σ
Σ; ΓC ; Γ `tm e σ : [σ/a]σ′

By induction hypothesis, we have:

γSN (φSN (RSN 1(e))) ∈ SN J∀a.σ′KΣ,ΓC

RSN (C.214)

By Substitution for Context Interpretation (Lemma 118), we know:

ΓC ; • `ty RSN 1(σ) (C.215)

Choose r = SN JσKΣ,ΓC

RSN . By the definition of Equation C.214, applying
Equation C.215 results in:

(γSN (φSN (RSN 1(e)))) (RSN 1(σ)) ∈ SN Jσ′KΣ,ΓC

RSN ,a7→(RSN 1(σ),r)

By Compositionality for Strong Normalization (Lemma 119), we get:

(γSN (φSN (RSN 1(e)))) (RSN 1(σ)) ∈ SN J[σ/a]σ′KΣ,ΓC

RSN ,a7→(σ,r)

328 COHERENCE PROOFS

which is exactly our goal since

γSN (φSN (RSN 1((e σ)))) = (γSN (φSN (RSN 1(e)))) (RSN 1(σ))

Theorem 37 (Strong Normalization - Dictionaries - Part B).
If d ∈ SN JCKΣ,ΓC then ∃dv : d −→∗ dv.

Proof. This goal is baked into the relation. It follows by straightforward case
analysis on the hypothesis.

Theorem 38 (Strong Normalization - Expressions - Part B).
If e ∈ SN JσKΣ,ΓC

RSN then ∃v : Σ ` e −→∗ v.

Proof. This goal is baked into the relation. It follows by straightforward case
analysis on the hypothesis.

ELABORATION EQUIVALENCE THEOREMS 329

Thm 39

Thm 43

Thm 41 Thm 42

Figure C.3: Dependency graph for Equivalence Theorems

C.6 Elaboration Equivalence Theorems

Theorem 39 (Equivalence - Environments). If `ctx P ; ΓC ; Γ Γ
then `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ and ΓC ; Γ Γ.

Proof. By induction on the environment well-formedness relation. This theorem
is mutually proven with Theorems 41, 42 and 43 (Figure C.3). Note that at
the dependencies between Theorem 39 and 43 and between Theorem 41 and 43,
the size of P is strictly decreasing, whereas P remains constant at every other
dependency. Furthermore, Theorems 41 and 42 are proven by induction on a
finite derivation. Consequenty, the size of P is strictly decreasing at every cycle
and the induction remains well-founded.
rule sCtxT-empty `ctx •; •; • •
The goal follows directly from rule sCtx-empty and rule Ctx-Empty.
rule sCtxT-clsEnv `ctx •; ΓC ,m : Ci ⇒ TC a : ∀aj .Ci ⇒ τ ; • •
The goal to be proven is the following:

`Mctx •; ΓC ,m : Ci ⇒ TC a : ∀aj .Ci ⇒ τ ; • Σ; ΓC ; Γ (C.216)

ΓC ; Γ • (C.217)

330 COHERENCE PROOFS

From the rule premise we get that:

ΓC ; •, a `ty ∀aj .Ci ⇒ τ σ (C.218)

ΓC ; •, a `C Ci σi
i (C.219)

`ctx •; ΓC ; • • (C.220)

By applying the induction hypothesis to Equation C.220, we get:

`Mctx •; ΓC ; • •; ΓC ′; • (C.221)

ΓC ′; • • (C.222)

From rule sCtxT-tyEnvTy, rule sCtx-tyEnvTy and rule Ctx-TVar, in
combination with Equation C.220, C.221 and C.222, respectively, we get:

`ctx •; ΓC ; •, a •, a

`Mctx •; ΓC ; •, a •; ΓC ′; •, a

ΓC ′; •, a •, a

Applying type and constraint equivalence (Theorem 40) to Equations C.218
and C.219, together with these results, gives us:

ΓC ; •, a `Mty ∀aj .Ci ⇒ τ σ (C.223)

ΓC ′; •, a `ty σ σ (C.224)

ΓC ; •, a `MC Ci Ci
i

(C.225)

ΓC ′; •, a `C Ci σi
i

(C.226)

Goal C.216 follows from rule sCtx-clsEnv, in combination with Equa-
tions C.221, C.223 and C.225, with Σ = •, ΓC = ΓC ′,m : TC a : σ and Γ = •.
Consequently, Goal C.217 follows from rule Ctx-Empty.
rule sCtxT-tyEnvTm `ctx •; ΓC ; Γ, x : σ Γ, x : σ
The goal to be proven is the following:

`Mctx •; ΓC ; Γ, x : σ Σ; ΓC ; Γ (C.227)

ΓC ; Γ Γ, x : σ (C.228)

ELABORATION EQUIVALENCE THEOREMS 331

From the rule premise we get that:

ΓC ; Γ `ty σ σ (C.229)

x /∈ dom(Γ) (C.230)

`ctx •; ΓC ; Γ Γ (C.231)

By applying the induction hypothesis to Equation C.231, we get:

`Mctx •; ΓC ; Γ •; ΓC ; Γ′ (C.232)

ΓC ; Γ′ Γ′ (C.233)

We know from type equivalence (Theorem 40), in combination with Equa-
tions C.229, C.232 and C.233, that:

ΓC ; Γ `Mty σ σ (C.234)

ΓC ; Γ `ty σ σ (C.235)

Goal C.227 follows from rule sCtx-tyEnvTm, in combination with Equa-
tions C.230, C.232 and C.234, with Σ = • and Γ = Γ′, x : σ. Consequently,
Goal C.228 follows from rule Ctx-Var, in combination with Equations C.233
and C.235, with Γ = Γ′.
rule sCtxT-tyEnvTy `ctx •; ΓC ; Γ, a Γ, a
Similar to the rule sCtxT-tyEnvTm case.
rule sCtxT-tyEnvD `ctx •; ΓC ; Γ, δ : C Γ, δ : σ
Similar to the rule sCtxT-tyEnvTm case.
rule sCtxT-pgmInst

`ctx P , (D : ∀bj .Ci ⇒ TC τ).m 7→ •, bj , δi : Ci , ak , δy : [τ/a]C ′y : e; ΓC ; Γ Γ

The goal to be proven is the following:

`Mctx P , (D : ∀bj .Ci ⇒ TC τ).m 7→ •, bj , δi : Ci , ak , δy : [τ/a]C ′y : e; ΓC ; Γ Σ; ΓC ; Γ
(C.236)

ΓC ; Γ Γ (C.237)

332 COHERENCE PROOFS

From the rule premise we get that:

unambig(∀bj .Ci ⇒ TC τ) (C.238)

ΓC ; • `C ∀bj .Ci ⇒ TC τ ∀bj .σi → [σ/a]{m : ∀ak .σ
′
y → σ′} (C.239)

(m : C ′m ⇒ TC a : ∀ak .C
′
y ⇒ τ ′) ∈ ΓC (C.240)

ΓC ; •, a `ty ∀ak .C
′
y ⇒ τ ′ ∀ak .σ

′
y → σ′ (C.241)

ΓC ; •, bj `ty τ σ (C.242)

P ; ΓC ; •, bj , δi : Ci , ak , δy : [τ/a]C ′y `tm e⇐ [τ/a]τ ′ e (C.243)

D /∈ dom(P) (C.244)

(D′ : ∀b′k .C
′′
y ⇒ TC τ ′′).m′ 7→ Γ′ : e′ /∈ Pwhere[τ j/bj]τ = [τ ′k/b

′
k]τ ′′ (C.245)

`ctx P ; ΓC ; Γ Γ (C.246)

By applying the induction hypothesis to Equation C.246, we get:

`Mctx P ; ΓC ; Γ Σ′; ΓC ; Γ (C.247)

ΓC ; Γ Γ (C.248)

Goal C.237 follows directly from Equation C.248. From type and constraint
equivalence (Theorem 40, the required assumptions follow straightforwardly
from rule sCtxT-tyEnvTy, rule sCtx-tyEnvTy and rule Ctx-TVar,
in combination with Equations C.246, C.247 and C.248), together with
Equations C.239, C.241 and C.242, we know:

ΓC ; • `MC ∀bj .Ci ⇒ TC τ ∀bj .Ci ⇒ TC σ (C.249)

ΓC ; •, a `Mty ∀ak .C
′
y ⇒ τ ′ ∀ak .C

′
y ⇒ σ′ (C.250)

ΓC ; •, a `ty ∀ak .C
′
y ⇒ σ′ ∀ak .σ

′
y → σ′ (C.251)

ΓC ; •, bj `Mty τ σ (C.252)

ΓC ; •, bj `ty σ σ (C.253)

Similarly, from expression equivalence (Theorem 43, the environment well-
formedness assumption is constructed straightforwardly), together with

ELABORATION EQUIVALENCE THEOREMS 333

Equation C.243, we get:

P ; ΓC ; •, bj , δi : Ci , ak , δy : [τ/a]C ′y `Mtm e⇐ [τ/a]τ ′ e (C.254)

Goal C.236 follows from rule sCtx-pgmInst, in combination with Equa-
tions C.238, C.249, C.240, C.254, C.250, C.244, C.245 and C.247, and with
Σ = Σ′, (D : ∀bj .Ci ⇒ TC σ′).m 7→ Λbj .λδi : Ci .Λak .λδy : [σ/a]C ′y.e.

Theorem 40 (Equivalence - Types and Constraints).

• If ΓC ; Γ `ty σ σ and `ctx P ; ΓC ; Γ Γ
and `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ and ΓC ; Γ Γ
then ΓC ; Γ `Mty σ σ and ΓC ; Γ `ty σ σ.

• If ΓC ; Γ `Q Q σ and `ctx P ; ΓC ; Γ Γ
and `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ and ΓC ; Γ Γ
then ΓC ; Γ `MQ Q Q and ΓC ; Γ `Q Q σ.

• If ΓC ; Γ `C C σ and `ctx P ; ΓC ; Γ Γ
and `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ and ΓC ; Γ Γ
then ΓC ; Γ `MC C C and ΓC ; Γ `C C σ.

Proof. By induction on the size of the type σ, class constraint Q or constraint
C.

Part 1 By case analysis on the type well-formedness derivation.
rule sTyT-bool ΓC ; Γ `ty Bool Bool
The goal to be proven is the following:

ΓC ; Γ `Mty Bool σ (C.255)

ΓC ; Γ `ty σ Bool (C.256)

Goals C.255 and C.256 follow directly from rule sTy-bool and rule iTy-
bool respectively, with σ = Bool.
rule sTyT-var ΓC ; Γ `ty a a
The goal to be proven is the following:

ΓC ; Γ `Mty a σ (C.257)

ΓC ; Γ `ty σ a (C.258)

334 COHERENCE PROOFS

From the rule premise we get that:

a ∈ Γ (C.259)

By applying Lemmas 76 and 111 to Equation C.259, we get:

a ∈ Γ (C.260)

a ∈ Γ (C.261)

Goal C.257 and C.258 follow directly from rule sTy-var and rule iTy-var
respectively, in combination with Equations C.260 and C.261, with σ = a.
rule sTyT-arrow ΓC ; Γ `ty τ1 → τ2 σ1 → σ2
The goal to be proven is the following:

ΓC ; Γ `Mty τ1 → τ2 σ (C.262)

ΓC ; Γ `ty σ σ1 → σ2 (C.263)

From the rule premise we get that:

ΓC ; Γ `ty τ1 σ1 (C.264)

ΓC ; Γ `ty τ2 σ2 (C.265)

By applying the induction hypothesis on Equations C.264 and C.265, we
get:

ΓC ; Γ `Mty τ1 σ1 (C.266)

ΓC ; Γ `ty σ1 σ1 (C.267)

ΓC ; Γ `Mty τ2 σ2 (C.268)

ΓC ; Γ `ty σ2 σ2 (C.269)

Goals C.262 and C.263 follow directly from rule sTy-arrow and rule iTy-
arrow respectively, in combination with Equations C.266, C.267, C.268
and C.269, with σ = σ1 → σ2.
rule sTyT-qual ΓC ; Γ `ty C ⇒ ρ σ1 → σ2
The goal to be proven is the following:

ΓC ; Γ `Mty C ⇒ ρ σ (C.270)

ΓC ; Γ `ty σ σ1 → σ2 (C.271)

ELABORATION EQUIVALENCE THEOREMS 335

From the rule premise we get that:

ΓC ; Γ `C C σ1 (C.272)

ΓC ; Γ `ty ρ σ2 (C.273)

By applying the induction hypothesis on Equation C.273, we get:

ΓC ; Γ `Mty ρ σ2 (C.274)

ΓC ; Γ `ty σ2 σ2 (C.275)

By applying Part 3 of this theorem on Equation C.272, we get:

ΓC ; Γ `MC C C (C.276)

ΓC ; Γ `C C σ1 (C.277)

Goals C.270 and C.271 follow directly from rule sTy-qual and rule iTy-
qual respectively, in combination with Equations C.274, C.275, C.276
and C.277, with σ = C ⇒ σ2.
rule sTyT-scheme ΓC ; Γ `ty ∀a.σ ∀a.σ
The goal to be proven is the following:

ΓC ; Γ `Mty ∀a.σ σ (C.278)

ΓC ; Γ `ty σ ∀a.σ (C.279)

From the rule premise we get that:

a /∈ Γ (C.280)

ΓC ; Γ, a `ty σ σ (C.281)

By repeated case analysis on the 2nd hypothesis (rule sCtxT-pgmInst),
we get:

`ctx •; ΓC ; Γ Γ (C.282)
From rule sCtxT-tyEnvTy, in combination with Equations C.282
and C.280, we know that:

`ctx •; ΓC ; Γ, a Γ, a (C.283)

Similarly, we get from rule sCtx-tyEnvTy and rule ctx-TVar that:

`Mctx •; ΓC ; Γ, a •; ΓC ; Γ, a (C.284)

ΓC ; Γ, a Γ, a (C.285)

336 COHERENCE PROOFS

By applying the induction hypothesis on Equation C.281, together with
Equations C.283, C.284 and C.285, we get:

ΓC ; Γ, a `Mty σ σ′ (C.286)

ΓC ; Γ, a `ty σ′ σ (C.287)

Goals C.278 and C.279 follow directly from rule sTy-scheme and
rule iTy-scheme respectively, in combination with Equations C.280,
C.286 and C.287, with σ = ∀a.σ′.

Part 2 By case analysis on the class constraint well-formedness derivation.
rule sQT-TC ΓC ; Γ `Q TC τ [σ′/a]{m : σ}
The goal to be proven is the following:

ΓC ; Γ `MQ TC τ Q (C.288)

ΓC ; Γ `Q Q [σ′/a]{m : σ} (C.289)

From the rule premise we get that:

ΓC ; Γ `ty τ σ′ (C.290)

ΓC = ΓC1,m : Ci ⇒ TC a : σ,ΓC2 (C.291)

ΓC1; •, a `ty σ σ (C.292)

By repeated case analysis on the 2nd hypothesis (rule sCtxT-pgmInst),
we get:

`ctx •; ΓC ; Γ Γ (C.293)

From rule sCtxT-tyEnvTy, together with Equation C.293 and the fact
that a /∈ •, we know that:

`ctx •; ΓC1; •, a •, a (C.294)

Similarly, we get from rule sCtx-tyEnvTy and rule ctx-TVar that:

`Mctx •; ΓC1; •, a •; ΓC1; •, a (C.295)

ΓC1; •, a Γ, a (C.296)

ELABORATION EQUIVALENCE THEOREMS 337

By applying Part 1 of this theorem to Equations C.290 and C.292, together
with Equations C.294, C.295 and C.296, we get:

ΓC ; Γ `Mty τ σ′ (C.297)

ΓC ; Γ `ty σ′ σ′ (C.298)

ΓC1; •, a `Mty σ σ (C.299)

ΓC1; •, a `ty σ σ (C.300)

Goal C.288 follows from rule sQ-TC, together with Equations C.297,
C.291 and C.299, with Q = TC σ′. Consequently, Goal C.289 follows
from rule iQ-TC, together with Equations C.298, C.291 and C.300.

Part 3 By case analysis on the constraint well-formedness derivation.
rule sCT-forall ΓC ; Γ `C ∀a.C ∀a.σ
The goal to be proven is thus the following

ΓC ; Γ `MC ∀a.C C (C.301)

ΓC ; Γ `C C ∀a.σ (C.302)

We know from the rule premise

ΓC ; Γ, a `C C σ

Using Lemma 66 and rule sCtx-tyEnvTy, rule sCtxT-tyEnvTy and
rule Ctx-TVar we can derive that

`ctx P ; ΓC ; Γ, a Γ, a

`Mctx P ; ΓC ; Γ, a Σ; ΓC ; Γ, a

ΓC ; Γ, a Γ, a

Using this result, we derive from the induction hypothesis that

ΓC ; Γ, a `MC C C ′

ΓC ; Γ, a `C C ′ σ

Goals C.301 and C.302 follow by rule sC-forall and rule iC-forall
respectively.

338 COHERENCE PROOFS

rule sCT-arrow ΓC ; Γ `C C1 ⇒ C2 σ1 → σ2
The goal to be proven is thus the following

ΓC ; Γ `MC C1 ⇒ C2 C (C.303)

ΓC ; Γ `C C σ1 → σ2 (C.304)

We know from the rule premise

ΓC ; Γ `C C1 σ1

ΓC ; Γ `C C2 σ2

Applying the induction hypothesis gives us

ΓC ; Γ `MC C1 C1

ΓC ; Γ `C C1 σ1

ΓC ; Γ `MC C2 C2

ΓC ; Γ `C C2 σ2

Goals C.303 and C.304 follow by rule sC-arrow and rule iC-arrow
respectively.
rule sCT-classconstr ΓC ; Γ `C Q σ
The goal to be proven is thus the following

ΓC ; Γ `MC Q C

ΓC ; Γ `C C σ

As we know from the rule premise

ΓC ; Γ `Q Q σ

the goal follows directly from Part 2 of this theorem.

Theorem 41 (Equivalence - Constraint Entailment).
If P ; ΓC ; Γ � [C] e and `ctx P ; ΓC ; Γ Γ
then P ; ΓC ; Γ �M [C] d and Σ; ΓC ; Γ `d d : C e
where ΓC ; Γ `MC C C and `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ and ΓC ; Γ Γ.

ELABORATION EQUIVALENCE THEOREMS 339

Proof. By induction on the entailment derivation, and mutually proven with
Theorems 39, 42 and 43 (Figure C.3). Note that at the dependencies between
Theorem 39 and 43 and between Theorem 41 and 43, the size of P is strictly
decreasing, whereas P remains constant at every other dependency. Furthermore,
Theorems 41 and 42 are proven by induction on a finite derivation. Consequenty,
the size of P is strictly decreasing at every cycle and the induction remains
well-founded.

From environment equivalence (Theorem 39), in combination with the 2nd

hypothesis, we derive that:

`Mctx P ; ΓC ; Γ Σ; ΓC ; Γ (C.305)

ΓC ; Γ Γ (C.306)

rule sEntailT-arrow P ; ΓC ; Γ � [C1 ⇒ C2] λδ1 : σ1.e
The goal to be proven becomes

P ; ΓC ; Γ �M [C1 ⇒ C2] d (C.307)

Σ; ΓC ; Γ `d d : C1 ⇒ C2 λδ1 : σ1.e (C.308)

ΓC ; Γ `MC C1 ⇒ C2 C1 ⇒ C2 (C.309)

We know from the rule premise that

P ; ΓC ; Γ, δ1 : C1 � [C2] e

ΓC ; Γ `C C1 σ1

It follows from rule sCtxT-tyEnvD that

`ctx P ; ΓC ; Γ, δ1 : C1 Γ, δ1 : σ1

We then get from the induction hypothesis

P ; ΓC ; Γ, δ1 : C1 �
M [C2] d′

Σ; ΓC ; Γ, δ1 : C1 `d d′ : C2 e

ΓC ; Γ, δ1 : C1 `MC C2 C2

Goal C.307 follows by rule sEntail-arrow with d = λδ1 : C1.d
′. Goal C.308

can then be proven using rule D-dabs. Goal C.309 follows from rule sC-arrow

340 COHERENCE PROOFS

(note that we can applying strengthening, as constraint well-formedness is never
impacted by dictionary variables in the context).
rule sEntailT-forall P ; ΓC ; Γ � [∀a.C] Λa.e
The goal to be proven is

P ; ΓC ; Γ �M [∀a.C] d (C.310)

Σ; ΓC ; Γ `d d : ∀a.C Λa.e (C.311)

ΓC ; Γ `MC ∀a.C ∀a.C (C.312)

We know from the rule premise that

P ; ΓC ; Γ, a � [C] e

It follows from rule sCtxT-tyEnvTy that

`ctx P ; ΓC ; Γ, a Γ, a

We then get from the induction hypothesis

P ; ΓC ; Γ, a �M [C] d′

Σ; ΓC ; Γ, a `d d′ : C e

ΓC ; Γ, a `MC C C

Goal C.310 follows from rule sEntail-forall with d = Λa.d′. Goal C.311 then
follows by rule D-tyabs. Goal C.312 follows from rule sC-forall.
rule sEntailT-inst P ; ΓC ; Γ � [Q] e
We know from the premise that

P = P 1, (D : ∀aj .C
′
i ⇒ Q′).m 7→ •, aj , δi : C ′i , bk , δy : Cy : e, P 2 (C.313)

P 1; ΓC ; •, aj , δi : C ′i , bk , δy : Cy `tm e⇒ τ e0 (C.314)

ΓC ; •, aj `C C ′i σ′i
i

(C.315)

ΓC ; •, aj , bk `C Cy σ′′y
y

(C.316)

P ; ΓC ; Γ; [•; • ` Λaj .λ δ
′
i : σ′i

i
.{m = Λbk .λ δy : σ′′y

y
.e0} : ∀aj .C

′
i ⇒ Q′] � Q τ ` e

(C.317)

By inversion on Equation C.305 and C.313, we can conclude that

Σ = Σ1, (D : ∀aj .C
′
i ⇒ Q′).m 7→ Λaj .λδi : C ′i .Λbk .λδy : Cy.e,Σ2 (C.318)

ELABORATION EQUIVALENCE THEOREMS 341

From Preservation Thoerem 28 and Equation C.305 we get

`ctx Σ; ΓC ; Γ (C.319)

By inversion on Equation C.319 (rule iCtx-MEnv), in combination with
Equation C.318, we know that

(m : TC a : σ′) ∈ ΓC (C.320)

Applying Theorem 40 on Equations C.315 and C.316 gives us

ΓC ; •, aj `MC C ′i C ′i
i

(C.321)

ΓC ; •, aj `C C ′i σ′i
i

(C.322)

ΓC ; •, aj , bk `MC Cy C ′′y
y

(C.323)

ΓC ; •, aj , bk `C C ′′y σ′′y
y

(C.324)

From Expression Equivalence Theorem 43 and Equation C.314 we get

P 1; ΓC ; •, aj , δi : C ′i , bk , δy : Cy `Mtm e⇒ τ e

Σ1; ΓC ; •, aj , δi : C ′i , bk , δy : C ′′y `tm e : σ e

where ΓC ; •, aj , δi : C ′i , bk , δy : Cy `Mty τ σ. Using rule iTm-constrI
and rule iTm-forallI, we can easily derive from this result that

Σ1; ΓC ; •, aj , δi : C ′i `tm Λbk .λδy : C ′′y .e : ∀bk .Cy ⇒ σ Λbk .λ δy : σ′′y
y
.e

(C.325)
It now follows by rule D-con, in combination with Equations C.318, C.320,
C.319, C.321 and C.325 that

Σ; ΓC ; Γ `d D : ∀aj .C
′
i ⇒ Q′ Λaj .λ δ

′
i : σ′i

i
.{m = Λbk .λ δy : σ′′y

y
.e0}

We then apply Theorem 42 to this result, together with Equation C.317. This
gives us

P ; ΓC ; Γ; [•; • ` D : ∀aj .C
′
i ⇒ Q′] �M Q • ` d

Σ; ΓC ; Γ `d d : Q e

ΓC ; Γ `MQ Q Q

342 COHERENCE PROOFS

The goal thus follows by this result, in combination with rule sEntail-inst.
rule sEntailT-local P ; ΓC ; Γ � [Q] e
We know from the rule premise that

(δ : C) ∈ Γ (C.326)

P ; ΓC ; Γ; [•; • ` δ : C] � Q • ` e (C.327)

From Preservation Thoerem 28 and Equation C.305 we get

`ctx Σ; ΓC ; Γ (C.328)

By Lemma 77 and Equation C.326 we know that (δ : C) ∈ Γ where ΓC ; Γ `MC
C C. Applying rule D-var to this result and Equation C.328 gives us

Σ; ΓC ; Γ `d δ : C δ

We can then apply Theorem 42 to this result, together with Equation C.326 to
get

P ; ΓC ; Γ; [•; • ` δ : C] �M Q • ` d

Σ; ΓC ; Γ `d d : Q e

ΓC ; Γ `MQ Q Q

The goal thus follows by this result, in combination with rule sEntail-local.

Theorem 42 (Equivalence - Constraint Matching).
If P ; ΓC ; Γ; [a; δ : C ` e0 : C0] � Q1 τ ` e1
and Σ; ΓC ; Γ, a, δ : C `d d0 : C0 e0

where ΓC ; Γ, a `MC C0 C0 and ΓC ; Γ, a `MC Ci Ci
i

and `ctx P ; ΓC ; Γ Γ and `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ and ΓC ; Γ Γ
then P ; ΓC ; Γ; [a; δ : C ` d0 : C0] �M Q1 τ ` d1
and Σ; ΓC ; Γ, δ : [σ/a]C `d d1 : Q1 e1 where ΓC ; Γ `MQ Q1 Q1.

Proof. By induction on the constraint matching derivation. This theorem is
mutually proven with Theorems 39, 41 and 43 (Figure C.3). Note that at the
dependencies between Theorem 39 and 43 and between Theorem 41 and 43,
the size of P is strictly decreasing, whereas P remains constant at every other
dependency. Furthermore, Theorems 41 and 42 are proven by induction on a
finite derivation. Consequenty, the size of P is strictly decreasing at every cycle
and the induction remains well-founded.

ELABORATION EQUIVALENCE THEOREMS 343

rule sMatchT-arrow P ; ΓC ; Γ; [a; δ : C ` e0 : C1 ⇒ C2] � Q1 τ ` [e1/δ1]e2
We know from the rule premise that

P ; ΓC ; Γ; [a; δ : C, δ1 : C1 ` e0 δ1 : C2] � Q τ ` e2 (C.329)

P ; ΓC ; Γ � [[τ/a]C1] e1 (C.330)

We know from the 2nd premise that Σ; ΓC ; Γ, a, δ : C `d d0 : C1 ⇒ C2 e0. By
rule D-var we can easily derive that Σ; ΓC ; Γ, a, δ : C, δ1 : C1 `d δ1 : C1 δ1.
By rule D-dapp (in combination with Weakening Lemma 96) we get that

Σ; ΓC ; Γ, a, δ : C, δ1 : C1 `d d0 δ1 : C2 e0 δ1

Furthermore, as we know from the 3rd premise that ΓC ; Γ, a `MC C1 ⇒ C2
C1 ⇒ C2, we can derive by inversion (rule sC-arrow) that ΓC ; Γ, a `MC
C2 C2. Using these results, we can apply the induction hypothesis to
Equation C.330 to obtain

P ; ΓC ; Γ; [a; δ : C, δ1 : C1 ` d0 δ1 : C2] �M Q1 τ ` d2 (C.331)

Σ; ΓC ; Γ, δ : [σ/a]C, δ1 : [σ/a]C1 `d d2 : Q1 e2 (C.332)

ΓC ; Γ `MQ Q1 Q1 (C.333)

By Theorem 41 in combination with the 2nd rule premise we obtain

P ; ΓC ; Γ �M [[τ/a]C1] d1 (C.334)

Σ; ΓC ; Γ `d d1 : [σ/a]C1 e1 (C.335)

ΓC ; Γ `MC [τ/a]C1 [σ/a]C1 (C.336)

Using rule sMatch-arrow, together with Equations C.330 and C.331, we
derive

P ; ΓC ; Γ; [a; δ : C ` d0 : C1 ⇒ C2] �M Q1 τ ` [d1/δ1]d2

Applying Weakening Lemma 96 and Substitution Lemma 91 on Equations C.332
and C.335, gives us

Σ; ΓC ; Γ, δ : [σ/a]C `d [d1/δ1]d2 : Q1 [e1/δ1]e2

The goal follows directly from these results.
rule sMatchT-forall P ; ΓC ; Γ; [a; δ : C ` e0 : ∀a.C] � Q1 τ ` e1
We know from the rule premise that

P ; ΓC ; Γ; [a, a; δ : C ` e0 a : C] � Q1 τ , τ ` e1

344 COHERENCE PROOFS

As we know from the 2nd premise that Σ; ΓC ; Γ, a `d d0 : ∀a.C e0, we can
show through rule D-tyapp that

Σ; ΓC ; Γ, a, a `d d0 a : C e0 a

By applying the induction hypothesis to these results, we get

P ; ΓC ; Γ; [a, a; δ : C ` d0 a : C] �M Q1 τ , τ ` d1

Σ; ΓC ; Γ, δ : [σ/a]C `d d1 : Q1 e1

ΓC ; Γ `MQ Q1 Q1

The goal follows directly from this result using rule sMatch-forall.
rule sMatchT-classconstr P ; ΓC ; Γ; [a; δ : C ` e0 : TC τ0] � TC τ1 τ ` e1
The goal to be proven becomes

P ; ΓC ; Γ; [a; δ : C ` d0 : TC τ0] �M TC τ1 τ ` d1 (C.337)

Σ; ΓC ; Γ, δ : [σ/a]C `d d1 : TC σ1 e1 (C.338)

ΓC ; Γ `MQ TC τ1 TC σ1 (C.339)

We know from the rule premise that

τ1 = [τ/a]τ0 (C.340)

ΓC ; Γ `ty τ i σi
i (C.341)

e1 = [σ/a]e0 (C.342)

Goal C.337 follows by rule sMatch-classconstr, in combination with
Theorem 40 and Equation C.341, with d1 = [σ/a]d0. Goal C.338 now
follows from the 2nd hypothesis (Σ; ΓC ; Γ, a, δ : C `d d0 : TC σ0 e0) in
combination with Lemma 93. As we know from the 3rd hypothesis that
ΓC ; Γ, a `MC TC τ0 TC σ0, Goal C.339 follows by Lemma 61 and rule sC-
classconstr.

Theorem 43 (Equivalence - Expressions).

• If P ; ΓC ; Γ `tm e⇒ τ e and `ctx P ; ΓC ; Γ Γ
then P ; ΓC ; Γ `Mtm e⇒ τ e and Σ; ΓC ; Γ `tm e : σ e
where `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ and ΓC ; Γ Γ and ΓC ; Γ `Mty τ σ.

ELABORATION EQUIVALENCE THEOREMS 345

• If P ; ΓC ; Γ `tm e⇐ τ e and `ctx P ; ΓC ; Γ Γ
then P ; ΓC ; Γ `Mtm e⇐ τ e and Σ; ΓC ; Γ `tm e : σ e
where `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ and ΓC ; Γ Γ and ΓC ; Γ `Mty τ σ.

Proof. By induction on the lexicographic order of the tuple (size of the expression
e, typing mode). Regarding typing mode, we define type checking to be larger
than type inference. In each mutual dependency, we know that the tuple size
decreases, meaning that the induction is well-founded.

Furthermore, this theorem is mutually proven with Theorems 39, 41 and 42
(Figure C.3). Note that at the dependencies between Theorem 39 and 43 and
between Theorem 41 and 43, the size of P is strictly decreasing, whereas P
remains constant at every other dependency. Furthermore, Theorems 41 and 42
are proven by induction on a finite derivation. Consequenty, the size of P is
strictly decreasing at every cycle and the induction remains well-founded.

From environment equivalence (Theorem 39), in combination with the 2nd

hypothesis, we derive that:

`Mctx P ; ΓC ; Γ Σ; ΓC ; Γ (C.343)

ΓC ; Γ Γ (C.344)

Consequently, by Theorem 28 we derive that

`ctx Σ; ΓC ; Γ (C.345)

Part 1 By case analysis on the typing derivation.
rule sTm-infT-true P ; ΓC ; Γ `tm True ⇒ Bool True
The goal follows by rule sTm-inf-true, rule iTm-true (in combination
with Equation C.345) and rule sTy-bool, with e = True.
rule sTm-infT-false P ; ΓC ; Γ `tm False ⇒ Bool False
Similar to the sTm-infT-true case.
rule sTm-infT-let

P ; ΓC ; Γ `tm let x : ∀aj .Ci ⇒ τ1 = e1 in e2 ⇒ τ2 e3

346 COHERENCE PROOFS

where e3 = let x : ∀aj .σk → σ = Λaj .λ δk : σk
k
.e1 in e2. The goal to be

proven is the following:

P ; ΓC ; Γ `Mtm let x : ∀aj .Ci ⇒ τ1 = e1 in e2 ⇒ τ2 e (C.346)

Σ; ΓC ; Γ `tm e : σ2 let x : ∀aj .σk → σ = Λaj .λ δk : σk
k
.e1 in e2

(C.347)

ΓC ; Γ `Mty τ2 σ2 (C.348)

From the rule premise we know that:

x /∈ dom(Γ) (C.349)

unambig(∀aj .Ci ⇒ τ1) (C.350)

closure(ΓC ;Ci) = Ck (C.351)

ΓC ; Γ `C Ck σk
k (C.352)

ΓC ; Γ `ty ∀aj .Ck ⇒ τ1 ∀aj .σk → σ (C.353)

δk fresh (C.354)

P ; ΓC ; Γ, aj , δk : Ck `tm e1 ⇐ τ1 e1 (C.355)

P ; ΓC ; Γ, x : ∀aj .Ck ⇒ τ1 `tm e2 ⇒ τ2 e2 (C.356)

By applying Lemma 74 to Equation C.356, we get that:

ΓC ; Γ, x : ∀aj .Ck ⇒ τ1 `Mty τ2 σ2 (C.357)

It is straightforward to see from the definition of type well-formedness,
that Goal C.348 follows from Equation C.357, since term variables in the
environment are not relevant for type well-formedness.
We know from the hypothesis that `ctx P ; ΓC ; Γ Γ. By repeated
case analysis on this result (rule sCtxT-pgmInst), we get that `ctx
•; ΓC ; Γ Γ. From rule sCtxT-tyEnvTm, rule sCtxT-tyEnvTy
and rule sCtxT-tyEnvD, in combination with Equations C.349, C.352,
C.353 and C.354, we know that:

`ctx P ; ΓC ; Γ, aj , δk : Ck Γ, aj , δk : σk
k (C.358)

`ctx P ; ΓC ; Γ, x : ∀aj .Ck ⇒ τ1 Γ, x : ∀aj .σk → σ (C.359)

ELABORATION EQUIVALENCE THEOREMS 347

Applying the induction hypothesis on Equations C.355 and C.356, in
combination with Equations C.358 and C.359, results in:

P ; ΓC ; Γ, aj , δk : Ck `Mtm e1 ⇐ τ1 e1 (C.360)

Σ; ΓC ; Γ, aj , δk : Ck `tm e1 : σ1 e1 (C.361)

P ; ΓC ; Γ, x : ∀aj .Ck ⇒ τ1 `Mtm e2 ⇒ τ2 e2 (C.362)

Σ; ΓC ; Γ, x : ∀aj .Ck ⇒ σ1 `tm e2 : σ2 e2 (C.363)

From constraint equivalence (Theorem 40), in combination with Equa-
tion C.352, we get:

ΓC ; Γ `C Ck σk
k (C.364)

By applying rule iTm-forallI and rule iTm-constrI to Equation C.361,
together with Equation C.364, we get:

Σ; ΓC ; Γ `tm Λaj .λδk : Ck .e1 : ∀aj .Ck ⇒ σ1 Λaj .λ δk : σk
k
.e1
(C.365)

From Lemma 112, in combination with Equation C.365, we know that:

ΓC ; Γ `ty ∀aj .Ck ⇒ σ1 ∀aj .σk → σ (C.366)

Goals C.346 and C.347 follow from rule sTm-inf-let and rule iTm-let
respectively, with

e = let x : ∀aj .Ck ⇒ σ1 = Λaj .λδk : Ck .e1 in e2

rule sTm-infT-ArrE P ; ΓC ; Γ `tm e1 e2 ⇒ τ2 e1 e2
The goal to be proven is the following:

P ; ΓC ; Γ `Mtm e1 e2 ⇒ τ2 e (C.367)

Σ; ΓC ; Γ `tm e : σ2 e1 e2 (C.368)

ΓC ; Γ `Mty τ2 σ2 (C.369)

From the rule premise we know that:

P ; ΓC ; Γ `tm e1 ⇒ τ1 → τ2 e1 (C.370)

P ; ΓC ; Γ `tm e2 ⇐ τ1 e2 (C.371)

348 COHERENCE PROOFS

By applying the induction hypothesis to Equations C.370 and C.371, we
get:

P ; ΓC ; Γ `Mtm e1 ⇒ τ1 → τ2 e1 (C.372)

Σ; ΓC ; Γ `tm e1 : σ1 → σ2 e1 (C.373)

P ; ΓC ; Γ `Mtm e2 ⇐ τ1 e2 (C.374)

Σ; ΓC ; Γ `tm e2 : σ1 e2 (C.375)

Goals C.367 and C.368 follow from rule sTm-inf-ArrE and rule iTm-
arrE respectively, in combination with Equations C.372, C.373, C.374
and C.375. Goal C.369 follows by applying Lemma 74 to Equation C.367.
rule sTm-infT-Ann P ; ΓC ; Γ `tm e :: τ ⇒ τ e
The goal to be proven is the following:

P ; ΓC ; Γ `Mtm e :: τ ⇒ τ e (C.376)

Σ; ΓC ; Γ `tm e : σ e (C.377)

ΓC ; Γ `Mty τ σ (C.378)

From the rule premise we know that:

P ; ΓC ; Γ `tm e⇐ τ e (C.379)

Goals C.376, C.377 and C.378 follow by applying Part 2 of this theorem
to Equation C.379.

Part 2 By case analysis on the typing derivation.
rule sTm-checkT-var P ; ΓC ; Γ `tm x⇐ [τ j/aj]τ xσj ei
The goal to be proven is the following:

P ; ΓC ; Γ `Mtm x⇐ [τ j/aj]τ e (C.380)

Σ; ΓC ; Γ `tm e : σ′ xσj ei (C.381)

ΓC ; Γ `Mty [τ j/aj]τ σ′ (C.382)

ELABORATION EQUIVALENCE THEOREMS 349

From the rule premise we know that:

(x : ∀aj .Ci ⇒ τ) ∈ Γ (C.383)

unambig(∀aj .Ci ⇒ τ) (C.384)

P ; ΓC ; Γ � [[τ j/aj]Ci] ei
i (C.385)

ΓC ; Γ `ty τ j σj
j (C.386)

`ctx P ; ΓC ; Γ Γ (C.387)

We know from Lemma 75, in combination with Equations C.383 and C.343,
that:

(x : ∀aj .Ci ⇒ σ) ∈ Γ (C.388)
By applying type equivalence (Theorem 40) to Equation C.386, we get:

ΓC ; Γ `Mty τ j σj
j

(C.389)

ΓC ; Γ `ty σj σj
j (C.390)

By applying dictionary equivalence (Theorem 41) to Equation C.385, we
get:

P ; ΓC ; Γ �M [[τ j/aj]Ci] di
i

(C.391)

Σ; ΓC ; Γ `d di : [σj/aj]Ci ei
i (C.392)

ΓC ; Γ `MC [τ j/aj]Ci [σj/aj]Ci
i

(C.393)

Goal C.380 follows from rule sTm-check-var, in combination with
Equations C.383, C.384, C.391, C.389 and C.343, with e = xσj di .
Goal C.381 follows from rule iTm-var, rule iTm-forallE and rule iTm-
constrE, in combination with Equations C.345, C.388, C.390 and C.392,
with σ′ = [σj/aj]σ. Goal C.382 follows by applying Lemma 74 to
Equation C.380.
rule sTm-checkT-meth P ; ΓC ; Γ `tm m⇐ [τ j/aj][τ/a]τ ′ e.mσj ei
The goal to be proven is the following:

P ; ΓC ; Γ `Mtm m⇐ [τ j/aj][τ/a]τ ′ e (C.394)

Σ; ΓC ; Γ `tm e : σ0 e.mσj ei (C.395)

ΓC ; Γ `Mty [τ j/aj][τ/a]τ ′ σ0 (C.396)

350 COHERENCE PROOFS

From the rule premise we know that:

(m : C ′k ⇒ TC a : ∀aj .Ci ⇒ τ ′) ∈ ΓC (C.397)

unambig(∀aj , a.Ci ⇒ τ ′) (C.398)

P ; ΓC ; Γ � [TC τ] e (C.399)

ΓC ; Γ `ty τ σ (C.400)

P ; ΓC ; Γ � [[τ j/aj][τ/a]Ci] ei
i (C.401)

ΓC ; Γ `ty τ j σj
j (C.402)

`ctx P ; ΓC ; Γ Γ (C.403)

By repeated case analysis on Equation C.343 (rule sCtx-clsEnv),
together with Equation C.397, we know that:

(m : TC a : ∀aj .Ci ⇒ σ′) ∈ ΓC (C.404)

By applying type equivalence (Theorem 40) to Equations C.400 and C.402,
we get:

ΓC ; Γ `Mty τ σ (C.405)

ΓC ; Γ `ty σ σ (C.406)

ΓC ; Γ `Mty τ j σj
j

(C.407)

ΓC ; Γ `ty σj σj
j (C.408)

By applying dictionary equivalence (Theorem 41) to Equations C.399
and C.401, we get:

P ; ΓC ; Γ �M [TC τ] d (C.409)

Σ; ΓC ; Γ `d d : TC σ e (C.410)

P ; ΓC ; Γ �M [[τ j/aj][τ/a]Ci] di
i

(C.411)

Σ; ΓC ; Γ `d di : [σj/aj][σ/a]Ci ei
i (C.412)

Goal C.394 follows from rule sTm-check-meth, in combination with
Equations C.397, C.398, C.409, C.405, C.411, C.407 and C.343, with

ELABORATION EQUIVALENCE THEOREMS 351

e = d.mσj di . Consequently, Goal C.395 follows from rule iTm-
method, rule iTm-forallE and rule iTm-constrE, in combination
with Equations C.410, C.404, C.408 and C.412, with σ0 = [σj/aj][σ/a]σ′.
Goal C.396 follows by applying Lemma 74 to Equation C.394.
rule sTm-checkT-ArrI P ; ΓC ; Γ `tm λx.e⇐ τ1 → τ2 λx : σ.e
The goal to be proven is the following:

P ; ΓC ; Γ `Mtm λx.e⇐ τ1 → τ2 e (C.413)

Σ; ΓC ; Γ `tm e : σ0 λx : σ.e (C.414)

ΓC ; Γ `Mty τ1 → τ2 σ0 (C.415)

From the rule premise we know that:

x /∈ dom(Γ) (C.416)

P ; ΓC ; Γ, x : τ1 `tm e⇐ τ2 e (C.417)

ΓC ; Γ `ty τ1 σ (C.418)

By applying type equivalence (Theorem 40) to Equation C.418, we get:

ΓC ; Γ `Mty τ1 σ (C.419)

ΓC ; Γ `ty σ σ (C.420)

From rule sCtxT-tyEnvTm, together with the 2nd hypothesis and
Equation C.418, we know that:

`ctx P ; ΓC ; Γ, x : τ1 Γ, x : σ (C.421)

By applying the induction hypothesis on Equation C.417, together with
Equation C.421, we get:

P ; ΓC ; Γ, x : τ1 `Mtm e⇐ τ2 e′ (C.422)

Σ; ΓC ; Γ, x : σ `tm e′ : σ2 e (C.423)

ΓC ; Γ, x : τ1 `Mty τ2 σ2 (C.424)

Goal C.413 follows from rule sTm-check-ArrI, together with Equa-
tions C.416, C.422 and C.419, with e = λx : σ.e′. Consequently,
Goal C.414 follows from rule iTm-arrI, together with Equations C.423
and C.420, with σ0 = σ → σ2. Goal C.415 follows by applying Lemma 74

352 COHERENCE PROOFS

to Equation C.413.
rule sTm-checkT-Inf P ; ΓC ; Γ `tm e⇐ τ e
The goal to be proven is the following:

P ; ΓC ; Γ `Mtm e⇐ τ e (C.425)

Σ; ΓC ; Γ `tm e : σ e (C.426)

ΓC ; Γ `Mty τ σ (C.427)

From the rule premise we know that:

P ; ΓC ; Γ `tm e⇒ τ e (C.428)

Goals C.425, C.426 and C.427 follow directly by applying Part 1 of this
theorem to Equation C.428.

Theorem 44 (Equivalence - Contexts).

• If M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M
and `ctx P ; ΓC ; Γ Γ and `ctx P ; ΓC ; Γ′ Γ′
then M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M
and M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ′) M
where `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ and `Mctx P ; ΓC ; Γ′ Σ; ΓC ; Γ′
and ΓC ; Γ `Mty τ σ and ΓC ; Γ′ `Mty τ ′ σ′.

• If M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M
and `ctx P ; ΓC ; Γ Γ and `ctx P ; ΓC ; Γ′ Γ′
then M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M
and M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ′) M
where `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ and `Mctx P ; ΓC ; Γ′ Σ; ΓC ; Γ′
and ΓC ; Γ `Mty τ σ and ΓC ; Γ′ `Mty τ ′ σ′.

• If M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M
and `ctx P ; ΓC ; Γ Γ and `ctx P ; ΓC ; Γ′ Γ′
then M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M
and M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ′) M
where `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ and `Mctx P ; ΓC ; Γ′ Σ; ΓC ; Γ′
and ΓC ; Γ `Mty τ σ and ΓC ; Γ′ `Mty τ ′ σ′.

• If M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M
and `ctx P ; ΓC ; Γ Γ and `ctx P ; ΓC ; Γ′ Γ′

ELABORATION EQUIVALENCE THEOREMS 353

then M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M
and M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ′) M
where `Mctx P ; ΓC ; Γ Σ; ΓC ; Γ and `Mctx P ; ΓC ; Γ′ Σ; ΓC ; Γ′
and ΓC ; Γ `Mty τ σ and ΓC ; Γ′ `Mty τ ′ σ′.

Proof. By straightforward induction on the typing derivation.

354 COHERENCE PROOFS

C.7 Coherence Theorems

C.7.1 Compatibility Lemmas

Lemma 120 (Compatibility - Term Abstraction).

ΓC ; Γ, x : σ1 ` Σ1 : e1 'log Σ2 : e2 : σ2

ΓC ; Γ ` Σ1 : λx : σ1.e1 'log Σ2 : λx : σ1.e2 : σ1 → σ2

Proof. By the definition of logical equivalence, suppose we have:

R ∈ FJΓKΓC (C.429)

φ ∈ GJΓKΣ1,Σ2,ΓC

R

γ ∈ HJΓKΣ1,Σ2,ΓC

R (C.430)

The goal to be proven is the following:

(Σ1 : γ1(φ1(R(λx : σ1.e1))),Σ2 : γ2(φ2(R(λx : σ1.e2)))) ∈ EJσ1 → σ2KΓC

R

By the definition of the E relation and the fact that term abstractions are values,
the goal reduces to:

Σ1; ΓC ; • `tm γ1(φ1(R(λx : σ1.e1))) : R(σ1 → σ2)

Σ2; ΓC ; • `tm γ2(φ2(R(λx : σ1.e2))) : R(σ1 → σ2)

(Σ1 : γ1(φ1(R(λx : σ1.e1))),Σ2 : γ2(φ2(R(λx : σ1.e2)))) ∈ VJσ1 → σ2KΓC

R

By applying the substitutions, the goal simplifies to:

Σ1; ΓC ; • `tm λx : R(σ1).(γ1(φ1(R(e1)))) : R(σ1 → σ2) (C.431)

Σ2; ΓC ; • `tm λx : R(σ1).(γ2(φ2(R(e2)))) : R(σ1 → σ2) (C.432)

(Σ1 : λx : R(σ1).(γ1(φ1(R(e1)))),Σ2 : λx : R(σ1).(γ2(φ2(R(e2))))) ∈ VJσ1 → σ2KΓC

R

(C.433)

By unfolding the definition of logical equivalence in the hypothesis of the
theorem, we get:

(Σ1 : γ′1(φ′1(R′(e1))),Σ2 : γ′2(φ′2(R′(e2)))) ∈ EJσ2KΓC

R′ (C.434)

COHERENCE THEOREMS 355

for anyR′ ∈ FJΓ, x : σ1KΓC , φ′ ∈ GJΓ, x : σ1K
Σ1,Σ2,ΓC

R′ and γ′ ∈ HJΓ, x : σ1K
Σ1,Σ2,ΓC

R′ .

By the definition of the F-relation and from Equation C.429, we have that
R ∈ FJΓ, x : σ1KΓC and we choose R′ = R. By case analysis on φ′, we know
that φ′ = φ′′, x 7→ (e3, e4) for some φ′′ ∈ GJΓKΣ1,Σ2,ΓC

R and expressions e3 and
e4 such that

(Σ1 : e3,Σ2 : e4) ∈ EJσ1KΓC

R (C.435)
We choose φ′′ = φ. Lastly, by the definition of the H-relation and from
Equation C.430, we have that γ ∈ HJΓ, x : σ1K

Σ1,Σ2,ΓC

R and we choose γ′ = γ.

With the above mentioned choices for γ′, φ′ and R′, unfolding the definition of
the E-relation in Equation C.434, gives us:

Σ1; ΓC ; • `tm γ1((φ1, x 7→ e3)(R(e1))) : R(σ2) (C.436)

Σ2; ΓC ; • `tm γ2((φ2, x 7→ e4)(R(e2))) : R(σ2) (C.437)

∃v3, v4 : Σ1 ` γ1((φ1, x 7→ e3)(R(e1))) −→∗ v3

∧ Σ2 ` γ2((φ2, x 7→ e4)(R(e2))) −→∗ v4

∧ (Σ1 : v3,Σ2 : v4) ∈ VJσ2KΓC

R

(C.438)

By unfolding the definition of the E-relation in Equation C.435, we know that:

Σ1; ΓC ; • `tm e3 : σ1 (C.439)

Σ2; ΓC ; • `tm e4 : σ1 (C.440)

Note that neither e3 nor e4 contain any free variables, thus γ1(φ1(R(e3))) =
e3 and γ2(φ2(R(e4))) = e4. Taking these equations into account, from the
definition of substitution, Equations C.436 and C.437 are rewritten to:

Σ1; ΓC ; • `tm [e3/x](γ1(φ1(R(e1)))) : R(σ2) (C.441)

Σ2; ΓC ; • `tm [e4/x](γ2(φ2(R(e2)))) : R(σ2) (C.442)

By applying the substitution Lemma 86 on Equations C.441 and C.442
respectively, in combination with Equations C.439 and C.440, we get:

Σ1; ΓC ; •, x : σ1 `tm γ1(φ1(R(e1))) : R(σ2) (C.443)

Σ2; ΓC ; •, x : σ1 `tm γ2(φ2(R(e2))) : R(σ2) (C.444)

By Lemma 113, it follows from Equation C.443 that `ctx Σ1; ΓC ; •, x : σ1. By
case analysis on this result, rule rule iCtx-tyEnvTm (the rule with which

356 COHERENCE PROOFS

variable x wad inserted in the environment) tells us that:

ΓC ; • `ty σ1 (C.445)

Goals C.431 and C.432 follow from applying the typing rule rule iTm-arrI on
Equations C.443 and C.444 respectively, together with Equation C.445.

It remains to show Goal C.433. By unfolding the definition of the V relation,
the goal simplifies to

∀e5 e6, if (Σ1 : e5,Σ2 : e6) ∈ EJσ1KΓC

R then (C.446)

(Σ1 : λx : R(σ1).(γ1(φ1(R(e1)))) e5,Σ2 : λx : R(σ1).(γ2(φ2(R(e2)))) e6) ∈ EJσ2KΓC

R

(C.447)

Then, suppose expressions e5 and e6, such that Equation C.446 holds. By
unfolding the definition of the E relation in Equation C.446, we have

Σ1; ΓC ; • `tm e5 : σ1 (C.448)

Σ2; ΓC ; • `tm e6 : σ1 (C.449)

We also unfold the definition of the E relation in Goal C.447, to get:

Σ1; ΓC ; • `tm (λx : R(σ1).(γ1(φ1(R(e1))))) e5 : σ2 (C.450)

Σ2; ΓC ; • `tm (λx : R(σ1).(γ2(φ2(R(e2))))) e6 : σ2 (C.451)

∃v5, v6 : Σ1 ` (λx : R(σ1).(γ1(φ1(R(e1))))) e5 −→∗ v5

∧ Σ2 ` (λx : R(σ1).(γ2(φ2(R(e2))))) e6 −→∗ v6

∧ (Σ1 : v5,Σ2 : v6) ∈ VJσ2KΓC

R

(C.452)

Goals C.450 and C.451 follow by applying the rule iTm-arrE typing rule once
on Equations C.443 and C.448 and once more on Equations C.444 and C.449.
Note that Equations C.443 and C.444 have been already proven above.

By case analysis, it is easy to see that the first step of the evaluations in
Goal C.452 is rule iEval-appAbs, reducing the goal to:

∃v5, v6 : Σ1 ` γ1(φ1(R([e5/x]e1))) −→∗ v5

∧ Σ2 ` γ2(φ2(R([e6/x]e2))) −→∗ v6

∧ (Σ1 : v5,Σ2 : v6) ∈ VJσ2KΓC

R

COHERENCE THEOREMS 357

We choose e3 = e5 and e4 = e6 in Equation C.435. The goal follows by choosing
v5 = v3 and v6 = v4 from Equation C.438.

Lemma 121 (Compatibility - Term Application).

ΓC ; Γ ` Σ1 : e1 'log Σ2 : e′1 : σ1 → σ2
ΓC ; Γ ` Σ1 : e2 'log Σ2 : e′2 : σ1

ΓC ; Γ ` Σ1 : e1 e2 'log Σ2 : e′1 e′2 : σ2

Proof. By inlining the definition of logical equivalence, suppose we have:

R ∈ FJΓKΓC

φ ∈ GJΓKΣ1,Σ2,ΓC

R

γ ∈ HJΓKΣ1,Σ2,ΓC

R

The goal to be proven is the following:

(Σ1 : γ1(φ1(R(e1 e2))),Σ2 : γ2(φ2(R(e′1 e′2)))) ∈ EJσ2KΓC

R

By applying the definition of the E relation, the goal reduces to:

Σ1; ΓC ; • `tm γ1(φ1(R(e1 e2))) : R(σ2) (C.453)

Σ2; ΓC ; • `tm γ2(φ2(R(e′1 e′2))) : R(σ2) (C.454)

∃v1, v2 : Σ1 ` γ1(φ1(R(e1 e2))) −→∗ v1

∧ Σ2 ` γ2(φ2(R(e′1 e′2))) −→∗ v2

∧ (Σ1 : v1,Σ2 : v2) ∈ VJσ2KΓC

R

(C.455)

By applying the substitutions in Goals C.453 and C.454, they reduce to:

Σ1; ΓC ; • `tm (γ1(φ1(R(e1)))) (γ1(φ1(R(e2)))) : R(σ2) (C.456)

Σ2; ΓC ; • `tm (γ2(φ2(R(e′1)))) (γ2(φ2(R(e′2)))) : R(σ2) (C.457)

By inlining the definition of logical equivalence in the premise of the rule, we
get:

Σ1; ΓC ; • `tm γ1(φ1(R(e1))) : R(σ1 → σ2) (C.458)

Σ2; ΓC ; • `tm γ2(φ2(R(e′1))) : R(σ1 → σ2) (C.459)

358 COHERENCE PROOFS

∃v3, v4 : Σ1 ` γ1(φ1(R(e1))) −→∗ v3 (C.460)

∧ Σ2 ` γ2(φ2(R(e′1))) −→∗ v4 (C.461)

∧ (Σ1 : v3,Σ2 : v4) ∈ VJσ1 → σ2KΓC

R (C.462)

and

Σ1; ΓC ; • `tm γ1(φ1(R(e2))) : R(σ1) (C.463)

Σ2; ΓC ; • `tm γ2(φ2(R(e′2))) : R(σ1) (C.464)

∃v5, v6 : Σ1 ` γ1(φ1(R(e2))) −→∗ v5

∧ Σ2 ` γ2(φ2(R(e′2))) −→∗ v6

∧ (Σ1 : v5,Σ2 : v6) ∈ VJσ1KΓC

R

By applying both Equation C.458 and C.463 and both Equation C.459 and
C.464 respectively to rule iTm-arrE, Goal C.456 and C.457 are proven.

By applying the substitution, Goal C.455 reduces to:

∃v1, v2 : Σ1 ` (γ1(φ1(R(e1)))) (γ1(φ1(R(e2)))) −→∗ v1

∧ Σ2 ` (γ2(φ2(R(e′1)))) (γ2(φ2(R(e′2)))) −→∗ v2

∧ (Σ1 : v1,Σ2 : v2) ∈ VJσ2KΓC

R

Through case analysis, we see that we should first (repeatedly) apply rule iEval-
app and Equation C.460 and C.461 respectively. The goal reduces to:

∃v1, v2 : Σ1 ` v3 (γ1(φ1(R(e2)))) −→∗ v1

∧ Σ2 ` v4 (γ2(φ2(R(e′2)))) −→∗ v2

∧ (Σ1 : v1,Σ2 : v2) ∈ VJσ2KΓC

R

(C.465)

By the definition of the V-relation in Equation C.462, we know that:

Σ1; ΓC ; • `tm v3 : R(σ1 → σ2)

Σ2; ΓC ; • `tm v4 : R(σ1 → σ2)

∀(Σ1 : e5,Σ2 : e6) ∈ EJσ1KΓC

R : (Σ1 : v3 e5,Σ2 : v4 e6) ∈ EJσ2KΓC

R (C.466)

COHERENCE THEOREMS 359

We choose e5 = γ1(φ1(R(e2))) and e6 = γ2(φ2(R(e′2))). Goal C.465 now follows
from the definition of the E-relation in Equation C.466.

Lemma 122 (Compatibility - Dictionary Abstraction).

ΓC ; Γ, δ : C ` Σ1 : e1 'log Σ2 : e2 : σ
ΓC ; Γ ` Σ1 : λδ : C.e1 'log Σ2 : λδ : C.e2 : C ⇒ σ

Proof. By unfolding the definition of logical equivalence in the conclusion of
the lemma, suppose we have:

R ∈ FJΓKΓC (C.467)

φ ∈ GJΓKΣ1,Σ2,ΓC

R (C.468)

γ ∈ HJΓKΣ1,Σ2,ΓC

R

The goal to be proven is the following:

(Σ1 : γ1(φ1(R(λδ : C.e1))),Σ2 : γ2(φ2(R(λδ : C.e2)))) ∈ EJC ⇒ σKΓC

R

By applying the definition of the E relation (taking into account that λδ : C.e
is a value) and partially applying the substitutions, the goal reduces to:

Σ1; ΓC ; • `tm λδ : R(C).(γ1(φ1(R(e1)))) : R(C ⇒ σ) (C.469)

Σ2; ΓC ; • `tm λδ : R(C).(γ2(φ2(R(e2)))) : R(C ⇒ σ) (C.470)

(Σ1 : λδ : R(C).(γ1(φ1(R(e1)))),Σ2 : λδ : R(C).(γ2(φ2(R(e2))))) ∈ VJC ⇒ σKΓC

R

(C.471)

By unfolding the definition of logical equivalence in the premise of this lemma,
we get:

(Σ1 : γ′1(φ′1(R′(e1))),Σ2 : γ′2(φ′2(R′(e2)))) ∈ EJσKΓC

R′ (C.472)

for anyR′ ∈ FJΓ, δ : CKΓC , φ′ ∈ GJΓ, δ : CKΣ1,Σ2,ΓC

R′ and γ′ ∈ HJΓ, δ : CKΣ1,Σ2,ΓC

R′ .

By the definition of the F and the G relations and from Equations C.467
and C.468, we have that R ∈ FJΓ, δ : CKΓC and φ ∈ GJΓ, δ : CKΣ1,Σ2,ΓC

R′ . We
choose R′ = R and φ′ = φ. By case analysis on γ′, we know that γ′ =
γ′′, δ 7→ (d1, d2) for some γ′′ ∈ HJΓKΣ1,Σ2,ΓC

R and some dictionaries d1 and d2
such that

(Σ1 : d1,Σ2 : d2) ∈ EJR(C)KΓC (C.473)

360 COHERENCE PROOFS

We choose γ′′ = γ. Then, unfolding the definition of the E relation in
Equation C.472 results in:

Σ1; ΓC ; • `tm (γ1, δ 7→ d1)(φ1(R(e1))) : R(σ) (C.474)

Σ2; ΓC ; • `tm (γ2, δ 7→ d2)(φ2(R(e2))) : R(σ) (C.475)

∃v1, v2 : Σ1 ` (γ1, δ 7→ d1)(φ1(R(e1))) −→∗ v1

∧ Σ2 ` (γ2, δ 7→ d2)(φ2(R(e2))) −→∗ v2

∧ (Σ1 : v1,Σ2 : v2) ∈ VJσKΓC

R

(C.476)

From the definition of the E relation in Equation C.473, it follows that:

Σ1; ΓC ; • `d d1 : R(C) (C.477)

Σ2; ΓC ; • `d d2 : R(C) (C.478)

Since neither d1 nor d2 contain any free variables, we know that γ1(d1) = d1
and γ2(d2) = d2. Consequently, Equations C.474 and C.475 are equivalent to:

Σ1; ΓC ; • `tm [d1/δ](γ1(φ1(R(e1)))) : R(σ) (C.479)

Σ2; ΓC ; • `tm [d2/δ](γ2(φ2(R(e2)))) : R(σ) (C.480)

By applying the substitution Lemma 88 on Equations C.479 and C.480
respectively, in combination with Equations C.477 and C.478, we find:

Σ1; ΓC ; •, δ : C `tm γ1(φ1(R(e1))) : R(σ) (C.481)

Σ2; ΓC ; •, δ : C `tm γ2(φ2(R(e2))) : R(σ) (C.482)

By Lemma 113, it follows from Equation C.481 that `ctx Σ1; ΓC ; •, δ : C.
Consequently, we know from rule iCtx-tyEnvD that:

ΓC ; • `C C (C.483)

Since C does not contain any free variables, it is straightforward to see that
R(C) = C.

Consequently, goals C.469 and C.470 follow by applying Equation C.481 and
C.482 respectively, in combination with Equation C.483, to rule iTm-constrI.

COHERENCE THEOREMS 361

By unfolding the definition of V, Goal C.471 reduces to:

Σ1; ΓC ; • `tm λδ : R(C).(γ1(φ1(R(e1)))) : R(C ⇒ σ) (C.484)

Σ2; ΓC ; • `tm λδ : R(C).(γ2(φ2(R(e2)))) : R(C ⇒ σ) (C.485)

∀d3 d4, if (Σ1 : d3,Σ2 : d4) ∈ EJR(C)KΓC then (C.486)

(Σ1 : (λδ : R(C).(γ1(φ1(R(e1))))) d3,Σ2 : (λδ : R(C).(γ2(φ2(R(e2))))) d4) ∈ EJσKΓC

R

(C.487)

Goals C.484 and C.485 are identical to Goals C.469 and C.470, which have
been proven above. For the final goal, suppose dictionaries d3 and d4 such that
Equation C.486 holds. By the definition of the E relation in Equation C.486,
we obtain:

Σ1; ΓC ; • `d d3 : R(C) (C.488)

Σ2; ΓC ; • `d d4 : R(C) (C.489)

We unfold the definition of the E relation in Goal C.487, reducing it to:

Σ1; ΓC ; • `tm (λδ : R(C).(γ1(φ1(R(e1))))) d3 : R(σ) (C.490)

Σ2; ΓC ; • `tm (λδ : R(C).(γ2(φ2(R(e2))))) d4 : R(σ) (C.491)

∃v3, v4 : Σ1 ` (λδ : R(C).(γ1(φ1(R(e1))))) d3 −→∗ v3

∧ Σ2 ` (λδ : R(C).(γ2(φ2(R(e2))))) d4 −→∗ v4

∧ (Σ1 : v3,Σ2 : v4) ∈ VJσKΓC

R

(C.492)

Goals C.490 and C.491 follow by applying the rule iTm-constrE typing rule
once on Equations C.484 and C.488 and once on Equations C.485 and C.489.

Through case analysis, it is straightforward to note that the first step of the
evaluation paths in Equation C.492 should be by rule rule iEval-DAppAbs.
The goal reduces to:

∃v3, v4 : Σ1 ` [d3/δ](γ1(φ1(R(e1)))) −→∗ v3

∧ Σ2 ` [d4/δ](γ2(φ2(R(e2)))) −→∗ v4

∧ (Σ1 : v3,Σ2 : v4) ∈ VJσKΓC

R

The above goal follows directly from Equation C.476, by choosing d1 = d3,
d2 = d4, v3 = v1 and v4 = v2.

362 COHERENCE PROOFS

Lemma 123 (Compatibility - Dictionary Application).

ΓC ; Γ ` Σ1 : e1 'log Σ2 : e2 : C ⇒ σ
ΓC ; Γ ` Σ1 : d1 'log Σ2 : d2 : C

ΓC ; Γ ` Σ1 : e1 d1 'log Σ2 : e2 d2 : σ

Proof. By inlining the definition of logical equivalence, suppose we have:

R ∈ FJΓKΓC

φ ∈ GJΓKΣ1,Σ2,ΓC

R

γ ∈ HJΓKΣ1,Σ2,ΓC

R

The goal to be proven is the following:

(Σ1 : γ1(φ1(R(e1 d1))),Σ2 : γ2(φ2(R(e2 d2)))) ∈ EJσKΓC

R

By unfolding the definition of the E relation in the goal above, and by simplifying
the substitutions, the goal reduces to:

Σ1; ΓC ; • `tm (γ1(φ1(R(e1)))) (γ1(R(d1))) : R(σ) (C.493)

Σ2; ΓC ; • `tm (γ2(φ2(R(e2)))) (γ2(R(d2))) : R(σ) (C.494)

∃v1, v2 : Σ1 ` (γ1(φ1(R(e1)))) (γ1(R(d1))) −→∗ v1

∧ Σ2 ` (γ2(φ2(R(e2)))) (γ2(R(d2))) −→∗ v2

∧ (Σ1 : v1,Σ2 : v2) ∈ VJσKΓC

R

(C.495)

By inlining the definitions of logical equivalence and the E relation in the first
premise of this lemma, we get:

Σ1; ΓC ; • `tm γ1(φ1(R(e1))) : R(C ⇒ σ) (C.496)

Σ2; ΓC ; • `tm γ2(φ2(R(e2))) : R(C ⇒ σ) (C.497)

∃v3, v4 : Σ1 ` γ1(φ1(R(e1))) −→∗ v3

∧ Σ2 ` γ2(φ2(R(e2))) −→∗ v4

∧ (Σ1 : v3,Σ2 : v4) ∈ VJC ⇒ σKΓC

R

(C.498)

COHERENCE THEOREMS 363

Similarly, by unfolding the definition of logical equivalence in the second premise
of the rule, we get:

(Σ1 : γ1(R(d1)),Σ2 : γ2(R(d2))) ∈ EJR(C)KΓC (C.499)

From the definition of the E relation in Equation C.499 we have:

Σ1; ΓC ; • `d γ1(R(d1)) : R(C) (C.500)

Σ2; ΓC ; • `d γ2(R(d2)) : R(C) (C.501)

Note that, by the definition of substitution, we have R(C ⇒ σ) = R(C)⇒ R(σ).
This allows the application of the typing rule rule iTm-constrE once on
Equations C.496 and C.500 and once more on Equations C.497 and C.501,
therefore proving Goals C.493 and C.494.

Through application of the rule iEval-DApp evaluation rule on each step of
the two evaluation paths in Equation C.498, Goal C.495 reduces to:

∃v1, v2 : Σ1 ` v3 (γ1(R(d1))) −→∗ v1

∧ Σ2 ` v4 (γ2(R(d2))) −→∗ v2

∧ (Σ1 : v1,Σ2 : v2) ∈ VJσKΓC

R

(C.502)

Unfolding the definition of the V relation in Equation C.498 results in:

Σ1; ΓC ; • `tm v3 : R(C ⇒ σ)

Σ2; ΓC ; • `tm v4 : R(C ⇒ σ)

∀(Σ1 : d3,Σ2 : d4) ∈ EJR(C)KΓC : (Σ1 : v3 d3,Σ2 : v4 d4) ∈ EJσKΓC

R (C.503)

We take d3 = γ1(R(d1)) and d4 = γ2(R(d2)). Goal C.502 follows from the
definition of the E relation in Equation C.503.

Lemma 124 (Compatibility - Type Abstraction).

ΓC ; Γ, a ` Σ1 : e1 'log Σ2 : e2 : σ
ΓC ; Γ ` Σ1 : Λa.e1 'log Σ2 : Λa.e2 : ∀a.σ

364 COHERENCE PROOFS

Proof. By unfolding the definition of logical equivalence, suppose we have:

R ∈ FJΓKΓC (C.504)

φ ∈ GJΓKΣ1,Σ2,ΓC

R (C.505)

γ ∈ HJΓKΣ1,Σ2,ΓC

R (C.506)

The goal to be proven is the following:

(Σ1 : γ1(φ1(R(Λa.e1))),Σ2 : γ2(φ2(R(Λa.e2)))) ∈ EJ∀a.σKΓC

R

Because a /∈ Γ, from Equation C.504 it follows that a is not in the domain
of R. Furthermore, from Equations C.505 and C.506 it follows that for every
mapping x 7→ (e′1, e′2) ∈ φ and for every mapping δ 7→ (d′1, d′2) ∈ γ, we
have a /∈ fv(e′i) and a /∈ fv(d′i), where i ∈ {1, 2}. Therefore, we obtain
γi(φi(R(Λa.ei))) = Λa.γi(φi(R(ei))), for i ∈ {1, 2}. With these equations, the
goal above reduces to

(Σ1 : Λa.γ1(φ1(R(e1))),Σ2 : Λa.γ2(φ2(R(e2)))) ∈ EJ∀a.σKΓC

R

By applying the definition of the E relation, taking into account that expressions
of the form Λa.e are values, the goal reduces to:

Σ1; ΓC ; • `tm Λa.γ1(φ1(R(e1))) : R(∀a.σ) (C.507)

Σ2; ΓC ; • `tm Λa.γ2(φ2(R(e2))) : R(∀a.σ) (C.508)

(Σ1 : Λa.γ1(φ1(R(e1))),Σ2 : Λa.γ2(φ2(R(e2)))) ∈ VJ∀a.σKΓC

R (C.509)

Suppose any σ′ such that
ΓC ; • `ty σ′ (C.510)

and any r ∈ Rel[σ′]. Then, inlining the definition of the V relation in Goal C.509,
reduces it to:

(Σ1 : (Λa.γ1(φ1(R(e1))))σ′,Σ2 : (Λa.γ2(φ2(R(e2))))σ′) ∈ EJσKΓC

R,a 7→(σ′,r)
(C.511)

Unfolding the definition of logical equivalence in the premise of this lemma,
gives us:

(Σ1 : γ′1(φ′1(R′(e1))),Σ2 : γ′2(φ′2(R′(e2)))) ∈ EJσKΓC

R′ (C.512)

for any R′ ∈ FJΓ, aKΓC , φ′ ∈ GJΓ, aKΣ1,Σ2,ΓC

R′ and γ′ ∈ HJΓ, aKΣ1,Σ2,ΓC

R′ .

COHERENCE THEOREMS 365

By the definition of the F relation, we know that R′ = R′′, a 7→ (σ′′, r ′) for
some R′′ ∈ FJΓKΓC and σ′′ such that ΓC ; • `ty σ′′ and r ′ ∈ Rel[σ′′]. We choose
R′′ = R, σ′′ = σ′ and r ′ = r . By the definition of the G and H relations
and from Equations C.505 and C.506, we have that φ ∈ GJΓ, aKΣ1,Σ2,ΓC

R and
γ ∈ HJΓ, aKΣ1,Σ2,ΓC

R . Then, we choose φ′ = φ and γ′ = γ.

Unfolding the definition of the E relation in Equation C.512, results in:

Σ1; ΓC ; • `tm γ1(φ1(R, a 7→ (σ′, r)(e1))) : (R, a 7→ (σ′, r))(σ) (C.513)

Σ2; ΓC ; • `tm γ2(φ2(R, a 7→ (σ′, r)(e2))) : (R, a 7→ (σ′, r))(σ) (C.514)

∃v3, v4 : Σ1 ` γ1(φ1(R, a 7→ (σ′, r)(e1))) −→∗ v3

∧ Σ2 ` γ2(φ2(R, a 7→ (σ′, r)(e2))) −→∗ v4

∧ (Σ1 : v1,Σ2 : v2) ∈ VJσKΓC

(R,a 7→(σ′,r))

(C.515)

By the definition of substitution, and because σ′ has no free variables, it
follows that (R, a 7→ (σ′, r))(σ) = [σ′/a](R(σ)). Furthermode, because a /∈ Γ,
from Equations C.505 and C.506 it follows that γi(φi((R, a 7→ (σ′, r))(e))) =
[σ′/a](γi(φi(R(e)))), for any expression e and i ∈ {1, 2}. Taking these equalities
into account, by applying Equations C.513 and C.514 to reverse substitution
Lemma 90 gives us:

Σ1; ΓC ; •, a `tm γ1(φ1(R(e1))) : R(σ) (C.516)

Σ2; ΓC ; •, a `tm γ2(φ2(R(e2))) : R(σ) (C.517)

Because a is not in the domain of R, we have R(∀a.σ) = ∀a.R(σ). Hence,
Goals C.507 and C.508 follow by passing Equations C.516 and C.517 to rule iTm-
forallI, respectively.

Unfolding the definition of the E relation in Goal C.511 and since (R, a 7→ (σ′, r))(σ) =
[σ′/a](R(σ)), the goal reduces to:

Σ1; ΓC ; • `tm (Λa.γ1(φ1(R(e1))))σ′ : [σ′/a](R(σ)) (C.518)

Σ2; ΓC ; • `tm (Λa.γ2(φ2(R(e2))))σ′ : [σ′/a](R(σ)) (C.519)

∃v5, v6 : Σ1 ` (Λa.γ1(φ1(R(e1))))σ′ −→∗ v5

∧Σ2 ` (Λa.γ2(φ2(R(e2))))σ′ −→∗ v6

∧ (Σ1 : v5,Σ2 : v6) ∈ VJσKΓC

R,a 7→(σ′,r)

(C.520)

366 COHERENCE PROOFS

Goals C.518 and C.519 follow by applying Goals C.507 and C.508 (which have
previously been proven) to rule iTm-forallE, respectively, together with
Equation C.510. The first step of both evaluation paths in Equation C.520
can only be taken by appropriate instantiations of rule rule iEval-tyAppAbs.
With this, Goal C.520 can be further reduced to

∃v5, v6 : Σ1 ` [σ′/a](γ1(φ1(R(e1)))) −→∗ v5

∧ Σ2 ` [σ′/a](γ2(φ2(R(e2)))) −→∗ v6

∧ (Σ1 : v5,Σ2 : v6) ∈ VJσKΓC

R,a 7→(σ′,r)

which follows from Equation C.515 by choosing v5 = v3 and v6 = v4.

Lemma 125 (Compatibility - Type Application).

ΓC ; Γ ` Σ1 : e1 'log Σ2 : e2 : ∀a.σ′
ΓC ; Γ `ty σ

ΓC ; Γ ` Σ1 : e1 σ 'log Σ2 : e2 σ : [σ/a]σ′

Proof. By inlining the definition of logical equivalence, suppose we have:

R ∈ FJΓKΓC

φ ∈ GJΓKΣ1,Σ2,ΓC

R

γ ∈ HJΓKΣ1,Σ2,ΓC

R

Note that, by the definition of the F relation, a is not in the domain of R, since
a /∈ Γ. The goal to be proven is the following:

(Σ1 : γ1(φ1(R(e1 σ))),Σ2 : γ2(φ2(R(e2 σ)))) ∈ EJ[σ/a]σ′KΓC

R (C.521)

From the definition of substitution we have that

γi(φi(R(ei σ))) = γi(φi(R(ei)))R(σ), for i ∈ {1, 2}

and R([σ/a]σ′) = [R(σ)/a]R(σ′)

COHERENCE THEOREMS 367

Taking into account these equalities and by unfolding the definition of the E
relation, Goal C.521 reduces to:

Σ1; ΓC ; • `tm γ1(φ1(R(e1)))R(σ) : [R(σ)/a]R(σ′) (C.522)

Σ2; ΓC ; • `tm γ2(φ2(R(e2)))R(σ) : [R(σ)/a]R(σ′) (C.523)

∃v1, v2 : Σ1 ` (γ1(φ1(R(e1))))R(σ) −→∗ v1

∧ Σ2 ` (γ2(φ2(R(e2))))R(σ) −→∗ v2

∧ (Σ1 : v1,Σ2 : v2) ∈ VJ[σ/a]σ′KΓC

R

(C.524)

By inlining the definition of logical equivalence in the first premise of this lemma,
we get

(Σ1 : γ1(φ1(R(e1))),Σ2 : γ2(φ2(R(e2)))) ∈ EJ∀a.σ′KΓC

R

Unfolding the definition of the E relation results in:

Σ1; ΓC ; • `tm γ1(φ1(R(e1))) : R(∀a.σ′) (C.525)

Σ2; ΓC ; • `tm γ2(φ2(R(e2))) : R(∀a.σ′) (C.526)

∃v3, v4 : Σ1 ` γ1(φ1(R(e1))) −→∗ v3

∧ Σ2 ` γ2(φ2(R(e2))) −→∗ v4

∧ (Σ1 : v3,Σ2 : v4) ∈ VJ∀a.σ′KΓC

R

(C.527)

Starting from the second premise of this lemma, by sequentially applying
Lemma 82 with the substitutions of R on σ, it follows that ΓC ; Γ′ `ty R(σ),
where Γ′ only contains term variables. Then, starting from this result, by
sequentually applying Lemma 105, we obtain

ΓC ; • `ty R(σ) (C.528)

Since a is not in the domain of R, we have R(∀a.σ) = ∀a.R(σ). Consequently,
Goals C.522 and C.523 follow by instantiating rule rule iTm-forallE with
Equations C.525 and C.526, respectively, together with Equation C.528.

The definition of the V relation in Equation C.527 tells us that:

∀σ′′, r ∈ Rel[σ′′] : ΓC ; • `ty σ′′

⇒ (Σ1 : v3 σ
′′,Σ2 : v4 σ

′′) ∈ EJσ′KΓC

R,a 7→(σ′′,r)

(C.529)

368 COHERENCE PROOFS

By repeatedly applying rule iEval-tyApp on each step of both evaluation
paths in Equation C.527, Goal C.524 reduces to:

∃v1, v2 : Σ1 ` v3R(σ) −→∗ v1

∧ Σ2 ` v4R(σ) −→∗ v2

∧ (Σ1 : v1,Σ2 : v2) ∈ VJ[σ/a]σ′KΓC

R

which follows directly from C.529 by choosing σ′′ = σ and unfolding the
definition of the E relation.

Lemma 126 (Compatibility - Let Binding).

ΓC ; Γ ` Σ1 : e′1 'log Σ2 : e′2 : σ1
ΓC ; Γ, x : σ1 ` Σ1 : e1 'log Σ2 : e2 : σ2

ΓC ; Γ ` Σ1 : let x : σ1 = e′1 in e1 'log Σ2 : let x : σ1 = e′2 in e2 : σ2

Proof. By inlining the definition of logical equivalence, suppose we have:

R ∈ FJΓKΓC

φ ∈ GJΓKΣ1,Σ2,ΓC

R

γ ∈ HJΓKΣ1,Σ2,ΓC

R

(C.530)

The goal to be proven is the following:

(Σ1 : e′′1 ,Σ2 : e′′2) ∈ EJσ2KΓC

R (C.531)

where e′′1 = γ1(φ1(R(let x : σ1 = e′1 in e1))) and
e′′2 = γ2(φ2(R(let x : σ1 = e′2 in e2))). From the definition of substitution, it
follows that

γi(φi(R(let x : σ1 = e′i in ei))) = (C.532)

let x : R(σ1) = (γi(φi(R(e′i)))) in (γi(φi(R(ei)))) (C.533)

COHERENCE THEOREMS 369

for i ∈ {1, 2} Taking into account this equality, by applying the definition of
the E relation, Goal C.531 reduces to:

Σ1; ΓC ; • `tm let x : R(σ1) = (γ1(φ1(R(e′1)))) in (γ1(φ1(R(e1)))) : R(σ2)
(C.534)

Σ2; ΓC ; • `tm let x : R(σ1) = (γ2(φ2(R(e′2)))) in (γ2(φ2(R(e2)))) : R(σ2)
(C.535)

∃v1, v2 : Σ1 ` let x : R(σ1) = (γ1(φ1(R(e′1)))) in (γ1(φ1(R(e1)))) −→∗ v1

∧Σ2 ` let x : R(σ1) = (γ2(φ2(R(e′2)))) in (γ2(φ2(R(e2)))) −→∗ v2

∧ (Σ1 : v1,Σ2 : v2) ∈ VJσ2KΓC

R

(C.536)

By inlining the definition of logical equivalence in the two hypotheses of this
lemma, we get:

(Σ1 : γ1(φ1(R(e′1))),Σ2 : γ2(φ2(R(e′2)))) ∈ EJσ1KΓC

R (C.537)

(Σ1 : γ′1(φ′1(R′(e1))),Σ2 : γ′2(φ′2(R′(e2)))) ∈ EJσ2KΓC

R′ (C.538)

for anyR′ ∈ FJΓ, x : σ1KΓC , φ′ ∈ GJΓ, x : σ1K
Σ1,Σ2,ΓC

R′ and γ′ ∈ HJΓ, x : σ1K
Σ1,Σ2,ΓC

R′ .
Note that in Equation C.537 we have already chosen the substitutions R, φ and
γ from Equation C.530. By the definition of F , we obtain R ∈ FJΓ, x : σ1KΓC .
Therefore, a valid choice for R′ is R. From the definitions of G and H, it
must hold that φ′ = φ′′, x 7→ (e3, e4) and γ′ = γ′′ where φ′′ ∈ GJΓKΣ1,Σ2,ΓC

R ,
γ′′ ∈ HJΓKΣ1,Σ2,ΓC

R and (Σ1 : e3,Σ2 : e4) ∈ EJσ1KΓC

R . We choose φ′′ = φ and
γ′′ = γ. It remains to instantiate e3 and e4 with concrete choices. For reasons
of presentation, we defer this choice to the end of the proof.

From the definition of the E relation in Equations C.538, we get:

Σ1; ΓC ; • `tm γ1((φ1, x 7→ e3)(R(e1))) : R(σ2) (C.539)

Σ2; ΓC ; • `tm γ2((φ2, x 7→ e4)(R(e2))) : R(σ2) (C.540)

∃v5, v6 : Σ1 ` γ1((φ1, x 7→ e3)(R(e1))) −→∗ v5

∧Σ2 ` γ2((φ2, x 7→ e4)(R(e2))) −→∗ v6

∧ (Σ1 : v5,Σ2 : v6) ∈ VJσ2KΓC

R

(C.541)

370 COHERENCE PROOFS

Similarly, from Equation C.537 and from (Σ1 : e3,Σ2 : e4) ∈ EJσ1KΓC

R , we get:
Σ1; ΓC ; • `tm γ1(φ1(R(e′1))) : R(σ1) (C.542)

Σ2; ΓC ; • `tm γ2(φ2(R(e′2))) : R(σ1) (C.543)
and

Σ1; ΓC ; • `tm e3 : R(σ1) (C.544)

Σ1; ΓC ; • `tm e4 : R(σ1) (C.545)
Note that from Equations C.544 and C.545 it is evident that expressions e3 and
e4 contain no free variables. Therefore,

γ1((φ1, x 7→ e3)(R(e1)))

= γ1([e3/x](φ1(R(e1)))) (by definition)

= [γ1(e3)/x](γ1(φ1(R(e1)))) (distributivity property)

= [e3/x](γ1(φ1(R(e1)))) (no free variables in e3)
and similarly, γ2((φ2, x 7→ e4)(R(e2))) = [e4/x]γ2(φ2(R(e2))). Taking these
equalities into account, we can apply the reverse substitution Lemma 86 on
Equations C.539 and C.540, in combination with Equations C.544 and C.545,
respectively, to obtain:

Σ1; ΓC ; •, x : R(σ1) `tm γ1(φ1(R(e1))) : R(σ2) (C.546)

Σ2; ΓC ; •, x : R(σ1) `tm γ2(φ2(R(e2))) : R(σ2) (C.547)
Combining Lemma 113 with Equation C.546, yields `ctx Σ1; ΓC ; •, x : R(σ1)
and, by case analysis on this environment well-formedness judgment, it follows
that ΓC ; • `ty R(σ1). Using this, Goals C.534 and C.535 follow by applying
both Equations C.542 and C.546 and both Equations C.543 and C.547 to
rule iTm-let, respectively.

By case analysis, the first step of both evaluation paths in Equation C.536 must
be appropriate instantiations of rule rule iEval-let, according to which,

Σi ` let x : R(σ1) = (γi(φi(R(e′i)))) in (γi(φi(R(ei)))) −→ e′′i

where e′′i = [γi(φi(R(e′i)))/x](γi(φi(R(ei)))), for each i ∈ {1, 2}. This simplifies
Goal C.536 to:

∃v1, v2 : Σ1 ` [γ1(φ1(R(e′1)))/x](γ1(φ1(R(e1)))) −→∗ v1

∧Σ2 ` [γ2(φ2(R(e′2)))/x](γ2(φ2(R(e2)))) −→∗ v2

∧ (Σ1 : v1,Σ2 : v2) ∈ VJσ2KΓC

R

COHERENCE THEOREMS 371

The goal follows from Equation C.541. Because of Equation C.537, we can
choose e3 = γ1(φ1(R(e′1))) and e4 = γ2(φ2(R(e′2))).

Lemma 127 (Compatibility - Method).

ΓC ; Γ ` Σ1 : d1 'log Σ2 : d2 : TC σ
(m : TC a : σ′) ∈ ΓC

ΓC ` Σ1 'log Σ2

ΓC ; Γ ` Σ1 : d1.m 'log Σ2 : d2.m : [σ/a]σ′

Proof. By inlining the definition of logical equivalence, suppose we have:

R ∈ FJΓKΓC

φ ∈ GJΓKΣ1,Σ2,ΓC

R

γ ∈ HJΓKΣ1,Σ2,ΓC

R

(C.548)

The goal to be proven is the following:

(Σ1 : γ1(φ1(R(d1.m))),Σ2 : γ2(φ2(R(d2.m)))) ∈ EJ[σ/a]σ′KΓC

R

By applying the definition of the E relation, it reduces to:

Σ1; ΓC ; • `tm γ1(φ1(R(d1.m))) : R([σ/a]σ′)

Σ2; ΓC ; • `tm γ2(φ2(R(d2.m))) : R([σ/a]σ′)

∃v1, v2 : Σ1 ` γ1(φ1(R(d1.m))) −→∗ v1

∧Σ2 ` γ2(φ2(R(d2.m))) −→∗ v2

∧ (Σ1 : v1,Σ2 : v2) ∈ VJ[σ/a]σ′KΓC

R

372 COHERENCE PROOFS

By applying the substitutions, and because R([σ/a]σ′) = [R(σ)/a]R(σ′), the
goal further reduces to:

Σ1; ΓC ; • `tm (γ1(R(d1))).m : [R(σ)/a]R(σ′) (C.549)

Σ2; ΓC ; • `tm (γ2(R(d2))).m : [R(σ)/a]R(σ′) (C.550)

∃v1, v2 : Σ1 ` (γ1(R(d1))).m −→∗ v1

∧Σ2 ` (γ2(R(d2))).m −→∗ v2

∧ (Σ1 : v1,Σ2 : v2) ∈ VJ[σ/a]σ′KΓC

R

(C.551)

By inlining the definition of logical equivalence in the first hypothesis of this
lemma and choosing R and γ from Equation C.548, we get:

(Σ1 : γ1(R(d1)),Σ2 : γ2(R(d2))) ∈ EJR(TC σ)KΓC

Then, from the definition of E , we get:

Σ1; ΓC ; • `d d1 : R(TC σ) (C.552)

Σ2; ΓC ; • `d d2 : R(TC σ) (C.553)

∃dv1, dv2 : γ1(R(d1)) −→∗ dv1

∧ γ2(R(d2)) −→∗ dv2,

∧ (Σ1 : dv1,Σ2 : dv2) ∈ VJR(TC σ)KΓC

(C.554)

Unfolding the definition of the V relation in Equation C.554 results in

dv1 = Dσj d1 i

dv2 = Dσj d2 i

Σ1; ΓC ; • `d Dσj d1 i : R(TC σ) (C.555)

Σ2; ΓC ; • `d Dσj d2 i : R(TC σ) (C.556)

(D : ∀aj .Ci ⇒ TC σq).m 7→ e′1 ∈ Σ1 (C.557)

(Σ1 : d1 i ,Σ2 : d2 i) ∈ EJ[σj/aj]CiKΓC
i

(C.558)

for some σj , d1 i , d2 i , Ci , e′ and σq such that σ = [σj/aj]σq.

COHERENCE THEOREMS 373

Lemma 114, applied on Equations C.555 and C.556, yields:

`ctx Σ1; ΓC ; • (C.559)

`ctx Σ2; ΓC ; • (C.560)

Also, from the second premise of this lemma’s rule, there are ΓC1 and ΓC2
such that ΓC = ΓC1,m : TC a : σ′,ΓC2. Then, from Lemma 107, we get
ΓC1; •, a `ty σ′, which means that the only free variable appearing in σ′ is the
fresh variable a. Then,

R(σ′) = σ′ (C.561)

Also, since the dictionary Dσj d1 i is closed, types σj can not contain any
free variables. Hence, R(σj) = σj . In addition, from the last conclusion of
Lemma 108, supplied with `ctx Σ1; ΓC ; • and Equation C.557, we have that
ΓC ; •, aj `ty σq. Because the type variables aj are not in Γ, they are not in the
domain of R, thus R(σq) = σq. Then,

R(σ) = R([σj/aj]σq)

= [R(σj)/aj]R(σq)

= [σj/aj]σq = σ

(C.562)

We first rewrite Equations C.555 and C.556 with Equation C.562. We then
proceed with repeated inversion rule D-con, rule D-tyapp and rule D-dapp
to get their premises. Because environment Σ1 can only contain a unique entry
for each dictionary type (in this case, the one shown in Equation C.557), we

374 COHERENCE PROOFS

conclude

ΓC ; • `ty σj
j (C.563)

Σ1; ΓC ; • `d d1 i : [σj/aj]Ci
i (C.564)

Σ2; ΓC ; • `d d2 i : [σj/aj]Ci
i (C.565)

Σ′1; ΓC ; •, aj , δi : Ci `tm e1 : [σq/a]σ′ (C.566)

Σ′2; ΓC ; •, aj , δi : Ci `tm e2 : [σq/a]σ′ (C.567)

where Σ1 = Σ′1, (D : ∀aj .Ci ⇒ TC σq).m 7→ e′1,Σ′′1 (C.568)

and e′1 = Λaj .λδi : Ci .e1 (C.569)

and Σ2 = Σ′2, (D : ∀aj .Ci ⇒ TC σq).m 7→ e′2,Σ′′2 (C.570)

and e′2 = Λaj .λδi : Ci .e2 (C.571)

With Equations C.561 and C.562, Goals C.549 and C.550 follow by using the
second hypothesis and Equations C.555 and C.556, respectively, in rule iTm-
method.

Using Equations C.568 and C.570 in rule iEval-methodVal, results in:

Σ1 ` (Dσj d1 i).m −→ e′1 σj d1 i

Σ2 ` (Dσj d2 i).m −→ e′2 σj d2 i

After applying rule iEval-method and Equation C.554, this reduces Goal C.551
to:

∃v1, v2 : Σ1 ` e′1 σj d1 i −→∗ v1

∧Σ2 ` e′2 σj d2 i −→∗ v2

∧ (Σ1 : v1,Σ2 : v2) ∈ VJ[σ/a]σ′KΓC

R

(C.572)

From the definition of logical equivalence in the theorem’s third hypothesis,
together with Equations C.568 and C.570, we get that:

ΓC ; • ` Σ′1 : e′1 'log Σ′2 : e′2 : ∀aj .[σq/a]σ′ (C.573)

Repeatedly applying compatibility Lemma 125 to Equations C.573 and C.563,
results in:

ΓC ; • ` Σ′1 : e′1 σj 'log Σ′2 : e′2 σj : [σj/aj]Ci ⇒ [σj/aj][σq/a]σ′ (C.574)

COHERENCE THEOREMS 375

By applying weakening Lemma 100 on this result, in combination with
Equations C.559 and C.560, we get:

ΓC ; • ` Σ1 : e′1 σj 'log Σ2 : e′2 σj : [σj/aj]Ci ⇒ [σj/aj][σq/a]σ′ (C.575)

From the definition of logical equivalence and Equation C.558, we can derive
that:

ΓC ; • ` Σ1 : d1 i 'log Σ2 : d2 i : [σj/aj]Ci
i

Repeatedly applying compatibility Lemma 123 on Equations C.575, together
with the above equation, results in:

ΓC ; • ` Σ1 : e′1 σj d1 i 'log Σ2 : e′2 σj d2 i : [σj/aj][σq/a]σ′

Since expressions e′1 σj d1 i and e′2 σj d2 i are closed, by the definition of the
logical relation, applying any substitutions R ∈ FJ•KΓC , φ ∈ GJ•KΣ1,Σ2,ΓC

R and
γ ∈ HJ•KΣ1,Σ2,ΓC

R on both expressions should result in two terms that are related
by the E relation. By case analysis on R, φ and γ, only the empty substitutions
are valid choices, returning exactly the same expressions. Taking this into
account, we have:

(Σ1 : e′1 σj d1 i ,Σ2 : e′2 σj d2 i) ∈ EJ[σj/aj][σq/a]σ′KΓC

R

In turn, unfolding the definition of the E relation results in:

∃v3, v4 : Σ1 ` e′1 σj d1 i −→∗ v3

∧Σ2 ` e′2 σj d2 i −→∗ v4

∧ (Σ1 : v3,Σ2 : v4) ∈ VJ[σj/aj][σ/a]σ′KΓC

R

(C.576)

Goal C.572 follows from Equation C.576 by noting that [σj/aj][σ/a]σ′ =
[[σj/aj]σ/a][σj/aj]σ′ = [[σj/aj]σ/a]σ′ and taking v3 = v1 and v4 = v2.

Lemma 128 (Dictionary Compatibility - Abstraction).

ΓC ; Γ, δ : C1 ` Σ1 : d1 'log Σ2 : d2 : C2

ΓC ; Γ ` Σ1 : λδ : C1.d1 'log Σ2 : λδ : C1.d2 : C1 ⇒ C2

Proof. By inlining the definition of logical equivalence, suppose we have

R ∈ FJΓKΓC

γ ∈ HJΓKΣ1,Σ2,ΓC

R

376 COHERENCE PROOFS

the goal to be proven is

(Σ1 : γ1(R(λδ : C1.d1)),Σ2 : γ2(R(λδ : C1.d2))) ∈ EJR(C1 ⇒ C2)KΓC

Unfolding the definition of the E relation, reduces this goal further

Σ1; ΓC ; • `d γ1(R(λδ : C1.d1)) : R(C1 ⇒ C2)

Σ2; ΓC ; • `d γ2(R(λδ : C1.d2)) : R(C1 ⇒ C2)

∀(Σ1 : d3,Σ2 : d4) ∈ EJR(C1)KΓC :

(Σ1 : (γ1(R(λδ : C1.d1))) d3,Σ2 : (γ2(R(λδ : C1.d2))) d4) ∈ EJR(C2)KΓC

Note that R(C1 ⇒ C2) = R(C1)⇒ R(C2). Applying the substitutions
simplifies the goal to

Σ1; ΓC ; • `d λδ : R(C1).γ1(R(d1)) : R(C1)⇒ R(C2) (C.577)

Σ2; ΓC ; • `d λδ : R(C1).γ2(R(d2)) : R(C1)⇒ R(C2) (C.578)

∀(Σ1 : d3,Σ2 : d4) ∈ EJR(C1)KΓC :

(Σ1 : (λδ : R(C1).γ1(R(d1))) d3,Σ2 : (λδ : R(C1).γ2(R(d2))) d4) ∈ EJR(C2)KΓC

(C.579)

We proceed by applying the same process of inlining the definition of logical
equivalence in the rule hypothesis. For some

R′ ∈ FJΓ, δ : C1KΓC

γ′ ∈ HJΓ, δ : C1K
Σ1,Σ2,ΓC

R′

we get
(Σ1 : γ′1(R′(d1)),Σ2 : γ′2(R′(d2))) ∈ EJR′(C2)KΓC (C.580)

We take R′ = R and γ′ = γ, δ 7→ (d5, d6) for some d5 and d6 where (Σ1 : d5,Σ2 :
d6) ∈ EJR(C1)KΓC (following their respective definitions). It follows fromt the
definition of the E relation that

Σ1; ΓC ; • `d γ′1(R(d1)) : R(C2) (C.581)

Σ2; ΓC ; • `d γ′2(R(d2)) : R(C2) (C.582)

Furthermore, from the definition of the E relation, we also get that

Σ1; ΓC ; • `d d5 : R(C1) (C.583)

Σ2; ΓC ; • `d d6 : R(C1) (C.584)

COHERENCE THEOREMS 377

By Substitution Lemma 92 we can thus derive that

Σ1; ΓC ; •, δ : R(C1) `d γ1(R(d1)) : R(C2)

Σ2; ΓC ; •, δ : R(C1) `d γ2(R(d2)) : R(C2)

Goals C.577 and C.578 follow from this, in combination with rule D-dabs. We
now focus on the remaining Goal C.579. By choosing d5 = d3 and d6 = d4,
Equation C.580 becomes

(Σ1 : γ1([d3/δ]R(d1)),Σ2 : γ2([d4/δ]R(d2))) ∈ EJR(C2)KΓC

By Equations C.583 and C.584, this reduces to

(Σ1 : [d3/δ]γ1(R(d1)),Σ2 : [d4/δ]γ2(R(d2))) ∈ EJR(C2)KΓC (C.585)

We know by rule iDictEval-appAbs that (λδ : R(C1).γ1(R(d1))) d3 −→
[d3/δ]γ1(R(d1)) and (λδ : R(C1).γ2(R(d2))) d4 −→ [d4/δ]γ2(R(d2)) Goal C.579
then follows directly from Theorem 47 and Equation C.585.

Lemma 129 (Dictionary Compatibility - Type Abstraction).

ΓC ; Γ, a ` Σ1 : d1 'log Σ2 : d2 : C
ΓC ; Γ ` Σ1 : Λa.d1 'log Σ2 : Λa.d2 : ∀a.C

Proof. By inlining the definition of logical equivalence, suppose we have

R ∈ FJΓKΓC

γ ∈ HJΓKΣ1,Σ2,ΓC

R

the goal to be proven is

(Σ1 : γ1(R(Λa.d1)),Σ2 : γ2(R(Λa.d2))) ∈ EJR(∀a.C)KΓC

Unfolding the definition of the E relation (noting that R(∀a.C) = ∀a.R(C)),
reduces this goal further

Σ1; ΓC ; • `d γ1(R(Λa.d1)) : R(∀a.C)

Σ2; ΓC ; • `d γ2(R(Λa.d2)) : R(∀a.C)

∀σ : ΓC ; • `ty σ ⇒

(Σ1 : (γ1(R(Λa.d1)))σ,Σ2 : (γ2(R(Λa.d2)))σ) ∈ EJ[σ/a]R(C)KΓC

378 COHERENCE PROOFS

Applying the substitutions simplifies the goal to

Σ1; ΓC ; • `d Λa.γ1(R(d1)) : ∀a.R(C) (C.586)

Σ2; ΓC ; • `d Λa.γ2(R(d2)) : ∀a.R(C) (C.587)

∀σ : ΓC ; • `ty σ ⇒

(Σ1 : (Λa.γ1(R(d1)))σ,Σ2 : (Λa.γ2(R(d2)))σ) ∈ EJ[σ/a]R(C)KΓC (C.588)

We proceed by applying the same process of inlining the definition of logical
equivalence in the rule hypothesis. For some

R′ ∈ FJΓ, aKΓC

γ′ ∈ HJΓ, aKΣ1,Σ2,ΓC

R′

we get
(Σ1 : γ′1(R′(d1)),Σ2 : γ′2(R′(d2))) ∈ EJR′(C)KΓC (C.589)

We take R′ = R, a 7→ (σ, r) and γ′ = γ. By the definition of the E relation we
know that

Σ1; ΓC ; • `d γ1(R′(d1)) : R′(C) (C.590)

Σ2; ΓC ; • `d γ2(R′(d2)) : R′(C) (C.591)

By Substitution Lemma 94 we can derive that

Σ1; ΓC ; •, a `d γ1(R(d1)) : R(C)

Σ2; ΓC ; •, a `d γ2(R(d2)) : R(C)

Goals C.586 and C.587 follow from this, in combination with rule D-tyabs.
We now focus on the remaining Goal C.588. We can derive from the definition
of γ and R that γ1(R([σ/a]d1)) = [σ/a]γ1(R(d1)) and γ2(R([σ/a]d2)) =
[σ/a]γ2(R(d2)). Equation C.589 thus becomes

(Σ1 : [σ/a]γ1(R(d1)),Σ2 : [σ/a]γ2(R(d2))) ∈ EJR(C)KΓC (C.592)

We know by rule iDictEval-tyAppAbs that (Λa.γ1(R(d1)))σ −→ [σ/a]γ1(R(d1))
and (Λa.γ2(R(d2)))σ −→ [σ/a]γ2(R(d2)) Goal C.588 then follows directly from
Theorem 47 and Equation C.592.

C.7.2 Helper Theorems

COHERENCE THEOREMS 379

Theorem 45 (Congruence - Expressions).
If ΓC ; Γ ` Σ1 : e1 'log Σ2 : e2 : σ
and M1 : (Σ1; ΓC ; Γ⇒ σ) 7→ (Σ1; ΓC ; Γ′ ⇒ σ′) and M2 : (Σ2; ΓC ; Γ⇒ σ) 7→
(Σ2; ΓC ; Γ′ ⇒ σ′)
and Σ1 : M1 'log Σ2 : M2 : (ΓC ; Γ⇒ σ) 7→ (ΓC ; Γ′ ⇒ σ′)
then ΓC ; Γ′ ` Σ1 : M1[e1] 'log Σ2 : M2[e2] : σ′.

Proof. The goal follows directly from the definition of logical equivalence for
contexts.

Theorem 46 (F{} Context Preserved by Elaboration).
If Σ; ΓC ; Γ `tm e : σ e and M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ′) M
then Σ; ΓC ; Γ′ `tm M [e] : σ′ M [e].

Proof. By structural induction on the typing derivation of M .
rule iM-empty [•] : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ⇒ σ) [•]
We need to show that:

Σ; ΓC ; Γ `tm e : σ e

which follows immediately from the first hypothesis of the theorem.
rule iM-abs
λx : σ1.M

′ : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ1 → σ′) λx : σ1.M
′

We need to show the following.

Σ; ΓC ; Γ′ `tm λx : σ1.M
′[e] : σ1 → σ′ λx : σ1.M

′[e]

From the premises of rule rule iM-abs, we obtain:

M ′ : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′, x : σ1 ⇒ σ′) M ′ (C.593)

ΓC ; Γ′ `ty σ1 σ1 (C.594)

From the induction hypothesis applied on Equation C.593, it follows that:

Σ; ΓC ; Γ′, x : σ1 `tm M ′[e] : σ′ M ′[e] (C.595)

The goal follows from rule iTm-arrI, in combination with Equations C.594
and C.595.
rule iM-appL M ′ e2 : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ′) M ′ e2
The goal to be proven is the following:

Σ; ΓC ; Γ′ `tm M ′[e] e2 : σ′ M ′[e] e2

380 COHERENCE PROOFS

From the premises of rule rule iM-appL, we obtain:

M ′ : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ1 → σ′) M ′ (C.596)

Σ; ΓC ; Γ′ `tm e2 : σ1 e2 (C.597)

From the induction hypothesis applied on Equation C.596, it follows that:

Σ; ΓC ; Γ′ `tm M ′[e] : σ1 → σ′ M ′[e] (C.598)

The goal follows from rule iTm-arrE, in combination with Equations C.597
and C.598.
rule iM-appR e1M

′ : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ′) e1M
′

The goal to be proven is the following:

Σ; ΓC ; Γ′ `tm e1M
′[e] : σ′ e1M

′[e]

From the premises of rule rule iM-appR, we obtain:

M ′ : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ1) M ′ (C.599)

Σ; ΓC ; Γ′ `tm e1 : σ1 → σ′ e1 (C.600)

From the induction hypothesis applied on Equation C.599, it follows that:

Σ; ΓC ; Γ′ `tm M ′[e] : σ1 M ′[e] (C.601)

The goal follows from rule iTm-arrE, in combination with Equations C.600
and C.601.
rule iM-dictAbs
λδ : C.M ′ : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ C ⇒ σ′) λδ : σ.M ′

The goal to be proven is the following:

Σ; ΓC ; Γ′ `tm λδ : C.M ′[e] : C ⇒ σ′ λδ : σ.M ′[e]

From the premises of rule rule iM-dictAbs, we obtain:

M ′ : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′, δ : C ⇒ σ′) M ′ (C.602)

ΓC ; Γ′ `C C σ (C.603)

From the induction hypothesis applied on Equation C.602, it follows that:

Σ; ΓC ; Γ′, δ : C `tm M ′[e] : σ′ M ′[e] (C.604)

The goal follows from rule iTm-constrI, in combination with Equations C.603
and C.604.

COHERENCE THEOREMS 381

rule iM-dictApp M ′ d : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ′) M ′ e
The goal to be proven is the following.

Σ; ΓC ; Γ′ `tm M ′[e] d : σ′ M ′[e] e′

From the premises of rule rule iM-dictApp, we obtain:

M ′ : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ C ⇒ σ′) M ′ (C.605)

Σ; ΓC ; Γ′ `d d : C e′ (C.606)

From the induction hypothesis applied on Equation C.605, it follows that:

Σ; ΓC ; Γ′ `tm M ′[e] : C ⇒ σ′ M ′[e] (C.607)

The goal follows from rule iTm-constrE, in combination with Equations C.606
and C.607.
rule iM-tyAbs Λa.M ′ : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ ∀a.σ′) Λa.M ′
The goal to be proven is the following:

Σ; ΓC ; Γ′ `tm Λa.M ′[e] : ∀a.σ′ Λa.M ′[e]

From the premises of rule rule iM-tyAbs, we obtain:

M ′ : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′, a⇒ σ′) M ′

Applying the induction hypothesis on the above context typing, yields:

Σ; ΓC ; Γ′, a `tm M ′[e] : σ′ M ′[e]

Using this result with rule rule iTm-forallI, we reach the goal.
rule iM-tyApp M ′ σ′′ : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ [σ′′/a]σ′) M ′ σ′′

The goal to be proven is the following.

Σ; ΓC ; Γ′ `tm M ′[e]σ′′ : [σ′′/a]σ′ M ′[e]σ′′

From the premises of rule rule iM-tyApp, we obtain:

M ′ : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ ∀a.σ′) M ′ (C.608)

ΓC ; Γ′ `ty σ′′ σ′′ (C.609)

From the induction hypothesis applied on Equation C.608, we have that:

Σ; ΓC ; Γ′ `tm M ′[e] : ∀a.σ′ M ′[e] (C.610)

The goal follows from rule iTm-forallE, in combination with Equations C.609
and C.610.

382 COHERENCE PROOFS

rule iM-letL

let x : σ1 = M ′ in e2 : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ′) let x : σ1 = M ′ in e2

The goal to be proven is the following:

Σ; ΓC ; Γ′ `tm let x : σ1 = M ′[e] in e2 : σ′ let x : σ1 = M ′[e] in e2

From the premises of rule rule iM-letL, we obtain:

M ′ : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ1) M ′ (C.611)

Σ; ΓC ; Γ′, x : σ1 `tm e2 : σ′ e2 (C.612)

ΓC ; Γ′ `ty σ1 σ1 (C.613)

From the induction hypothesis applied on Equation C.611, we have that:

Σ; ΓC ; Γ′ `tm M ′[e] : σ1 M ′[e] (C.614)

The goal follows from rule iTm-let, in combination with Equations C.612,
C.613 and C.614.
rule iM-letR

let x : σ1 = e1 in M ′ : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ′) let x : σ1 = e1 in M ′

The goal to be proven is the following:

Σ; ΓC ; Γ′ `tm let x : σ1 = e1 in M ′[e] : σ′ let x : σ1 = e1 in M ′[e]

From the rule premise:

M ′ : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′, x : σ1 ⇒ σ′) M ′ (C.615)

Σ; ΓC ; Γ′ `tm e1 : σ1 e1 (C.616)

ΓC ; Γ′ `ty σ1 σ1 (C.617)

From the induction hypothesis applied on Equation C.615, we have that:

Σ; ΓC ; Γ′, x : σ1 `tm M ′[e] : σ′ M ′[e] (C.618)

The goal follows from rule iTm-let, in combination with Equations C.616,
C.617 and C.618.

COHERENCE THEOREMS 383

Lemma 130 (Closed Dictionary Relation Preserved by Forward/Backward
Reduction).
Given d1 −→ d′1 and d2 −→ d′2,

• If (Σ1 : d1,Σ2 : d2) ∈ EJCKΓC , then (Σ1 : d′1,Σ2 : d′2) ∈ EJCKΓC .

• If (Σ1 : d′1,Σ2 : d′2) ∈ EJCKΓC and Σ1; ΓC ; • `d d1 : C
and Σ2; ΓC ; • `d d2 : C, then (Σ1 : d1,Σ2 : d2) ∈ EJCKΓC .

Proof. Proof by induction on the size of the constraint C.

Part 1 By case analysis on the E relation in the hypothesis.
C = C1 ⇒ C2 (Σ1 : d1,Σ2 : d2) ∈ EJC1 ⇒ C2KΓC

By unfolding the definition of the E , the goal to be proven is
Σ1; ΓC ; • `d d′1 : C1 ⇒ C2 (C.619)

Σ2; ΓC ; • `d d′2 : C1 ⇒ C2 (C.620)

∀d3, d4 : (Σ1 : d3,Σ2 : d4) ∈ EJC1KΓC ⇒ (Σ1 : d′1 d3,Σ2 : d′2 d4) ∈ EJC2KΓC

(C.621)
while the hypotheses tell us

Σ1; ΓC ; • `d d1 : C1 ⇒ C2 (C.622)

Σ2; ΓC ; • `d d2 : C1 ⇒ C2 (C.623)

∀d3, d4 : (Σ1 : d3,Σ2 : d4) ∈ EJC1KΓC ⇒ (Σ1 : d1 d3,Σ2 : d2 d4) ∈ EJC2KΓC

(C.624)
Goals C.619 and C.620 follow by Theorem 29 and Equation C.622
and C.623 respectively.
We know by rule iDictEval-app that d1 d3 −→ d′1 d3 and d2 d4 −→
d′2 d4. Goal C.621 thus follows by applying the induction hypothesis to
Equation C.624 (note that C2 is trivially smaller than C1 ⇒ C2).
C = ∀a.C′ (Σ1 : d1,Σ2 : d2) ∈ EJ∀a.C ′KΓC

By unfolding the definition of the E , the goal to be proven is
Σ1; ΓC ; • `d d′1 : ∀a.C ′ (C.625)

Σ2; ΓC ; • `d d′2 : ∀a.C ′ (C.626)

∀σ : ΓC ; • `ty σ ⇒ (Σ1 : d′1 σ,Σ2 : d′2 σ) ∈ EJ[σ/a]C ′KΓC (C.627)

384 COHERENCE PROOFS

while the hypotheses tell us

Σ1; ΓC ; • `d d1 : ∀a.C ′ (C.628)

Σ2; ΓC ; • `d d2 : ∀a.C ′ (C.629)

∀σ : ΓC ; • `ty σ ⇒ (Σ1 : d1 σ,Σ2 : d2 σ) ∈ EJ[σ/a]C ′KΓC (C.630)

Goals C.625 and C.626 follow by Theorem 29 and Equation C.628
and C.629 respectively.
We know by rule iDictEval-tyApp that d1 σ −→ d′1 σ and d2 σ −→
d′2 σ. Goal C.627 thus follows by applying the induction hypothesis
to Equation C.630. Note that we define the size of TC σ to be 1,
independently of the choice of σ. This way [σ/a]C ′ is guaranteed to
be smaller than ∀a.C ′.
C = Q (Σ1 : d1,Σ2 : d2) ∈ EJQKΓC

By unfolding the definition of the E , the goal to be proven is

Σ1; ΓC ; • `d d′1 : Q (C.631)

Σ2; ΓC ; • `d d′2 : Q (C.632)

∃dv′1, dv
′
2, d
′
1 −→∗ dv

′
1, d
′
2 −→∗ dv

′
2, (Σ1 : dv′1,Σ2 : dv′2) ∈ VJQKΓC

(C.633)

while the hypotheses tell us

Σ1; ΓC ; • `d d1 : Q (C.634)

Σ2; ΓC ; • `d d2 : Q (C.635)

∃dv1, dv2, d1 −→∗ dv1, d2 −→∗ dv2, (Σ1 : dv1,Σ2 : dv2) ∈ VJQKΓC

(C.636)

Goals C.631 and C.626 follow by Theorem 29 and Equation C.634
and C.635 respectively.
As the evaluation of dictionaries is deterministic, we know that dv′1 = dv1,
dv′2 = dv2. Furthermore, this fact also tells us that d1 −→ d′1 is the first
step of d1 −→∗ dv1, and similarly for d2. Goal C.633 thus follows directly
by Equation C.636.

Part 2 Similar to Part 1.

COHERENCE THEOREMS 385

Theorem 47 (Logical Equivalence for Dictionaries Preserved by
Forward/Backward Reduction).
Given d1 −→ d′1 and d2 −→ d′2,

• If ΓC ; Γ ` Σ1 : d1 'log Σ2 : d2 : C,
then ΓC ; Γ ` Σ1 : d′1 'log Σ2 : d′2 : C.

• If ΓC ; Γ ` Σ1 : d′1 'log Σ2 : d′2 : C and Σ1; ΓC ; Γ `d d1 : C
and Σ2; ΓC ; Γ `d d2 : C, then ΓC ; Γ ` Σ1 : d1 'log Σ2 : d2 : C.

Proof. Part 1 By unfolding the definition of logical equivalence, the goal to
be proven becomes

(Σ1 : γ1(R(d′1)),Σ2 : γ2(R(d′2))) ∈ EJR(C)KΓC

while the hypothesis gives us

(Σ1 : γ1(R(d1)),Σ2 : γ2(R(d2))) ∈ EJR(C)KΓC

for any R ∈ FJΓKΓC and γ ∈ HJΓKΣ1,Σ2,ΓC

R . As substitution preserves
evaluation, we know that γ1(R(d1)) −→ γ1(R(d′1)) and γ2(R(d2)) −→
γ2(R(d′2)). The goal thus follows directly by Lemma 130.

Part 2 Similar to Part 1.

Theorem 48 (Logical Equivalence for Expressions Preserved by
Forward/Backward Reduction).
Given Σ1 ` e1 −→ e′1 and Σ2 ` e2 −→ e′2,

• If ΓC ; Γ ` Σ1 : e1 'log Σ2 : e2 : σ,
then ΓC ; Γ ` Σ1 : e′1 'log Σ2 : e′2 : σ.

• If ΓC ; Γ ` Σ1 : e′1 'log Σ2 : e′2 : σ and Σ1; ΓC ; Γ `tm e1 : σ
and Σ2; ΓC ; Γ `tm e2 : σ, then ΓC ; Γ ` Σ1 : e1 'log Σ2 : e2 : σ.

386 COHERENCE PROOFS

Proof. Part 1 By unfolding the definition of logical relation, we get:

R ∈ FJΓKΓC (C.637)

φ ∈ GJΓKΣ1,Σ2,ΓC

R (C.638)

γ ∈ HJΓKΣ1,Σ2,ΓC

R (C.639)

(Σ1 : γ1(φ1(R(e1))),Σ2 : γ2(φ2(R(e2)))) ∈ EJσKΓC

R (C.640)

Unfolding the definition of the closed expression relation in C.640 results
in:

Σ1; ΓC ; • `tm γ1(φ1(R(e1))) : R(σ) (C.641)

Σ2; ΓC ; • `tm γ2(φ2(R(e2))) : R(σ) (C.642)

∃v1, v2,Σ1 ` γ1(φ1(R(e1))) −→∗ v1, (C.643)

Σ2 ` γ2(φ2(R(e2))) −→∗ v2, (C.644)

(Σ1 : v1,Σ2 : v2) ∈ VJσKΓC

R (C.645)

By induction on e1, it is easy to verify that

Σ1 ` γ1(φ1(R(e1))) −→ γ1(φ1(R(e′1))) (C.646)

By preservation (Theorem 30) we have:

Σ1; ΓC ; • `tm γ1(φ1(R(e′1))) : R(σ) (C.647)

Because the evaluation in FD is deterministic (Lemma 110), we know
that:

Σ1 ` γ1(φ1(R(e′1))) −→∗ v1 (C.648)

Similarly:

Σ2; ΓC ; • `tm γ2(φ2(R(e′2))) : R(σ) (C.649)

Σ2 ` γ2(φ2(R(e′2))) −→∗ v2 (C.650)

Combining those equations, results in:

(Σ1 : γ1(φ1(R(e′1))),Σ2 : γ2(φ2(R(e′2)))) ∈ EJσKΓC

R (C.651)

The goal follows from the definition of logical equivalence.

COHERENCE THEOREMS 387

Part 2 Similar to Part 1.

Theorem 49 (Dictionary Reflexivity).
If Σ1; ΓC ; Γ `d d : C and Σ2; ΓC ; Γ `d d : C and ΓC ` Σ1 'log Σ2, then
ΓC ; Γ ` Σ1 : d 'log Σ2 : d : C.

Proof. Proof by structural induction on the dictionary d and consequently, since
FD dictionary typing is syntax directed, on both typing derivations.
d = δ (rule D-var) Σ1; ΓC ; Γ `d δ : C ∧ Σ2; ΓC ; Γ `d δ : C
The goal to be proven is the following:

ΓC ; Γ ` Σ1 : δ 'log Σ2 : δ : C

By unfolding the definition of logical equivalence, the goal reduces to:

(Σ1 : γ1(R(δ)),Σ2 : γ2(R(δ))) ∈ EJR(C)KΓC

where R ∈ FJΓKΓC and γ ∈ HJΓKΣ1,Σ2,ΓC

R .

From the given we know that (δ : C) ∈ Γ. Because of this, it follows from the
definition of H that:

γ1(R(δ)) = d1

γ2(R(δ)) = d2

(Σ1 : d1,Σ2 : d2) ∈ EJR(C)KΓC

d = D (rule D-con)

Σ1; ΓC ; Γ `d D : ∀aj .Ci ⇒ TC σq ∧ Σ2; ΓC ; Γ `d D : ∀aj .Ci ⇒ TC σq

The goal to be proven is the following:

ΓC ; Γ ` Σ1 : D 'log Σ2 : D : ∀aj .Ci ⇒ TC σq

By unfolding the definition of logical equivalence, the goal reduces to:

(Σ1 : γ1(R(D)),Σ2 : γ2(R(D))) ∈ EJR(∀aj .Ci ⇒ TC σq)KΓC

where R ∈ FJΓKΓC and γ ∈ HJΓKΣ1,Σ2,ΓC

R .

Note that as D does not depend on any dictionary variables, not on any type
variables, we know that γ1(R(D)) = γ2(R(D)) = D.

388 COHERENCE PROOFS

Repeatedly unfolding the E relation in the goal reduces it to

Σ1; ΓC ; • `d Dσj d1 i : TC [σj/aj]σq (C.652)

Σ2; ΓC ; • `d Dσj d2 i : TC [σj/aj]σq (C.653)

∃dv1, dv2, D σj d1 i −→∗ dv1, D σj d2 i −→∗ dv2, (C.654)

(Σ1 : dv1,Σ2 : dv2) ∈ VJTC [σj/aj]σqKΓC

for any d1 i , d2 i and σj where

(Σ1 : d1 i ,Σ2 : d2 i) ∈ EJ[σj/aj]CiKΓC
i

(C.655)

ΓC ; • `ty σj
j (C.656)

Goals C.652 and C.653 follow by repeated application of rule D-dapp and rule D-
tyapp, in combination with the first two hypotheses.

We will thus focus on Goal C.654 from here on out. Note that Dσj d1 i and
Dσj d2 i are already dictionary values. We can thus take dv1 = Dσj d1 i and
dv2 = Ddj d2 i .

Unfolding the definition of the V relation in Goal C.654 results in a repeat of
Goals C.652 and C.653 (which have previously been proven), in addition to

(Σ1 : d1 i ,Σ2 : d2 i) ∈ EJ[σj/bj]C ′iKΓC

i
(C.657)

(D : ∀bj .C
′
i ⇒ Q′).m′ 7→ e′1 ∈ Σ1 (C.658)

TC [σj/aj]σq = [σj/bj]Q′ (C.659)

By inversion on the first hypothesis, we know that (D : ∀aj .Ci ⇒ TC σq).m 7→
e1 ∈ Σ1. By Lemma 114 we also know that `ctx Σ1; ΓC ; Γ. From these results,
as D is unique in Σ1, Goal C.658 follows with bj = aj , C

′
i = Ci and Q′ = TC σq.

Goal C.659 follows directly from this result. Goal C.657 is proven by
Equation C.655.
d = λδ : C1.d

′ (rule D-dabs)

Σ1; ΓC ; Γ `d λδ : C1.d
′ : C1 ⇒ C2 ∧ Σ2; ΓC ; Γ `d λδ : C1.d

′ : C1 ⇒ C2

The goal to be proven is the following

ΓC ; Γ ` Σ1 : λδ : C1.d
′ 'log Σ2 : λδ : C1.d

′ : C1 ⇒ C2

COHERENCE THEOREMS 389

Inlining the definition of logical equivalence reduces the goal to

(Σ1 : γ1(R(λδ : C1.d
′)),Σ2 : γ2(R(λδ : C1.d

′))) ∈ EJR(C1 ⇒ C2)KΓC

For any R ∈ FJΓKΓC and γ ∈ HJΓKΣ1,Σ2,ΓC

R . Noting that R(C1 ⇒ C2) =
R(C1)⇒ R(C2), we reduce the goal further by inlining the definition of the E
relation

Σ1; ΓC ; • `d γ1(R(λδ : C1.d
′)) : R(C1)⇒ R(C2) (C.660)

Σ2; ΓC ; • `d γ2(R(λδ : C1.d
′)) : R(C1)⇒ R(C2) (C.661)

∀d3, d4 : (Σ1 : d3,Σ2 : d4) ∈ EJR(C1)KΓC ⇒ (C.662)

(Σ1 : (γ1(R(λδ : C1.d
′))) d3,Σ2 : (γ2(R(λδ : C1.d

′))) d4) ∈ EJR(C2)KΓC

From the rule premise we know that

Σ1; ΓC ; Γ, δ : C1 `d d′ : C2

Σ2; ΓC ; Γ, δ : C1 `d d′ : C2

ΓC ; Γ `C C1

By applying the induction hypothesis to this, we thus get

ΓC ; Γ, δ : C1 ` Σ1 : d′ 'log Σ2 : d′ : C2

Unfolding the definition of logical equivalence reduces this to

(Σ1 : γ′1(R′(d′)),Σ2 : γ′2(R′(d′))) ∈ EJR′(C2)KΓC

For any R′ ∈ FJΓ, δ : C1KΓC and γ′ ∈ HJΓ, δ : C1K
Σ1,Σ2,ΓC

R′ . Following their
respective definitions, we take R′ = R and γ′ = γ, δ 7→ (d′3, d′4), for some d′3 and
d′4 such that (Σ1 : d′3,Σ2 : d′4) ∈ EJR(C1)KΓC .

Inlining these definitions and working out the substitutions thus gives us

(Σ1 : γ1([d′3/δ]R(d′)),Σ2 : γ2([d′4/δ]R(d′))) ∈ EJR(C2)KΓC (C.663)

However, as we know from the definition of the E relation that Σ1; ΓC ; • `d
d′3 : R(C1) and Σ2; ΓC ; • `d d′4 : R(C1), we can derive that γ1([d′3/δ]R(d′)) =
[d′3/δ]γ1(R(d′)) and γ2([d′4/δ]R(d′)) = [d′4/δ]γ2(R(d′)). From the definition of
the E relation, we thus get

Σ1; ΓC ; • `d [d′3/δ]γ1(R(d′)) : R(C2)

Σ2; ΓC ; • `d [d′4/δ]γ2(R(d′)) : R(C2)

390 COHERENCE PROOFS

Using Lemma 92 we derive

Σ1; ΓC ; •, δ : R(C1) `d γ1(R(d′)) : R(C2)

Σ2; ΓC ; •, δ : R(C1) `d γ2(R(d′)) : R(C2)

Goals C.660 and C.661 follow from this result using rule D-dabs. We now focus
on proving Goal C.662. Simplifying the substitutions reduces the remaining
goal to

∀d3, d4 : (Σ1 : d3,Σ2 : d4) ∈ EJR(C1)KΓC ⇒

(Σ1 : (λδ : R(C1).γ1(R(d′))) d3,Σ2 : (λδ : R(C1).γ2(R(d′))) d4) ∈ EJR(C2)KΓC

As both d′3 and d′4 are typed under an empty context, we can also derive that
γ1([d′3/δ]R(d′)) = [d′3/δ]γ1(R(d′)) and γ2([d′4/δ]R(d′)) = [d′4/δ]γ1(R(d′)). By
rule iDictEval-appAbs, we know (λδ : R(C1).γ1(R(d′))) d3 −→ [d3/δ]γ1(R(d′))
and (λδ : R(C1).γ2(R(d′))) d4 −→ [d4/δ]γ2(R(d′)). By taking d′3 = d3 and
d′4 = d4, Goal C.662 follows from Lemma 130 and Equation C.663 (the well-
typedness of (λδ : R(C1).γ1(R(d′))) d3 and (λδ : R(C1).γ2(R(d′))) d4 follows by
rule D-dapp and Equations C.660 and C.661 respectively).
d = d1 d2 (rule D-dapp) Σ1; ΓC ; Γ `d d1 d2 : C2 ∧ Σ2; ΓC ; Γ `d d1 d2 : C2
The goal to be proven is the following

ΓC ; Γ ` Σ1 : d1 d2 'log Σ2 : d1 d2 : C2

Unfolding the definition of logical equivalence reduces this to

(Σ1 : γ1(R(d1 d2)),Σ2 : γ2(R(d1 d2))) ∈ EJR(C2)KΓC (C.664)

for any R ∈ FJΓKΓC and γ ∈ HJΓKΣ1,Σ2,ΓC

R . Applying the induction hypothesis
to the rule premises gives us

ΓC ; Γ ` Σ1 : d1 'log Σ2 : d1 : C1 ⇒ C2

ΓC ; Γ ` Σ1 : d2 'log Σ2 : d2 : C1

Again unfolding the definition of logical equivalence, and choosing an identical
R and γ thus gives us

(Σ1 : γ1(R(d1)),Σ2 : γ2(R(d1))) ∈ EJR(C1 ⇒ C2)KΓC (C.665)

(Σ1 : γ1(R(d2)),Σ2 : γ2(R(d2))) ∈ EJR(C1)KΓC (C.666)

COHERENCE THEOREMS 391

Unfolding the definition of the E relation in Equation C.665 (note that
R(C1 ⇒ C2) = R(C1)⇒ R(C2)) teaches us that

∀d3, d4 : (Σ1 : d3,Σ2 : d4) ∈ EJR(C1)KΓC ⇒

(Σ1 : (γ1(R(d1))) d3,Σ2 : (γ2(R(d1))) d4) ∈ EJR(C2)KΓC

By taking d3 = γ1(R(d2)) and d4 = γ2(R(d2)), Goal C.664 follows directly from
this result.
d = Λa.d′ (rule D-tyabs) Σ1; ΓC ; Γ `d Λa.d′ : ∀a.C ′ ∧ Σ2; ΓC ; Γ `d Λa.d′ : ∀a.C ′

The goal to be proven is the following

ΓC ; Γ ` Σ1 : Λa.d′ 'log Σ2 : Λa.d′ : ∀a.C ′

Unfolding the definition of logical equivalence reduces this to

(Σ1 : γ1(R(Λa.d′)),Σ2 : γ2(R(Λa.d′))) ∈ EJR(∀a.C ′)KΓC

for any R ∈ FJΓKΓC and γ ∈ HJΓKΣ1,Σ2,ΓC

R . We proceed by simplifying the
substitutions and unfolding the definition of the E relation (note that R(∀a.C ′) =
∀a.R(C ′)) to reduce the goal to

Σ1; ΓC ; • `d Λa.γ1(R(d′)) : ∀a.R(C ′) (C.667)

Σ2; ΓC ; • `d Λa.γ2(R(d′)) : ∀a.R(C ′) (C.668)

∀σ : ΓC ; • `ty σ ⇒ (Σ1 : (Λa.γ1(R(d′)))σ,Σ2 : (Λa.γ2(R(d′)))σ) ∈ EJ[σ/a]R(C ′)KΓC

(C.669)

By applying the induction hypothesis to the rule premise, we get that

ΓC ; Γ, a ` Σ1 : d′ 'log Σ2 : d′ : C ′

Unfolding the definition of logical equivalence thus gives us

(Σ1 : γ′1(R′(d′)),Σ2 : γ′2(R′(d′))) ∈ EJR′(C ′)KΓC

for any R′ ∈ FJΓ, aKΓC and γ′ ∈ HJΓ, aKΣ1,Σ2,ΓC

R′ . Following their respective
definitions, we take γ′ = γ and R′ = R, a 7→ (σ, r) where ΓC ; • `ty σ. By
inlining these definitions we thus have

(Σ1 : γ1(R([σ/a]d′)),Σ2 : γ2(R([σ/a]d′))) ∈ EJR([σ/a]C ′)KΓC

By noting that σ is well-formed under an empty typing context, we know
that γ1(R([σ/a]d′)) = [σ/a]γ1(R(d′)), γ2(R([σ/a]d′)) = [σ/a]γ2(R(d′)) and
R([σ/a]C ′) = [σ/a]R(C ′). The previous result thus becomes

(Σ1 : [σ/a]γ1(R(d′)),Σ2 : [σ/a]γ2(R(d′))) ∈ EJ[σ/a]R(C ′)KΓC (C.670)

392 COHERENCE PROOFS

By the definition of the E relation, we know that

Σ1; ΓC ; • `d [σ/a]γ1(R(d′)) : [σ/a]R(C ′)

Σ2; ΓC ; • `d [σ/a]γ2(R(d′)) : [σ/a]R(C ′)

Goals C.667 and C.668 then follow by this result and Lemma 94. Furthermore,
as we know from rule iDictEval-tyAppAbs that (Λa.γ1(R(d′)))σ −→
[σ/a]γ1(R(d′)) and (Λa.γ2(R(d′)))σ −→ [σ/a]γ2(R(d′)), Goal C.669 follows
by Lemma 130 and Equation C.670.
d = d′ σ (rule D-tyapp) Σ1; ΓC ; Γ `d d′ σ : [σ/a]C ′ ∧ Σ2; ΓC ; Γ `d d′ σ : [σ/a]C ′

The goal to be proven is

ΓC ; Γ ` Σ1 : d′ σ 'log Σ2 : d′ σ : [σ/a]C ′

Unfolding the definition of logical equivalence reduces this to

(Σ1 : γ1(R(d′ σ)),Σ2 : γ2(R(d′ σ))) ∈ EJR([σ/a]C ′)KΓC (C.671)

Applying the induction hypothesis to the rule premise gives us

ΓC ; Γ ` Σ1 : d′ 'log Σ2 : d′ : ∀a.C ′

Unfolding the definition of logical equivalence thus gives

(Σ1 : γ1(R(d′)),Σ2 : γ2(R(d′))) ∈ EJR(∀a.C ′)KΓC

Noting that R(∀a.C ′) = ∀a.R(C ′), we can further reduce this by inlining the
definition of the E relation.

Σ1; ΓC ; • `d γ1(R(d′)) : ∀a.R(C ′) (C.672)

Σ2; ΓC ; • `d γ2(R(d′)) : ∀a.R(C ′) (C.673)

∀σ : ΓC ; • `ty σ ⇒ (Σ1 : (γ1(R(d′)))σ,Σ2 : (γ2(R(d′)))σ) ∈ EJ[σ/a]R(C ′)KΓC

(C.674)

As σ is well-formed under the empty typing environment, we can conclude that
(γ1(R(d′)))σ = γ1(R(d′ σ)), (γ2(R(d′)))σ = γ2(R(d′ σ)) and [σ/a]R(C ′) =
R([σ/a]C ′). Goal C.671 thus follows directly from Equation C.674.

Theorem 50 (Expression Reflexivity).
If Σ1; ΓC ; Γ `tm e : σ and Σ2; ΓC ; Γ `tm e : σ and ΓC ` Σ1 'log Σ2, then
ΓC ; Γ ` Σ1 : e 'log Σ2 : e : σ.

COHERENCE THEOREMS 393

Proof. The proof proceeds by induction on e and consequently, since FD term
typing is syntax directed, on both typing derivations.
e = True (rule iTm-true)

Σ1; ΓC ; Γ `tm True : Bool ∧ Σ2; ΓC ; Γ `tm True : Bool

The goal to prove is the following:

ΓC ; Γ ` Σ1 : True 'log Σ2 : True : Bool

Unfolding the definition of logical equivalence in the above, results in the
following goal:

(Σ1 : γ1(φ1(R(True))),Σ2 : γ2(φ2(R(True)))) ∈ EJBoolKΓC

R (C.675)

where R ∈ FJΓKΓC , φ ∈ GJΓKΣ1,Σ2,ΓC

R and γ ∈ HJΓKΣ1,Σ2,ΓC

R . However, since
True does not contain any free variables, we know that γ1(φ1(R(True))) =
γ2(φ2(R(True))) = True. Similarly, it follows that R(Bool) = Bool.

Unfolding the definition of the E relation in Goal C.675, reduces the goal to:

Σ1; ΓC ; • `tm True : Bool (C.676)

Σ2; ΓC ; • `tm True : Bool (C.677)

∃v1, v2 : Σ1 ` True −→∗ v1

∧Σ2 ` True −→∗ v2

∧ (Σ1 : v1,Σ2 : v2) ∈ VJBoolKΓC

R

Goals C.676 and C.677 are satisified from the first and second hypotheses of the
theorem. We set v1 = v2 = True and since True is a value, the term reductions
above hold. Then, the last goal follows directly from the definition of the V
relation, according to which the following holds trivially.

(Σ1 : True,Σ2 : True) ∈ VJBoolKΓC

R

e = False (rule iTm-false)
Σ1; ΓC ; Γ `tm False : Bool ∧ Σ2; ΓC ; Γ `tm False : Bool

The proof is similar to the rule iTm-true case.
e = x (rule iTm-var) Σ1; ΓC ; Γ `tm x : σ ∧ Σ2; ΓC ; Γ `tm x : σ
The goal to be proven is the following:

ΓC ; Γ ` Σ1 : x 'log Σ2 : x : σ

394 COHERENCE PROOFS

By unfolding the definition of logical equivalence in the above, we have

(Σ1 : γ1(φ1(R(x))),Σ2 : γ2(φ2(R(x)))) ∈ EJσKΓC

R

for any R ∈ FJΓKΓC , φ ∈ GJΓKΣ1,Σ2,ΓC

R and γ ∈ HJΓKΣ1,Σ2,ΓC

R . From the
definition of the G relation, we know that:

γ1(φ1(R(x))) = e1

γ2(φ2(R(x))) = e2

(Σ1 : e1,Σ2 : e2) ∈ EJσKΓC

R (C.678)

The goal follows directly from Equation C.678.
e = let x : σ1 = e1 in e2 (rule iTm-let)

Σ1; ΓC ; Γ `tm let x : σ1 = e1 in e2 : σ2∧Σ2; ΓC ; Γ `tm let x : σ1 = e1 in e2 : σ2

The goal to be proven is the following:

ΓC ; Γ ` Σ1 : let x : σ1 = e1 in e2 'log Σ2 : let x : σ1 = e1 in e2 : σ2

By applying the induction hypothesis in the premises of the two rule iTm-let
rules, we get:

ΓC ; Γ ` Σ1 : e1 'log Σ2 : e1 : σ1

ΓC ; Γ, x : σ1 ` Σ1 : e2 'log Σ2 : e2 : σ2

The goal follows directly by passing the above two Equations to compatibility
Lemma 126.
e = d.m (rule iTm-method)

Σ1; ΓC ; Γ `tm d.m : [σ/a]σ′ ∧ Σ2; ΓC ; Γ `tm d.m : [σ/a]σ′

The goal to be proven is the following:

ΓC ; Γ ` Σ1 : d.m 'log Σ2 : d.m : [σ/a]σ′

From the premises of rule rule iTm-method we have that

Σ1; ΓC ; Γ `d d : TC σ (C.679)

Σ2; ΓC ; Γ `d d : TC σ (C.680)

(m : TC a : σ′) ∈ ΓC (C.681)

COHERENCE THEOREMS 395

Applying the Dictionary Reflexivity (Theorem 49) to Equations C.679 and C.680,
in combination with the theorem’s third hypothesis, results in:

ΓC ; Γ ` Σ1 : d 'log Σ2 : d : TC σ (C.682)

The goal follows directly from compatibility Lemma 127 and Equations C.681
and C.682, in combination with the third hypothesis.
e = λx : σ1.e

′ (rule iTm-arrI)

Σ1; ΓC ; Γ `tm λx : σ1.e
′ : σ1 → σ2 ∧ Σ2; ΓC ; Γ `tm λx : σ1.e

′ : σ1 → σ2

The goal to be proven is the following:

ΓC ; Γ ` Σ1 : λx : σ1.e
′ 'log Σ2 : λx : σ1.e

′ : σ1 → σ2

By applying the induction hypothesis to the premises of the two rule iTm-arrI
rules, we get:

ΓC ; Γ, x : σ1 ` Σ1 : e′ 'log Σ2 : e′ : σ2

The goal follows by applying the above to compatibility Lemma 120.
e = e1 e2 (rule iTm-arrE) Σ1; ΓC ; Γ `tm e1 e2 : σ2 ∧ Σ2; ΓC ; Γ `tm e1 e2 : σ2
The goal to be proven is the following:

ΓC ; Γ ` Σ1 : e1 e2 'log Σ2 : e1 e2 : σ2

By applying the induction hypothesis to the premises of the two rule iTm-arrE
rules, we get:

ΓC ; Γ ` Σ1 : e1 'log Σ2 : e1 : σ1 → σ2

ΓC ; Γ ` Σ1 : e2 'log Σ2 : e2 : σ1

The goal follows by passing the above two equations to compatibility Lemma 121.
e = λδ : C.e′ (rule iTm-constrI)

Σ1; ΓC ; Γ `tm λδ : C.e′ : C ⇒ σ ∧ Σ2; ΓC ; Γ `tm λδ : C.e′ : C ⇒ σ

The goal to be proven is the following:

ΓC ; Γ ` Σ1 : λδ : C.e′ 'log Σ2 : λδ : C.e′ : C ⇒ σ

By applying the induction hypothesis to the premises of the two rule iTm-
constrI rules, we get:

ΓC ; Γ, δ : C ` Σ1 : e′ 'log Σ2 : e′ : σ

396 COHERENCE PROOFS

The goal follows directly by passing the above equation to compatibility
Lemma 122.
e = e′ d (rule iTm-constrE) Σ1; ΓC ; Γ `tm e′ d : σ ∧ Σ2; ΓC ; Γ `tm e′ d : σ
The goal to be proven is the following:

ΓC ; Γ ` Σ1 : e′ d 'log Σ2 : e′ d : σ

By applying the induction hypothesis to the premises of the two rule iTm-
constrE rules, we get:

ΓC ; Γ ` Σ1 : e′ 'log Σ2 : e′ : C ⇒ σ (C.683)

Furthermore, applying Dictionary Reflexivity (Theorem 49) in the premises
of the two rule iTm-constrE rules, in combination with the theorem’s third
hypothesis, results in:

ΓC ; Γ ` Σ1 : d 'log Σ2 : d : C (C.684)

The goal follows from compatibility Lemma 123 and Equations C.683 and C.684.
e = Λa.e′ (rule iTm-forallI)

Σ1; ΓC ; Γ `tm Λa.e′ : ∀a.σ ∧ Σ2; ΓC ; Γ `tm Λa.e′ : ∀a.σ

The goal to be proven is the following:

ΓC ; Γ ` Σ1 : Λa.e′ 'log Σ2 : Λa.e′ : ∀a.σ

By applying the induction hypothesis to the premises of the two rule iTm-
forallI rules, we get:

ΓC ; Γ, a ` Σ1 : e′ 'log Σ2 : e′ : σ1

The goal follows directly by applying the above equation to compatibility
Lemma 124.
e = e′ σ (rule iTm-forallE)

Σ1; ΓC ; Γ `tm e′ σ : [σ/a]σ′ ∧ Σ2; ΓC ; Γ `tm e′ σ : [σ/a]σ′

The goal to be proven is the following:

ΓC ; Γ ` Σ1 : e′ σ 'log Σ2 : e′ σ : [σ/a]σ′

From the premises of rule iTm-forallE, we obtain

ΓC ; Γ `ty σ (C.685)

COHERENCE THEOREMS 397

By applying the induction hypothesis to the premises of the two rule iTm-
forallE rules, we get:

ΓC ; Γ ` Σ1 : e′1 'log Σ2 : e′1 : σ1 (C.686)

The goal follows from compatibility Lemma 125 and Equations C.686 and C.685.

Theorem 51 (Context Reflexivity).
Suppose `Mctx P ; ΓC ; Γ Σ1; ΓC ; Γ and `Mctx P ; ΓC ; Γ′ Σ1; ΓC ; Γ′
and `Mctx P ; ΓC ; Γ Σ2; ΓC ; Γ and `Mctx P ; ΓC ; Γ′ Σ2; ΓC ; Γ′
and ΓC ; Γ `Mty τ σ and ΓC ; Γ′ `Mty τ ′ σ′,

• If M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M1
and M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M2
then Σ1 : M1 'log Σ2 : M2 : (ΓC ; Γ⇒ σ) 7→ (ΓC ; Γ′ ⇒ σ′).

• If M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M1
and M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M2
then Σ1 : M1 'log Σ2 : M2 : (ΓC ; Γ⇒ σ) 7→ (ΓC ; Γ′ ⇒ σ′).

• If M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M1
and M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M2
then Σ1 : M1 'log Σ2 : M2 : (ΓC ; Γ⇒ σ) 7→ (ΓC ; Γ′ ⇒ σ′).

• If M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M1
and M : (P ; ΓC ; Γ⇐ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M2
then Σ1 : M1 'log Σ2 : M2 : (ΓC ; Γ⇒ σ) 7→ (ΓC ; Γ′ ⇒ σ′).

Proof. The theorem is stated in a nested fashion, where all common hypotheses
are introduced in the outer statement. Each of the four inner statements extends
the outer statement with two context-typing hypotheses, and sets the conclusion
of the theorem, which is identical for each of the four cases.

Suppose expressions e1 and e2 such that

ΓC ; Γ ` Σ1 : e1 'log Σ2 : e2 : σ (C.687)

Then, by unfolding the defintion of logical equivalence in the goal of all four
sub-statements, it suffices to show that

ΓC ; Γ′ ` Σ1 : M1[e1] 'log Σ2 : M2[e2] : σ′ (C.688)

398 COHERENCE PROOFS

We assume all hypotheses of the outer statement and we proceed by mutual
induction on the first hypothesis of the nested statements. Note that context
typing derivations are of finite size, thus mutual induction over them is safe.

Part 1
rule sM-inf-inf-empty [•] : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ⇒ τ) [•]
By case analysis on the second hypothesis of the nested statement, its last
context typing rule must be rule sM-inf-inf-empty as well. Therefore,
the first and second hypotheses of the nested statement become

[•] : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ⇒ τ) [•]

[•] : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ⇒ τ) [•]

and we have M1 = M2 = [•]. Thus, Goal C.688 becomes

ΓC ; Γ′ ` Σ1 : e1 'log Σ2 : e2 : σ

The above logical equivalence follows directly from Equation C.687.
rule sM-inf-inf-appL
M ′ e′2 : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M ′1 e21

By case analysis on the second hypothesis of the nested statement, its last
context typing rule must be rule sM-inf-inf-appL as well. Therefore,
the first and second hypotheses of the nested statement become

M ′ e′2 : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M ′1 e21

M ′ e′2 : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M ′2 e22

and Goal C.688 becomes

ΓC ; Γ′ ` Σ1 : M ′1[e1] e21 'log Σ2 : M ′2[e2] e22 : σ2 (C.689)

From the premises of the two rule sM-inf-inf-appL rules, we obtain:

M ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ1 → τ2) M ′1 (C.690)

M ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′1 → τ2) M ′2 (C.691)

P ; ΓC ; Γ′ `Mtm e′2 ⇐ τ1 e21 (C.692)

P ; ΓC ; Γ′ `Mtm e′2 ⇐ τ ′1 e22 (C.693)

By applying Lemma 67 to Equations C.690 and C.691, we know that
τ ′1 → τ2 = τ1 → τ2.

COHERENCE THEOREMS 399

Applying the induction hypothesis on Equations C.690 and C.691, yields:

Σ1 : M ′1 'log Σ2 : M ′2 : (ΓC ; Γ⇒ σ) 7→ (ΓC ; Γ′ ⇒ σ1 → σ2)

By unfolding the definition of logical equivalence in the above equation
and applying it on Equation C.687, we get:

ΓC ; Γ′ ` Σ1 : M ′1[e1] 'log Σ2 : M ′2[e2] : σ1 → σ2 (C.694)

By applying Expression Coherence Theorem A (Theorem 58) on
Equations C.692 and C.693 (and on the second and fourth hypotheses of
the outer statement), we get:

ΓC ; Γ′ ` Σ1 : e21 'log Σ2 : e22 : σ1 (C.695)

Goal C.689 follows from compatibility of term applications (Lemma 121,
together with Equations C.694 and C.695).
rule sM-inf-inf-appR
e′1M

′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) e11M
′
1

By case analysis on the second hypothesis of the nested statement, its last
context typing rule must be rule sM-inf-inf-appR as well. Therefore,
the first and second hypotheses of the nested statement become

e′1M
′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) e11M

′
1

e′1M
′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) e12M

′
2

and we need to show that

ΓC ; Γ′ ` Σ1 : e11M
′
1[e1] 'log Σ2 : e12M

′
2[e2] : σ2 (C.696)

From the premises of the two rule sM-inf-inf-appR rules, we obtain:

M ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ1) M ′1 (C.697)

M ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′1) M ′2 (C.698)

P ; ΓC ; Γ′ `Mtm e′1 ⇒ τ1 → τ2 e11 (C.699)

P ; ΓC ; Γ′ `Mtm e′1 ⇒ τ ′1 → τ2 e12 (C.700)

By Lemma 67, we know that τ ′1 = τ1.
By applying Part 2 of this theorem to Equations C.697 and C.698, we get:

Σ1 : M ′1 'log Σ2 : M ′2 : (ΓC ; Γ⇒ σ) 7→ (ΓC ; Γ′ ⇒ σ1)

400 COHERENCE PROOFS

By unfolding the definition of logical equivalence in the above and applying
it on Equation C.687, we get:

ΓC ; Γ′ ` Σ1 : M ′1[e1] 'log Σ2 : M ′2[e2] : σ1 (C.701)

By applying Expression Coherence Theorem A (Theorem 58) to
Equations C.699 and C.700 (and on the second and fourth hypotheses of
the outer statement), we get:

ΓC ; Γ′ ` Σ1 : e11 'log Σ2 : e12 : σ1 → σ2 (C.702)

Goal C.696 follows from compatibility of term applications (Lemma 121,
together with Equations C.701 and C.702).
rule sM-inf-inf-letL

let x : ∀aj .Ci ⇒ τ1 = M ′ in e′2 : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M1

where M1 = let x : ∀aj .Ci ⇒ σ1 = Λaj .λδi : Ci .M
′
1 in e21.

By case analysis on the second hypothesis of the nested statement, its last
context typing rule must be rule sM-inf-inf-letL as well. Therefore,
the first and second hypotheses of the nested statement become

let x : ∀aj .Ci ⇒ τ1 = M ′ in e′2 : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M1

let x : ∀aj .Ci ⇒ τ1 = M ′ in e′2 : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M2

where M2 = let x : ∀aj .Ci ⇒ σ1 = Λaj .λδi : Ci .M
′
2 in e22.

Goal C.688 becomes

ΓC ; Γ′ ` Σ1 : M1[e1] 'log Σ2 : M2[e2] : σ2 (C.703)

From the premises of the two rule sM-inf-inf-letL rules, we obtain:

M ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′, aj , δi : Ci ⇐ τ1) M ′1 (C.704)

M ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′, aj , δi : Ci ⇐ τ1) M ′2 (C.705)

P ; ΓC ; Γ′, x : ∀aj .Ci ⇒ τ1 `Mtm e′2 ⇒ τ2 e21 (C.706)

P ; ΓC ; Γ′, x : ∀aj .Ci ⇒ τ1 `Mtm e′2 ⇒ τ2 e22 (C.707)

ΓC ; Γ′ `Mty ∀aj .Ci ⇒ τ1 ∀aj .Ci ⇒ σ1 (C.708)

δi fresh (C.709)

x /∈ dom(Γ′) (C.710)

COHERENCE THEOREMS 401

Through repeated case analysis on Equation C.708 (rule sTy-scheme
and rule sTy-qual), we know that

aj /∈ Γ′

ΓC ; Γ′, aj `MC Ci Ci
i

ΓC ; Γ′ `Mty τ1 σ1 (C.711)

By repeated case analysis on the second hypothesis, we get that

`Mctx •; ΓC ; • •; ΓC ; • (C.712)

By rule sCtx-tyEnvTy and rule sCtx-tyEnvD, in combination with
these results and Equation C.709, we obtain `Mctx •; ΓC ; •, aj , δi : Ci
•; ΓC ; •, aj , δi : Ci . Finally, Lemma 66, together with this result and the
second and fourth hypothesis, teaches us that:

`Mctx P ; ΓC ; Γ′, aj , δi : Ci Σ1; ΓC ; Γ′, aj , δi : Ci (C.713)

`Mctx P ; ΓC ; Γ′, aj , δi : Ci Σ2; ΓC ; Γ′, aj , δi : Ci (C.714)

By applying Part 2 of this theorem to Equations C.704 and C.705, in
combination with Equations C.711, C.713 and C.714 and the first, third
and fifth hypothesis, we get:

Σ1 : M ′1 'log Σ2 : M ′2 : (ΓC ; Γ⇒ σ) 7→ (ΓC ; Γ′, aj , δi : Ci ⇒ σ1)

By unfolding the definition of logical equivalence in the above and applying
it on Equation C.687, we get:

ΓC ; Γ′, aj , δi : Ci ` Σ1 : M ′1[e1] 'log Σ2 : M ′2[e2] : σ1 (C.715)

By repeatedly applying compatibility Lemmas 122 and 124, we get:

ΓC ; Γ′ ` Σ1 : Λaj .λδi : Ci .M
′
1[e1] 'log Σ2 : Λaj .λδi : Ci .M

′
2[e2] : ∀aj .Ci ⇒ σ1

(C.716)
It follows from rule sCtx-tyEnvTm, in combination with Equa-
tions C.712, C.710 and C.708, that
`Mctx •; ΓC ; •, x : ∀aj .Ci ⇒ τ1 •; ΓC ; •, x : ∀aj .Ci ⇒ σ1. Similarly to
before, by applying Lemma 66 to this result, together with the second
and fourth hypothesis, we get:

`Mctx P ; ΓC ; Γ′, x : ∀aj .Ci ⇒ τ1 Σ1; ΓC ; Γ′, x : ∀aj .Ci ⇒ σ1 (C.717)

`Mctx P ; ΓC ; Γ′, x : ∀aj .Ci ⇒ τ1 Σ2; ΓC ; Γ′, x : ∀aj .Ci ⇒ σ1 (C.718)

402 COHERENCE PROOFS

By applying Expression Coherence Theorem A (Theorem 58) to
Equations C.706 and C.707, together with Equations C.717 and C.718,
we get:

ΓC ; Γ′, x : ∀aj .Ci ⇒ σ1 ` Σ1 : e21 'log Σ2 : e22 : σ2 (C.719)

Goal C.703 follows from compatibility of let expressions (Lemma 126,
together with Equations C.715 and C.719).
rule sM-inf-inf-letR

let x : ∀aj .Ci ⇒ τ1 = e′1 in M ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M1

where M1 = let x : ∀aj .Ci ⇒ σ1 = Λaj .λδi : Ci .e11 in M ′1.
By case analysis on the second hypothesis of the nested statement, its last
context typing rule must be rule sM-inf-inf-letR as well. Therefore,
the first and second hypotheses of the nested statement become

let x : ∀aj .Ci ⇒ τ1 = e′1 in M ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M1

let x : ∀aj .Ci ⇒ τ1 = e′1 in M ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ2) M2

where M2 = let x : ∀aj .Ci ⇒ σ1 = Λaj .λδi : Ci .e12 in M ′2.
Goal C.688 becomes

ΓC ; Γ′ ` Σ1 : M1[e1] 'log Σ2 : M2[e2] : σ2 (C.720)

From the premises of the two rule sM-inf-inf-letR rules, we obtain:

M ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′, x : ∀aj .Ci ⇒ τ1 ⇒ τ2) M ′1
(C.721)

M ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′, x : ∀aj .Ci ⇒ τ1 ⇒ τ2) M ′2
(C.722)

P ; ΓC ; Γ′, aj , δi : Ci `Mtm e1 ⇐ τ1 e11 (C.723)

P ; ΓC ; Γ′, aj , δi : Ci `Mtm e1 ⇐ τ1 e12 (C.724)

ΓC ; Γ′ `Mty ∀aj .Ci ⇒ τ1 ∀aj .Ci ⇒ σ1 (C.725)

δi fresh (C.726)

x /∈ dom(Γ′) (C.727)

COHERENCE THEOREMS 403

By repeated case analysis on the second hypothesis, we get that

`Mctx •; ΓC ; • •; ΓC ; • (C.728)

By rule sCtx-tyEnvTm, in combination with this result and Equa-
tions C.725 and C.727, we obtain
`Mctx •; ΓC ; •, x : ∀aj .Ci ⇒ τ1 •; ΓC ; •, x : ∀aj .Ci ⇒ σ1. Lemma 66,
together with this result and the second and fourth hypothesis, teaches
us that:

`Mctx P ; ΓC ; Γ′, x : ∀aj .Ci ⇒ τ1 Σ1; ΓC ; Γ′, x : ∀aj .Ci ⇒ σ1 (C.729)

`Mctx P ; ΓC ; Γ′, x : ∀aj .Ci ⇒ τ1 Σ2; ΓC ; Γ′, x : ∀aj .Ci ⇒ σ1 (C.730)

By applying the induction hypothesis to Equations C.721 and C.722, in
combination with Equations C.729 and C.730, we get:

Σ1 : M ′1 'log Σ2 : M ′2 : (ΓC ; Γ⇒ σ) 7→ (ΓC ; Γ′, x : ∀aj .Ci ⇒ σ1 ⇒ σ2)

By unfolding the definition of logical equivalence in the above and then
applying it on Equation C.687, we get:

ΓC ; Γ′, x : ∀aj .Ci ⇒ σ1 ` Σ1 : M ′1[e1] 'log Σ2 : M ′2[e2] : σ2 (C.731)

Through repeated case analysis on Equation C.725 (rule sTy-scheme
and rule sTy-qual), we know that

aj /∈ Γ′

ΓC ; Γ′, aj `MC Ci Ci
i

ΓC ; Γ′ `Mty τ1 σ1 (C.732)

By rule sCtx-tyEnvTy and rule sCtx-tyEnvD, in combination
with these results and Equations C.726 and C.728, we obtain `Mctx
•; ΓC ; •, aj , δi : Ci •; ΓC ; •, aj , δi : Ci . Lemma 66, together with this
result and the second and fourth hypothesis, teaches us that:

`Mctx P ; ΓC ; Γ′, aj , δi : Ci Σ1; ΓC ; Γ′, aj , δi : Ci (C.733)

`Mctx P ; ΓC ; Γ′, aj , δi : Ci Σ2; ΓC ; Γ′, aj , δi : Ci (C.734)

By applying Expression Coherence Theorem A (Theorem 58) to
Equations C.723 and C.724, in combination with Equations C.733
and C.734, we get:

ΓC ; Γ′, aj , δi : Ci ` Σ1 : e11 'log Σ2 : e12 : σ1 (C.735)

404 COHERENCE PROOFS

By repeatedly applying compatibility Lemmas 122 and 124, we get:

ΓC ; Γ′ ` Σ1 : Λaj .λδi : Ci .e11 'log Σ2 : Λaj .λδi : Ci .e12 : ∀aj .Ci ⇒ σ1
(C.736)

Goal C.720 follows from Lemma 126, together with Equations C.731
and C.736.
rule sM-inf-inf-ann M ′ :: τ ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M1
By case analysis, we know the final step in the second derivation has to
be rule sM-inf-inf-ann as well. This means that:

M ′ :: τ ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M1 (C.737)

M ′ :: τ ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M2 (C.738)

The goal to be proven is the following:

ΓC ; Γ′ ` Σ1 : M1[e1] 'log Σ2 : M2[e2] : σ′ (C.739)

From the rule premise we know that:

M ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M1 (C.740)

M ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M2 (C.741)

Goal C.739 follows directly from Part 2 of this theorem, in combination
with Equations C.740 and C.741.

Part 2 By case analysis on the first typing derivation.
rule sM-inf-check-abs

λx.M ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ1 → τ2) λx : σ1.M
′
1

By case analysis, we know that the final step in the second derivation has
to be either rule sM-inf-check-abs or rule sM-inf-check-inf. Note
however that no matching inference rules exist. The final step in the
second derivation thus has to be rule sM-inf-check-abs as well. This
means that:

λx.M ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ1 → τ2) λx : σ1.M
′
1

(C.742)

λx.M ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ1 → τ2) λx : σ1.M
′
2

(C.743)

COHERENCE THEOREMS 405

The goal to be proven is the following:

ΓC ; Γ′ ` Σ1 : λx : σ1.M
′
1[e1] 'log Σ2 : λx : σ1.M

′
2[e2] : σ1 → σ2

(C.744)
From the rule premise we know that:

M ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′, x : τ1 ⇐ τ2) M ′1 (C.745)

M ′ : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′, x : τ1 ⇐ τ2) M ′2 (C.746)

ΓC ; Γ′ `Mty τ1 σ1 (C.747)

We know from rule sCtx-tyEnvTm, in combination with Equation C.747
and the 4th and 6th hypothesis that:

`Mctx P ; ΓC ; Γ′, x : τ1 Σ1; ΓC ; Γ′, x : σ1 (C.748)

`Mctx P ; ΓC ; Γ′, x : τ1 Σ2; ΓC ; Γ′, x : σ1 (C.749)

By applying the induction hypothesis to Equations C.745 and C.746, in
combination with Equations C.748 and C.749, we get:

Σ1 : M ′1 'log Σ2 : M ′2 : (ΓC ; Γ⇒ σ) 7→ (ΓC ; Γ′, x : σ1 ⇒ σ2) (C.750)

By unfolding the definition of logical equivalence in Equation C.750, we
get:

∀e′1, e′2 : ΓC ; Γ ` Σ1 : e′1 'log Σ2 : e′2 : σ (C.751)

⇒ ΓC ; Γ′, x : σ1 ` Σ1 : M ′1[e′1] 'log Σ2 : M ′2[e′2] : σ2 (C.752)

This result, together with Equation C.687, tells us that:

ΓC ; Γ′, x : σ1 ` Σ1 : M ′1[e1] 'log Σ2 : M ′2[e2] : σ2 (C.753)

Goal C.744 follows from Lemma 120, together with Equation C.753.
rule sM-inf-check-inf M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M1
By case analysis, we know that the final step in the second derivation has
to be either rule sM-inf-check-abs or rule sM-inf-check-inf. Note
however that in the case of rule sM-inf-check-abs, M would have to be
of the form M = λx.M ′. In this case, no matching inference rules exist,
meaning that this is an impossible case. Consequently, the final step in
the second derivation can only be rule sM-inf-check-inf. This means
that:

M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M1 (C.754)

M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇐ τ ′) M2 (C.755)

406 COHERENCE PROOFS

The goal to be proven is the following:

ΓC ; Γ′ ` Σ1 : M1[e1] 'log Σ2 : M2[e2] : σ′ (C.756)

From the rule premise we know that:

M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M1 (C.757)

M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; Γ′ ⇒ τ ′) M2 (C.758)

Goal C.756 follows directly by applying Part 1 of this theorem to
Equations C.757 and C.758.

Part 3 By case analysis on the first typing derivation.
Similar to Part 1.

Part 4 By case analysis on the first typing derivation.
Similar to Part 2.

Lemma 131 (Class Constraint Dictionary Canonical Form).
If Σ; ΓC ; • `d d : Q then ∃dv : d −→∗ dv
where dv = Dσm dn and Σ; ΓC ; • `d Dσm dn : Q.

Proof. By applying Strong Normalization Theorem 34, we get

d −→∗ dv

Repeatedly applying Type Preservation Theorem 29 to this derivation gives us

Σ; ΓC ; • `d dv : Q

Case analysis on this result makes it clear that dv = Dσm dn for some D, σm
and dn.

Theorem 52 (Closed Class Constraint Dictionary Relation).
If Σ1; ΓC ; • `d d1 : Q and Σ2; ΓC ; • `d d2 : Q and ΓC ` Σ1 'log Σ2
then (Σ1 : d1,Σ2 : d2) ∈ EJQKΓC .

COHERENCE THEOREMS 407

Proof. By induction on the size of d1 and d2.

By applying Lemma 131, we know that

d1 −→∗ D1 σm 1 dn 1 (C.759)

Σ; ΓC ; • `d D1 σm 1 dn 1 : Q (C.760)

d2 −→∗ D2 σp 2 dq 2 (C.761)

Σ; ΓC ; • `d D2 σp 2 dq 2 : Q (C.762)

For some D1, D2, σm 1, σp 2, dn 1 and dq 2.

By repeated case analysis on Equations C.760 and C.762, we know that:

(D1 : ∀am 1.Cn 1 ⇒ Q1).m1 7→ e1 ∈ Σ1 where Q = [σm 1/am 1]Q1 (C.763)

ΓC ; • `ty σi 1
i<m (C.764)

Σ1; ΓC ; • `d di 1 : [σm 1/am 1]Ci 1
i<n (C.765)

Σ11; ΓC ; • `tm e1 : ∀am 1.Qn 1 ⇒ σ1

where Σ1 = Σ11, (D1 : ∀am 1.Cn 1 ⇒ Q1).m1 7→ e1,Σ12 (C.766)

`ctx Σ1; ΓC ; • (C.767)

(D2 : ∀ap 2.Cq 2 ⇒ Q2).m2 7→ e2 ∈ Σ2 where Q = [σp 2/aq 2]Q2 (C.768)

ΓC ; • `ty σi 2
i<p (C.769)

Σ2; ΓC ; • `d di 2 : [σp 2/ap 2]Ci 2
i<q (C.770)

Σ21; ΓC ; • `tm e2 : ∀ap 2.Cq 2 ⇒ σ1

where Σ2 = Σ21, (D2 : ∀ap 2.Cq 2 ⇒ Q2).m2 7→ e2,Σ22 (C.771)

`ctx Σ2; ΓC ; • (C.772)

By case analysis on Equations C.767 and C.772 (rule iCtx-MEnv) and
the definition of logical equivalence in the 3rd hypothesis, it follows from

408 COHERENCE PROOFS

Equations C.763 and C.768 that:

D1 = D2

am 1 = ap 2

Cn 1 = Cq 2

Q1 = Q2

m1 = m2

ΓC ` Σ11 'log Σ21

ΓC ` Σ12 'log Σ22

ΓC ; • ` Σ11 : e1 'log Σ21 : e2 : ∀am 1.Cn 1 ⇒ σ1

Consequently, we also know that m = p and n = q.

Furthermore, rule rule iCtx-MEnv also tells us that unambig(∀am 1.Cn 1 ⇒ Q1).
The definition of unambiguity thus gives us am 1 ∈ fv(Q1). This, in combination
with Equations C.763 and C.768 tells us that σm 1 = σp 2.

Unfolding the definition of the E , followed by the V relation, reduces the goal
to be proven to:

Σ1; ΓC ; • `d d1 : Q (C.773)

Σ2; ΓC ; • `d d2 : Q (C.774)

d1 −→∗ D1 σm 1 dn 1 (C.775)

d2 −→∗ D2 σp 2 dq 2 (C.776)

(Σ1 : di 1,Σ2 : di 2) ∈ EJ[σm 1/am]CiKΓC
i<n

(C.777)

Σ1; ΓC ; • `d D1 σm 1 dn 1 : Q (C.778)

Σ2; ΓC ; • `d D2 σp 2 dq 2 : Q (C.779)

(D : ∀am 1.Cn 1 ⇒ Q1).m1 7→ e1 ∈ Σ1 where Q = [σm 1/am 1]Q′ (C.780)

Goals C.773 and C.774 follow directly from the 1st and 2nd hypothesis.
Goals C.775 and C.776 are given by Equations C.759 and C.761. Goals C.778
and C.779 are given by Equations C.760 and C.762. Goal C.780 follows directly

COHERENCE THEOREMS 409

Thm 53 Thm 58 Thm 55 Thm 56 Thm 57

Figure C.4: Dependency graph for Coherence Theorems

from Equation C.763. Finally, Goal C.777 follows by applying the induction
hypothesis on Equations C.765 and C.770.

Theorem 53 (Environment Equivalence Preservation).
If `Mctx P ; ΓC ; Γ Σ1; ΓC ; Γ and `Mctx P ; ΓC ; Γ Σ2; ΓC ; Γ
then ΓC ` Σ1 'log Σ2.

Proof. By structural induction on P and mutually proven with Theorems 58, 55,
56 and 57 (see Figure C.4). Note that at the dependency between Theorem 53
and 58, the size of P is strictly decreasing, whereas P remains constant at every
other dependency. Theorems 55, 56 and 57 perform induction on the given
derivation, which we assume to be finite. Consequently, the induction remains
well-founded.
P = •
By case analysis on the 1st and 2nd hypothesis:

Σ1 = Σ2 = •

The goal follows from rule ctxLog-empty.
P = P ′, (D : C).m 7→ •, bj , δi : Ci , ak , δy : [τ/a]Cy : e
By case analysis on the 1st and 2nd hypothesis (rule sCtx-pgmInst):

Σ1 = Σ′1, (D : C).m 7→ Λbj .λδi : Ci .Λak .λδy : [σ/a]Cy.e1

Σ2 = Σ′2, (D : C ′).m 7→ Λbj .λδi : C ′i .Λak .λδy : [σ/a]C ′y.e2

P ′; ΓC ; •, bj , δi : Ci , ak , δy : [τ/a]Cy `Mtm e⇐ [τ/a]τ ′ e1 (C.781)

P ′; ΓC ; •, bj , δi : Ci , ak , δy : [τ/a]Cy `Mtm e⇐ [τ/a]τ ′ e2 (C.782)

`Mctx P
′; ΓC ; Γ Σ′1; ΓC ; Γ (C.783)

`Mctx P
′; ΓC ; Γ Σ′2; ΓC ; Γ (C.784)

410 COHERENCE PROOFS

Since the elaboration from λ⇒TC constraints to FD constraints is entirely
deterministic (Lemma 70), we know that C ′ = C, C ′i = Ci , C

′
y = Cy and

consequently that [σ/a]C ′y = [σ/a]Cy.

From the induction hypothesis, together with Equations C.783 and C.784, we
get that:

ΓC ` Σ′1 'log Σ′2 (C.785)

From Expression Coherence Theorem A (Theorem 58), in combination with
Equations C.781, C.782, C.783 and C.784, we know:

ΓC ; Γ ` Σ′1 : e1 'log Σ′2 : e2 : [σ/a]σ′ (C.786)

where ΓC ; Γ `Mty [τ/a]τ ′ [σ/a]σ′.

The goal follows from rule ctxLog-cons, together with Equations C.785
and C.786.

Theorem 54 (Contextual Equivalence in FD Implies Contextual Equivalence
in λ⇒TC).
If ΓC ; Γ ` Σ1 : e1 'ctx Σ2 : e2 : σ
and `Mctx P ; ΓC ; Γ Σ1; ΓC ; Γ and `Mctx P ; ΓC ; Γ Σ2; ΓC ; Γ
and `ctx P ; ΓC ; Γ Γ
and there exists an τ such that ΓC ; Γ `Mty τ σ
then P ; ΓC ; Γ ` e1 'ctx e2 : τ .

Proof. By unfolding the definition of contextual equivalence, the goal becomes:

∀M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; • ⇒ Bool) M1 (C.787)

M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; • ⇒ Bool) M2 (C.788)

then M1[e1] 'M2[e2] (C.789)

We thus assume Equations C.787 and C.788 and prove Equation C.789.

COHERENCE THEOREMS 411

By unfolding the definition of contextual equivalence in the first hypothesis, we
get that:

∀M1 : (Σ1; ΓC ; Γ⇒ σ) 7→ (Σ1; ΓC ; • ⇒ Bool) M1

∀M2 : (Σ2; ΓC ; Γ⇒ σ) 7→ (Σ2; ΓC ; • ⇒ Bool) M2

if Σ1 : M1 'log Σ2 : M2 : (ΓC ; Γ⇒ σ) 7→ (ΓC ; • ⇒ Bool)

then M1[e1] 'M2[e2] (C.790)

By applying Lemma 80 to the fourth hypothesis, we know that:

`ctx P ; ΓC ; • •

By applying context equivalence (Theorem 44) on Equations C.787 and C.788,
together with this result and hypotheses 2, 3 and 4, we know that:

M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; • ⇒ Bool) M ′1 (C.791)

M ′1 : (Σ1; ΓC ; Γ⇒ σ) 7→ (Σ1; ΓC ; • ⇒ Bool) M ′1 (C.792)

M : (P ; ΓC ; Γ⇒ τ) 7→ (P ; ΓC ; • ⇒ Bool) M ′2 (C.793)

M ′2 : (Σ2; ΓC ; Γ⇒ σ) 7→ (Σ2; ΓC ; • ⇒ Bool) M ′2 (C.794)

Similarly, by applying Lemma 81 to the first and second hypothesis, we get:

`Mctx P ; ΓC ; • Σ1; ΓC ; •

`Mctx P ; ΓC ; • Σ1; ΓC ; •

By applying Theorem 51 to Equations C.791 and C.793, together with this
result, hypotheses 2, 3 and 5, and rule sTy-bool, we know that:

Σ1 : M ′1 'log Σ2 : M ′2 : (ΓC ; Γ⇒ σ) 7→ (ΓC ; • ⇒ Bool) (C.795)

We take M1 = M ′1 and M2 = M ′2. Consequently, since FD context elaboration
is deterministic (Theorem 68), we get thatM1 = M ′1 andM2 = M ′2. Goal C.789
follows from Equations C.790, C.792, C.794 and C.795.

412 COHERENCE PROOFS

C.7.3 Partial Coherence Theorems

Theorem 55 (Coherence - Dictionaries - Constraint Entailment).
If P ; ΓC ; Γ �M [C] d1 and P ; ΓC ; Γ �M [C] d2
and `Mctx P ; ΓC ; Γ Σ1; ΓC ; Γ and `Mctx P ; ΓC ; Γ Σ2; ΓC ; Γ
then ΓC ; Γ ` Σ1 : d1 'log Σ2 : d2 : C
where ΓC ; Γ `MC C C.

Proof. By induction on the first constraint entailment derivation. This theorem
is mutually proven with Theorems 53, 58, 56 and 57 (see Figure C.4). Note
that at the dependency between Theorem 53 and 58, the size of P is strictly
decreasing, whereas P remains constant at every other dependency. Theorems 55,
56 and 57 perform induction on the given derivation, which we assume to be
finite. Consequently, the induction remains well-founded.
rule sEntail-arrow : P ; ΓC ; Γ �M [C1 ⇒ C2] λδ : C1.d

′
1

From the rule premise:

P ; ΓC ; Γ, δ : C1 �
M [C2] d′1 (C.796)

(C.797)

ΓC ; Γ `MC C1 C1 (C.798)

By case analysis on the second derivation (rule sEntail-arrow), we get:

P ; ΓC ; Γ �M [C1 ⇒ C2] λδ : C1.d
′
1 (C.799)

P ; ΓC ; Γ, δ : C1 �
M [C2] d′1 (C.800)

(C.801)

ΓC ; Γ `MC C1 C1 (C.802)

Note that as we follow the convention that the choice of variable names is
unimportant, we simplify the discussion above by picking the same name δ and
δ for the freshly generated dictionary variable name.

We continue by applying environment weakening in the 3rd and 4th hypothesis
(Lemma 66, in combination with rule sCtx-pgmInst and rule sCtx-tyEnvD):

`Mctx P ; ΓC ; Γ, δ : C1 Σ1; ΓC ; Γ, δ : C1 (C.803)

`Mctx P ; ΓC ; Γ, δ : C1 Σ2; ΓC ; Γ, δ : C1 (C.804)

COHERENCE THEOREMS 413

Applying the induction hypothesis to Equations C.797, C.801, C.803 and C.804
results in

ΓC ; Γ, δ : C1 ` Σ1 : d′1 'log Σ2 : d′2 : C2

where ΓC ; Γ, δ : C1 `MC C2 C2.

The goal follows directly by Compatibility Lemma 128.
rule sEntail-forall : P ; ΓC ; Γ �M [∀a.C′] Λa.d′

1

From the rule premise:

P ; ΓC ; Γ, a �M [C ′] d′1 (C.805)

By case analysis on the second derivation (rule sEntail-forall), we get:

P ; ΓC ; Γ �M [∀a.C ′] Λa.d′2 (C.806)

P ; ΓC ; Γ, a �M [C ′] d′2 (C.807)

Similarly to the previous case, we apply environment weakening in the 3rd

and 4th hypothesis (Lemma 66, in combination with rule sCtx-pgmInst and
rule sCtx-tyEnvTy) to get

`Mctx P ; ΓC ; Γ, a Σ1; ΓC ; Γ, a (C.808)

`Mctx P ; ΓC ; Γ, a Σ2; ΓC ; Γ, a (C.809)

Applying the induction hypothesis to Equations C.805, C.807, C.808 and C.809
gives us

ΓC ; Γ, a ` Σ1 : d′1 'log Σ2 : d′2 : C ′

where ΓC ; Γ, a `MC C ′ C ′.

The goal follows by Compatibility Lemma 129.
rule sEntail-inst : P ; ΓC ; Γ �M [Q] d1

From the premise:

P = P 1, (D : C).m 7→ Γ′ : e, P 2 (C.810)

P ; ΓC ; Γ; [•; • ` D : C] �M Q • ` d1 (C.811)

By Lemma 79 we get
Σ1; ΓC ; Γ `d D : C (C.812)

By case analysis, the final step of the second derivation can either be
rule sEntail-inst or rule sEntail-local:

414 COHERENCE PROOFS

• rule sEntail-inst: The rule premise thus gives us

P ; ΓC ; Γ �M [Q] d2 (C.813)

P = P ′1, (D′ : C ′).m′ 7→ Γ′′ : e′, P ′2 (C.814)

P ; ΓC ; Γ; [•; • ` D′ : C ′] �M Q • ` d2 (C.815)

We know from Lemma 79 that

Σ2; ΓC ; Γ `d D′ : C ′ (C.816)

where ΓC ; Γ `MC C ′ C ′. The goal follow directly by applying
Theorem 56 to Equations C.811, C.812,C.815 and C.816 in combination
with the hypotheses.

• rule sEntail-local: The rule premise thus gives us

P ; ΓC ; Γ �M [Q] d2 (C.817)

(δ : C ′) ∈ Γ (C.818)

P ; ΓC ; Γ; [•; • ` δ : C ′] �M Q • ` d2 (C.819)

From Lemma 77, we know that

(δ : C ′) ∈ Γ

ΓC ; Γ `MC C ′ C ′

It then follows directly from rule D-var that

Σ2; ΓC ; Γ `d δ : C ′ (C.820)

The goal follow directly by applying Theorem 56 to Equations C.811,
C.812, C.819 and C.820 in combination with the hypotheses.

rule sEntail-local : P ; ΓC ; Γ �M [Q] d1

From the premise:

(δ : C) ∈ Γ (C.821)

P ; ΓC ; Γ; [•; • ` δ : C] �M Q • ` d1 (C.822)

It follows, similarly to the previous case, that

Σ1; ΓC ; Γ `d δ : C (C.823)

By case analysis, the final step of the second derivation can either be
rule sEntail-inst or rule sEntail-local:

COHERENCE THEOREMS 415

• rule sEntail-inst: This case is entirely identical to the previous case.

• rule sEntail-local: The rule premise thus gives us

P ; ΓC ; Γ �M [Q] d2 (C.824)

(δ′ : C ′) ∈ Γ (C.825)

P ; ΓC ; Γ; [•; • ` δ′ : C ′] �M Q • ` d2 (C.826)

And again similarly, we get

Σ2; ΓC ; Γ `d δ′ : C ′ (C.827)

The goal follows by applying Theorem 56 to Equations C.822, C.823,
C.826 and C.827 in combination with the hypotheses.

Theorem 56 (Coherence - Dictionaries - Constraint Matching Left).
If P ; ΓC ; Γ; [a3; δ3 : C3 ` d3 : C3] �M Q τ3 ` d1
and P ; ΓC ; Γ; [•; • ` d4 : C4] �M Q • ` d2
and `Mctx P ; ΓC ; Γ, a3 Σ1; ΓC ; Γ, a3 and Σ1; ΓC ; Γ, a3, δ3 : C3 `d d3 : C3
where ΓC ; Γ, a3 `MC C3 C3
and `Mctx P ; ΓC ; Γ Σ2; ΓC ; Γ and Σ2; ΓC ; Γ `d d4 : C4
where ΓC ; Γ `MC C4 C4
then ∀R1 ∈ FJΓ, a3, δ3 : C3KΓC , R2 ∈ FJΓKΓC ,
γ1 ∈ HJΓ, a3, δ3 : C3K

Σ1,Σ2,ΓC

R1
, γ2 ∈ HJΓKΣ1,Σ2,ΓC

R2
:

(Σ1 : γ1(R1(d1)),Σ2 : γ2(R2(d2))) ∈ EJR1(Q)KΓC where ΓC ; Γ `MQ Q Q.

Proof. By induction on the first constraint matching derivation. This theorem is
mutually proven with Theorems 53, 58, 55 and 57 (see Figure C.4). Note that at
the dependency between Theorem 53 and 58, the size of P is strictly decreasing,
whereas P remains constant at every other dependency. Theorems 55, 56
and 57 perform induction on the given derivation, which we assume to be finite.
Consequently, the induction remains well-founded.
rule sMatch-arrow : P ; ΓC ; Γ; [a3; δ3 : C3 ` d3 : C′

3 ⇒ C′′
3] �M Q τ3 ` [d′

3/δ3]d1

From the rule premise:

P ; ΓC ; Γ; [a3; δ3 : C3, δ3 : C ′3 ` d3 δ3 : C ′′3] �M Q τ3 ` d1 (C.828)

P ; ΓC ; Γ �M [[τ3/a3]C ′3] d′3 (C.829)

416 COHERENCE PROOFS

By case analysis on the hypothesis (rule sC-arrow), we know that

ΓC ; Γ, a3 `MC C ′3 C ′3

Using rule D-var, it is easy to see that Σ1; ΓC ; Γ, a3, δ3 : C3, δ3 : C ′3 `d δ3 : C ′3.
Together with rule D-dapp and the hypotheses, this result leads to

Σ1; ΓC ; Γ, a3, δ3 : C3, δ3 : C ′3 `d d3 δ3 : C ′′3

Applying the induction hypothesis then gives us

(Σ1 : γ′1(R1(d1)),Σ2 : γ2(R2(d2))) ∈ EJR1(Q)KΓC (C.830)

with γ′1 ∈ HJΓ, a3, δ3 : C3, δ3 : C ′3K
Σ1,Σ2,ΓC

R1
and where ΓC ; Γ `MQ Q Q. From

the definition of H we know that γ′1 = γ1, δ3 7→ (d5, d6) for any (Σ1 : d5,Σ2 :
d6) ∈ EJR1(C ′3)KΓC .

We now apply Theorem 55 to Equation C.829 twice, as well as to the 3rd and
6th hypotheses. This gives us

(Σ1 : d′3,Σ2 : d′3) ∈ EJR1([σ3/a3]C ′3)KΓC

The goal follows directly by chosing d5 = d6 = d′3.
rule sMatch-forall : P ; ΓC ; Γ; [a3; δ3 : C3 ` d3 : ∀a.C′

3] �M Q τ3 ` d1

From the rule premise:

P ; ΓC ; Γ; [a3, a; δ3 : C3 ` d3 a : C ′3] �M Q τ3, τ3 ` d1

Combining rule D-tyapp, rule iTy-var and the hypotheses, gives us

Σ1; ΓC ; Γ, a3, a `d d3 a : C ′3

From the induction hypothesis we get that ∀R′1 ∈ FJΓ, a3, a, δ3 : C3KΓC , R2 ∈
FJΓKΓC , γ1 ∈ HJΓ, a3, a, δ3 : C3K

Σ1,Σ2,ΓC

R′
1

, γ2 ∈ HJΓKΣ1,Σ2,ΓC

R2
:

(Σ1 : γ1(R′1(d1)),Σ2 : γ2(R2(d2))) ∈ EJR′1(Q)KΓC (C.831)

However, we know from Typing Preservation Theorem 27 that d1 does not
depend on a. Because of this, the goal follows directly from Equation C.831.
rule sMatch-classconstr : P ; ΓC ; Γ; [a3; δ3 : C3 ` d3 : Q3] �M Q τ3 ` [σ/a]d3

The goal follows directly from Theorem 57.

COHERENCE THEOREMS 417

Theorem 57 (Coherence - Dictionaries - Constraint Matching Right).
If P ; ΓC ; Γ; [a3; δ3 : C3 ` d3 : Q3] �M Q τ3 ` d1
and P ; ΓC ; Γ; [a4; δ4 : C4 ` d4 : C4] �M Q τ4 ` d2
and `Mctx P ; ΓC ; Γ, a3 Σ1; ΓC ; Γ, a3 and Σ1; ΓC ; Γ, a3, δ3 : C3 `d d3 : Q3
where ΓC ; Γ, a3 `MC C3 C3
and `Mctx P ; ΓC ; Γ, a4 Σ2; ΓC ; Γ, a4 and Σ2; ΓC ; Γ, a4, δ4 : C4 `d d4 : C4
where ΓC ; Γ, a4 `MC C4 C4
then ∀R1 ∈ FJΓ, a3, δ3 : C3KΓC , R2 ∈ FJΓ, a4, δ4 : C4KΓC ,
γ1 ∈ HJΓ, a3, δ3 : C3K

Σ1,Σ2,ΓC

R1
, γ2 ∈ HJΓ, a4, δ4 : C4K

Σ1,Σ2,ΓC

R2
:

(Σ1 : γ1(R1(d1)),Σ2 : γ2(R2(d2))) ∈ EJR1(Q)KΓC where ΓC ; Γ `MQ Q Q.

Proof. By induction on the second constraint matching derivation. This theorem
is mutually proven with Theorems 53, 58, 55 and 56 (see Figure C.4). Note
that at the dependency between Theorem 53 and 58, the size of P is strictly
decreasing, whereas P remains constant at every other dependency. Theorems 55,
56 and 57 perform induction on the given derivation, which we assume to be
finite. Consequently, the induction remains well-founded.
rule sMatch-arrow : P ; ΓC ; Γ; [a4; δ4 : C4 ` d4 : C′

4 ⇒ C′′
4] �M Q τ4 ` [d′

4/δ4]d2

From the rule premise:

P ; ΓC ; Γ; [a4; δ4 : C4, δ4 : C ′4 ` d4 δ4 : C ′′4] �M Q τ4 ` d2 (C.832)

P ; ΓC ; Γ �M [[τ4/a4]C ′4] d′4 (C.833)

By case analysis on the hypothesis (rule sC-arrow), we know that

ΓC ; Γ, a4 `MC C ′4 C ′4

Using rule D-var, it is easy to see that Σ2; ΓC ; Γ, a4, δ4 : C4, δ4 : C ′4 `d δ4 : C ′4.
Together with rule D-dapp and the hypotheses, this result leads to

Σ2; ΓC ; Γ, a4, δ4 : C4, δ4 : C ′4 `d d4 δ4 : C ′′4

Applying the induction hypothesis then gives us

(Σ1 : γ1(R1(d1)),Σ2 : γ′2(R2(d2))) ∈ EJR1(Q)KΓC (C.834)

with γ′2 ∈ HJΓ, a4, δ4 : C4, δ4 : C ′4K
Σ1,Σ2,ΓC

R1
and where ΓC ; Γ `MQ Q Q. From

the definition of H we know that γ′2 = γ2, δ4 7→ (d5, d6) for any (Σ1 : d5,Σ2 :
d6) ∈ EJR1(C ′4)KΓC .

418 COHERENCE PROOFS

We now apply Theorem 55 to Equation C.833 twice, as well as to the 3rd and
6th hypotheses. This gives us

(Σ1 : d′4,Σ2 : d′4) ∈ EJR1([σ4/a4]C ′4)KΓC

The goal follows directly by chosing d5 = d6 = d′4.
rule sMatch-forall : P ; ΓC ; Γ; [a4; δ4 : C4 ` d4 : ∀a.C′

4] �M Q τ4 ` d2

From the rule premise:

P ; ΓC ; Γ; [a4, a; δ4 : C4 ` d4 a : C ′4] �M Q τ4, τ4 ` d2

Combining rule D-tyapp, rule iTy-var and the hypotheses, gives us

Σ2; ΓC ; Γ, a4, a `d d4 a : C ′4

From the induction hypothesis we get that ∀R1 ∈ FJΓ, a3, δ3 : C3KΓC

, R′2 ∈ FJΓ, a4, a, δ4 : C4KΓC , γ1 ∈ HJΓ, a3, δ3 : C3K
Σ1,Σ2,ΓC

R1
, γ2 ∈

HJΓ, a4, a, δ4 : C4K
Σ1,Σ2,ΓC

R′
2

:

(Σ1 : γ1(R1(d1)),Σ2 : γ2(R′2(d2))) ∈ EJR1(Q)KΓC (C.835)

However, we know from Typing Preservation Theorem 27 that d1 does not
depend on a. Because of this, the goal follows directly from Equation C.835.
rule sMatch-classconstr : P ; ΓC ; Γ; [a4; δ4 : C4 ` d4 : Q4] �M Q τ4 ` [σ4/a4]d4

From the rule premise:

Q = [τ4/a4]Q4

ΓC ; Γ `Mty τ i 4 σi 4
i

Case analysis on the first derivation (rule sMatch-classconstr) tells us

d1 = [σ3/a3]d3

Q = [τ3/a3]Q3

ΓC ; Γ `Mty τ i 3 σi 3
i

Applying Substitution Lemma 93 to the hypotheses gives us

Σ1; ΓC ; Γ, δ3 : [σ3/a3]C3 `d [σ3/a3]d3 : [σ3/a3]Q3 (C.836)

Σ2; ΓC ; Γ, δ4 : [σ4/a4]C4 `d [σ4/a4]d4 : [σ4/a4]Q4 (C.837)

COHERENCE THEOREMS 419

The goal to be proven is

∀R1 ∈ FJΓ, a3, δ3 : C3KΓC , R2 ∈ FJΓ, a4, δ4 : C4KΓC , (C.838)

γ1 ∈ HJΓ, a3, δ3 : C3K
Σ1,Σ2,ΓC

R1
, γ2 ∈ HJΓ, a4, δ4 : C4K

Σ1,Σ2,ΓC

R2
: (C.839)

(Σ1 : γ1(R1([σ3/a3]d3)),Σ2 : [σ4/a4]γ2(R2(d4))) ∈ EJR1(Q)KΓC (C.840)

We thus proceed by repeatedly applying Substitution Lemmas 91 and 93 to
Equations C.836 and C.837:

Σ1; ΓC ; • `d γ1(R([σ3/a3]d3)) : R([σ3/a3]Q3)

Σ2; ΓC ; • `d γ2(R([σ4/a4]d4)) : R([σ4/a4]Q4)

Furthermore, by applying Theorem 53 to the hypotheses, we get

ΓC ` Σ1 'log Σ2

Applying Theorem 52 to these results gives us

(Σ1 : γ1(R([σ3/a3]d3)),Σ2 : [σ4/a4]γ2(R(d4))) ∈ EJR(Q)KΓC

where Q = [σ3/a3]Q3. Goal C.840 thus follows directly.

Theorem 58 (Coherence - Expressions - Part A).

• If P ; ΓC ; Γ `Mtm e⇒ τ e1 and P ; ΓC ; Γ `Mtm e⇒ τ e2
and `Mctx P ; ΓC ; Γ Σ1; ΓC ; Γ and `Mctx P ; ΓC ; Γ Σ2; ΓC ; Γ
then ΓC ; Γ ` Σ1 : e1 'log Σ2 : e2 : σ where ΓC ; Γ `Mty τ σ.

• If P ; ΓC ; Γ `Mtm e⇐ τ e1 and P ; ΓC ; Γ `Mtm e⇐ τ e2
and `Mctx P ; ΓC ; Γ Σ1; ΓC ; Γ and `Mctx P ; ΓC ; Γ Σ2; ΓC ; Γ
then ΓC ; Γ ` Σ1 : e1 'log Σ2 : e2 : σ where ΓC ; Γ `Mty τ σ.

Proof. By mutual induction on the first typing derivation. This theorem is
mutually proven with Theorems 53, 55, 56 and 57 (see Figure C.4). Note that at
the dependency between Theorem 53 and 58, the size of P is strictly decreasing,
whereas P remains constant at every other dependency. Theorems 55, 56
and 57 perform induction on the given derivation, which we assume to be finite.
Consequently, the induction remains well-founded.

By applying Lemma 74 to the 1st hypothesis, we get that:

ΓC ; Γ `Mty τ σ (C.841)

420 COHERENCE PROOFS

Part 1
rule sTm-inf-true P ; ΓC ; Γ `Mtm True ⇒ Bool True
Through case analysis, it is straightforward to see that the final step in
the second derivation is rule sTm-inf-true as well. This means that
e1 = e2 = True. From Theorem 53, we know that ΓC ` Σ1 'log Σ2. The
goal follows from reflexivity Theorem 50.
rule sTm-inf-false P ; ΓC ; Γ `Mtm True ⇒ Bool True
The proof is identical to the rule sTm-inf-true case.
rule sTm-inf-let

P ; ΓC ; Γ `Mtm let x : ∀aj .Ci ⇒ τ1 = e1 in e2 ⇒ τ2 e3

where e3 = let x : ∀aj .Ck ⇒ σ = Λaj .λδk : Ck .e1 in e2. Through case
analysis, we know that the final step in the second derivation has to be
rule sTm-inf-let as well. This means that:

P ; ΓC ; Γ `Mtm let x : ∀aj .Ci ⇒ τ1 = e1 in e2 ⇒ τ2 e3

where e3 = let x : ∀aj .Ck ⇒ σ = Λaj .λδk : Ck .e1 in e2

P ; ΓC ; Γ `Mtm let x : ∀aj .Ci ⇒ τ1 = e1 in e2 ⇒ τ2 e4

where e4 = let x : ∀aj .Ck ⇒ σ = Λaj .λδk : Ck .e
′
1 in e′2

The goal to be proven is the following:

ΓC ; Γ ` Σ1 : e3 'log Σ2 : e4 : σ2 where ΓC ; Γ `Mty σ2 σ2 (C.842)

The rule premise tells us that:

P ; ΓC ; Γ, aj , δk : Ck `Mtm e1 ⇐ τ1 e1 (C.843)

P ; ΓC ; Γ, x : ∀aj .Ck ⇒ τ1 `Mtm e2 ⇒ τ2 e2 (C.844)

P ; ΓC ; Γ, aj , δk : Ck `Mtm e1 ⇐ τ1 e′1 (C.845)

P ; ΓC ; Γ, x : ∀aj .Ck ⇒ τ1 `Mtm e2 ⇒ τ2 e′2 (C.846)

where closure(ΓC ;Ci) = Ck

From Lemma 73, together with Equations C.843, C.844, C.845 and C.846,
and through repeated case analysis on the results to discover the contents

COHERENCE THEOREMS 421

of the elaborated environments, we get that:
`Mctx P ; ΓC ; Γ, aj , δk : Ck Σ1; ΓC ; Γ, aj , δk : Ck

`Mctx P ; ΓC ; Γ, x : ∀aj .Ck ⇒ τ1 Σ1; ΓC ; Γ, x : ∀aj .Ck ⇒ σ

`Mctx P ; ΓC ; Γ, aj , δk : Ck Σ2; ΓC ; Γ, aj , δk : Ck

`Mctx P ; ΓC ; Γ, x : ∀aj .Ck ⇒ τ1 Σ2; ΓC ; Γ, x : ∀aj .Ck ⇒ σ

By applying the induction hypothesis to Equations C.844 and C.846, we
get:

ΓC ; Γ, x : ∀aj .Ck ⇒ σ ` Σ1 : e2 'log Σ2 : e′2 : σ2 (C.847)
Furthermore, applying Part 2 of this lemma to Equations C.843 and C.845
results in:

ΓC ; Γ, aj , δk : Ck ` Σ1 : e1 'log Σ2 : e′1 : σ (C.848)
Applying compatibility Lemma 126, together with Equation C.847, reduces
Goal C.842 to:

ΓC ; Γ ` Σ1 : Λaj .λδk : Ck .e1 'log Σ2 : Λaj .λδk : Ck .e
′
1 : ∀aj .Ck ⇒ σ

(C.849)
Combining compatibility Lemma 122 with Equation C.848 gives us:

ΓC ; Γ, aj ` Σ1 : λδk : Ck .e1 'log Σ2 : λδk : Ck .e
′
1 : Ck ⇒ σ (C.850)

Goal C.849 follows directly by applying Equation C.850 to compatibility
Lemma 124.
rule sTm-inf-ArrE P ; ΓC ; Γ `Mtm e1 e2 ⇒ τ2 e1 e2
Through case analysis, we see that the final step in the second derivation
can only be rule sTm-inf-ArrE. This means that:

P ; ΓC ; Γ `Mtm e1 e2 ⇒ τ2 e1 e2

P ; ΓC ; Γ `Mtm e1 e2 ⇒ τ2 e′1 e
′
2

The goal to be proven is the following:
ΓC ; Γ ` Σ1 : e1 e2 'log Σ2 : e′1 e′2 : σ2 where ΓC ; Γ `Mty τ2 σ2 (C.851)

The rule premise tells us that:
P ; ΓC ; Γ `Mtm e1 ⇒ τ1 → τ2 e1 (C.852)

P ; ΓC ; Γ `Mtm e2 ⇐ τ1 e2 (C.853)

P ; ΓC ; Γ `Mtm e1 ⇒ τ1 → τ2 e′1 (C.854)

P ; ΓC ; Γ `Mtm e2 ⇐ τ1 e′2 (C.855)

422 COHERENCE PROOFS

Applying the induction hypothesis on Equations C.852 and C.854 results
in:

ΓC ; Γ ` Σ1 : e1 'log Σ2 : e′1 : σ1 → σ2 where ΓC ; Γ `Mty τ1 → τ2 σ1 → σ2
(C.856)

By applying Part 2 of this lemma to Equations C.853 and C.855 we get:

ΓC ; Γ ` Σ1 : e2 'log Σ2 : e′2 : σ1 where ΓC ; Γ `Mty τ1 σ1 (C.857)

Goal C.851 follows by applying Equations C.856 and C.857 to compatibility
Lemma 121.
rule sTm-inf-Ann P ; ΓC ; Γ `Mtm e :: τ ⇒ τ e
Through case analysis we know that the final step in the second derivation
is rule sTm-inf-Ann. This means that:

P ; ΓC ; Γ `Mtm e :: τ ⇒ τ e

P ; ΓC ; Γ `Mtm e :: τ ⇒ τ e′

The goal to be proven is the following:

ΓC ; Γ ` Σ1 : e 'log Σ2 : e′ : σ where ΓC ; Γ `Mty τ σ (C.858)

From the rule premise we know:

P ; ΓC ; Γ `Mtm e⇐ τ e (C.859)

P ; ΓC ; Γ `Mtm e⇐ τ e′ (C.860)

The goal follows directly from Part 2 of this lemma, applied to
Equation C.859 and C.860.

Part 2
rule sTm-check-var P ; ΓC ; Γ `Mtm x⇐ [τ j/aj]τ xσj di
Through case analysis, we see that the final step in the second typing
derivation can either be rule sTm-check-var or rule sTm-check-Inf.
However, noting that no matching inference rules exist, we conclude that
the final derivation step has to be rule sTm-check-var. This means
that:

P ; ΓC ; Γ `Mtm x⇐ [τ j/aj]τ xσj di

P ; ΓC ; Γ `Mtm x⇐ [τ j/aj]τ xσ′j d
′
i

The goal to be proven is the following:

ΓC ; Γ ` Σ1 : xσj di 'log Σ2 : xσ′j d
′
i : σ′ where ΓC ; Γ `Mty [τ j/aj]τ σ′

(C.861)

COHERENCE THEOREMS 423

By inversion on Equation C.841, we know that σ′ = [σj/aj]σ.
The rule premise tells us that:

(x : ∀aj .Ci ⇒ τ) ∈ Γ (C.862)

P ; ΓC ; Γ �M [[τ j/aj]Ci] di
i

(C.863)

ΓC ; Γ `Mty τ j σj
j

(C.864)

P ; ΓC ; Γ �M [[τ j/aj]Ci] d′i
i

(C.865)

ΓC ; Γ `Mty τ j σ′j
j

(C.866)

Since type elaboration is completely deterministic (Lemma 69), we know
that σj = σ′j .
From Lemma 75, combined with the 3rd hypothesis and Equation C.862,
we know that:

(x : ∀aj .Ci ⇒ σ) ∈ Γ (C.867)

By applying Theorem 28 to the 3rd and 4th hypothesis, we get:

`ctx Σ1; ΓC ; Γ (C.868)

`ctx Σ2; ΓC ; Γ (C.869)

Applying Equations C.867, C.868 and C.869 to rule iTm-var, results in:

Σ1; ΓC ; Γ `tm x : ∀aj .Ci ⇒ σ (C.870)

Σ2; ΓC ; Γ `tm x : ∀aj .Ci ⇒ σ (C.871)

From Theorem 53, we know that:

ΓC ` Σ1 'log Σ2 (C.872)

From reflexivity Theorem 50, applied on Equations C.870, C.871 and C.872,
we know that:

ΓC ; Γ ` Σ1 : x 'log Σ2 : x : ∀aj .Ci ⇒ σ (C.873)

From repeated case analysis on the 3rd hypothesis (rule sCtx-pgmInst),
we get:

`Mctx •; ΓC ; Γ •; ΓC ; Γ (C.874)

424 COHERENCE PROOFS

By applying Theorem 25 to Equations C.864 and C.874, we know that:

ΓC ; Γ `ty σj
j (C.875)

Applying compatibility Lemma 125 j times to Equations C.873 and C.875
results in:

ΓC ; Γ ` Σ1 : xσj 'log Σ2 : xσj : [σj/aj]Ci ⇒ [σj/aj]σ (C.876)

Applying Theorem 55 to Equations C.863 and C.865 gives us:

ΓC ; Γ ` Σ1 : di 'log Σ2 : d′i : C ′i
i

(C.877)

where ΓC ; Γ `MC [τ j/aj]Ci C ′i
i

(C.878)

By inversion on Equation C.878, we know that C ′i = [σj/aj]Ci
i
.

Goal C.861 follows by repeatedly applying compatibility Lemma 123 to
Equation C.876, combined with Equation C.877.
rule sTm-check-meth P ; ΓC ; Γ `Mtm m⇐ [τ j/aj][τ/a]τ ′ d.mσj di
The proof is similar to the rule sTm-check-var case.
rule sTm-check-ArrI P ; ΓC ; Γ `Mtm λx.e⇐ τ1 → τ2 λx : σ1.e
Through case analysis, it is straightforward to note that the final step in the
second typing derivation can be either rule sTm-check-ArrI or rule sTm-
check-Inf. In the latter case however, no matching inference rules exist.
The rule sTm-check-ArrI case is the only remaining possibility. This
means that:

P ; ΓC ; Γ `Mtm λx.e⇐ τ1 → τ2 λx : σ1.e

P ; ΓC ; Γ `Mtm λx.e⇐ τ1 → τ2 λx : σ′1.e′

From the 3rd rule premise we know that:

ΓC ; Γ `Mty τ1 σ1

ΓC ; Γ `Mty τ1 σ′1

Since type elaboration is entirely deterministic (Lemma 69), it is
straightforward to note that σ1 = σ′1.
The goal to be proven is the following:

ΓC ; Γ ` Σ1 : λx : σ1.e 'log Σ2 : λx : σ1.e
′ : σ′ where ΓC ; Γ `Mty τ1 → τ2 σ′

(C.879)

COHERENCE THEOREMS 425

By inversion on Equation C.841, we know that σ′ = σ1 → σ2.
From the rule premise we know:

P ; ΓC ; Γ, x : τ1 `Mtm e⇐ τ2 e (C.880)

P ; ΓC ; Γ, x : τ1 `Mtm e⇐ τ2 e′ (C.881)

By applying Equation C.880 to Lemma 73, and through repeated
case analysis on the result to discover the contents of the elaborated
environments, we know that:

`Mctx P ; ΓC ; Γ, x : τ1 Σ1; ΓC ; Γ, x : σ1

Applying the induction hypothesis on Equations C.880 and C.881 results
in:

ΓC ; Γ, x : σ1 ` Σ1 : e 'log Σ2 : e′ : σ2 where ΓC ; Γ, x : τ1 `Mty τ2 σ2
(C.882)

Goal C.879 follows directly from compatibility Lemma 120.
rule sTm-check-Inf P ; ΓC ; Γ `Mtm e⇐ τ e
Through case analysis, we note that the final step in the second typing
derivation can either be rule sTm-check-var, rule sTm-check-meth,
rule sTm-check-ArrI or rule sTm-check-Inf. In the first 3 cases, the
proof is symmetrical to the corresponding proof cases described above.
We proceed with the last case:
The goal to be proven is the following:

ΓC ; Γ ` Σ1 : e 'log Σ2 : e′ : σ where ΓC ; Γ `Mty τ σ (C.883)

where we know that:

P ; ΓC ; Γ `Mtm e⇐ τ e (C.884)

P ; ΓC ; Γ `Mtm e⇐ τ e′ (C.885)

The rule premise tells us that:

P ; ΓC ; Γ `Mtm e⇒ τ e (C.886)

P ; ΓC ; Γ `Mtm e⇒ τ e′ (C.887)

The goal follows directly by applying Part 1 of this lemma to
Equations C.886 and C.887. Part 1 can be applied on e, even though the
term size did not decrease, because inference is defined to be smaller than
type checking in our proof by induction.

426 COHERENCE PROOFS

Theorem 59 (Coherence - Expressions - Part B).
If ΓC ; Γ ` Σ1 : e1 'log Σ2 : e2 : σ then ΓC ; Γ ` Σ1 : e1 'ctx Σ2 : e2 : σ.

Proof. By unfolding the definition of contextual equivalence, the goal becomes:

∀M1 : (Σ1; ΓC ; Γ⇒ σ) 7→ (Σ1; ΓC ; • ⇒ Bool)

∀M2 : (Σ2; ΓC ; Γ⇒ σ) 7→ (Σ2; ΓC ; • ⇒ Bool)

if Σ1 : M1 'log Σ2 : M2 : (ΓC ; Γ⇒ σ) 7→ (ΓC ; • ⇒ Bool) (C.888)

then Σ1 : M1[e1] ' Σ2 : M2[e2] (C.889)

We select any M1 and M2 such that Equation C.888 holds, and thus need to
prove Goal C.889.

From the congruence Theorem 45 and the 1st hypothesis, we know that:

ΓC ; • ` Σ1 : M1[e1] 'log Σ2 : M2[e2] : Bool

By applying the definition of logical equivalence, we get:

(Σ1 : γ1(φ1(R(M1[e1]))),Σ2 : γ2(φ2(R(M2[e2])))) ∈ EJBoolKΓC

R (C.890)

for any R ∈ FJ•KΓC , φ ∈ GJ•KΣ1,Σ2,ΓC

R and γ ∈ HJ•KΣ1,Σ2,ΓC

R .

However, from the definition of F , G and H, it follows that R = •, φ = • and
γ = •.

Equation C.890 thus simplifies to:

(Σ1 : M1[e1],Σ2 : M2[e2]) ∈ EJBoolKΓC
•

Unfolding the definition of the E relation, tells us that:

Σ1; ΓC ; • `tm M [e1] : Bool

Σ2; ΓC ; • `tm M [e2] : Bool

∃v1, v2 : Σ1 `M [e1] −→∗ v1

∧ Σ2 `M [e2] −→∗ v2

∧ (Σ1 : v1,Σ2 : v2) ∈ VJBoolKΓC
•

COHERENCE THEOREMS 427

From the definition of V , we know that either v1 = v2 = True or v1 = v2 = False.
The goal follows immediately.

Theorem 60 (Coherence - Expressions - Part C).
If ΓC ; Γ ` Σ1 : e1 'ctx Σ2 : e2 : σ
and Σ1; ΓC ; Γ `tm e1 : σ e1 and Σ2; ΓC ; Γ `tm e2 : σ e2
and ΓC ; Γ Γ
then ΓC ; Γ ` Σ1 : e1 'ctx Σ2 : e2 : σ.

Proof. By unfolding the definition of contextual equivalence, the goal becomes:

∀M1 : (Σ1; ΓC ; Γ⇒ σ) 7→ (Σ1; ΓC ; • ⇒ Bool) M1

∀M2 : (Σ2; ΓC ; Γ⇒ σ) 7→ (Σ2; ΓC ; • ⇒ Bool) M2

if Σ1 : M1 'log Σ2 : M2 : (ΓC ; Γ⇒ σ) 7→ (ΓC ; • ⇒ Bool) (C.891)

then M1[e1] 'M2[e2] (C.892)

We select any M1 and M2 such that Equation C.891 holds, and thus need to
prove Goal C.892.

By unfolding the definition of contextual equivalence in the 1st hypothesis, we
get that:

∀M1 : (Σ1; ΓC ; Γ⇒ σ) 7→ (Σ2; ΓC ; • ⇒ Bool) M1

∀M2 : (Σ2; ΓC ; Γ⇒ σ) 7→ (Σ2; ΓC ; • ⇒ Bool) M2

if Σ1 : M1 'log Σ2 : M2 : (ΓC ; Γ⇒ σ) 7→ (ΓC ; • ⇒ Bool) (C.893)

then Σ1 : M1[e1] ' Σ2 : M2[e2] (C.894)

By applying Theorem 46 to M1 and M2, together with the 2nd and 3rd

hypothesis, we get:

Σ1; ΓC ; • `tm M1[e1] : Bool M1[e1]

Σ2; ΓC ; • `tm M2[e2] : Bool M2[e2]

From the definition of kleene equivalence, Equation C.894 reduces to:

∃v : Σ1 `M1[e1] −→∗ v ∧ Σ2 `M2[e2] −→∗ v

428 COHERENCE PROOFS

Finally, Lemma 71 applied to these results, tells us that:

Σ1; ΓC ; • `tm v : Bool v1

Σ2; ΓC ; • `tm v : Bool v2

M1[e1] −→∗ v1

M2[e2] −→∗ v2

Goal C.892 follows from the definition of kleene equivalence since either v1 =
v2 = True or v1 = v2 = False.

C.7.4 Main Coherence Theorems

Theorem 61 (Coherence). If •; • `pgm pgm : τ ;P 1; ΓC1 e1 and •; • `pgm
pgm : τ ;P 2; ΓC2 e2
then ΓC1 = ΓC2, P 1 = P 2 and P 1; ΓC1; • ` e1 'ctx e2 : τ .

Proof. Since we know from rule sCtxT-empty that

`ctx •; •; • •

the goal follows directly from the Program Coherence Theorem (Theorem 63).

Theorem 62 (Coherence - Expressions).

• If P ; ΓC ; Γ `tm e⇒ τ e1 and P ; ΓC ; Γ `tm e⇒ τ e2
then P ; ΓC ; Γ ` e1 'ctx e2 : τ .

• If P ; ΓC ; Γ `tm e⇐ τ e1 and P ; ΓC ; Γ `tm e⇐ τ e2
then P ; ΓC ; Γ ` e1 'ctx e2 : τ .

Proof. By applying Lemma 72 to the 1st hypothesis, we know that:

`ctx P ; ΓC ; Γ Γ (C.895)

COHERENCE THEOREMS 429

Part 1 From environment equivalence (Theorem 39), we get that:

`Mctx P ; ΓC ; Γ Σ1; ΓC ; Γ (C.896)

`Mctx P ; ΓC ; Γ Σ2; ΓC ′; Γ′ (C.897)

ΓC ; Γ Γ (C.898)

Since class and typing environment elaboration is entirely deterministic
(Lemma 71), it is easy to see that ΓC ′ = ΓC and Γ′ = Γ.
We know from expression equivalence (Theorem 43) that:

P ; ΓC ; Γ `Mtm e⇐ τ e1 (C.899)

Σ1; ΓC ; Γ `tm e1 : σ1 e1 (C.900)

P ; ΓC ; Γ `Mtm e⇐ τ e2 (C.901)

Σ2; ΓC ; Γ `tm e2 : σ2 e2 (C.902)

where ΓC ; Γ `Mty τ σ1 (C.903)

and ΓC ; Γ `Mty τ σ2

Since type elaboration is entirely deterministic (Lemma 69), it is easy to
see that σ = σ1 = σ2.
By applying Expression Coherence Theorem A (Theorem 58) to
Equations C.896, C.897, C.899 and C.901, we get:

ΓC ; Γ ` Σ1 : e1 'log Σ2 : e2 : σ (C.904)

By applying Expression Coherence Theorem B (Theorem 59) to
Equation C.904, we get:

ΓC ; Γ ` Σ1 : e1 'ctx Σ2 : e2 : σ (C.905)

By applying Expression Coherence Theorem C (Theorem 60) to
Equations C.898, C.900, C.902 and C.905, we get:

ΓC ; Γ ` Σ1 : e1 'ctx Σ2 : e2 : σ (C.906)

The goal follows directly from Theorem 54, together with Equations C.906,
C.895, C.896, C.897 and C.903.

430 COHERENCE PROOFS

Part 2 Similar to Part 1.

Theorem 63 (Coherence - Programs).
If P ; ΓC `pgm pgm : τ ;P 1; ΓC1 e1,
P ; ΓC `pgm pgm : τ ;P 2; ΓC2 e2,
`ctx P ; ΓC ; • •,
then ΓC1 = ΓC2, P 1 = P 2
and P , P 1; ΓC ,ΓC1; • ` e1 'ctx e2 : τ .

Proof. By structural induction on pgm.
pgm = cls; pgm′

By case analysis on the program typing derivations (rule sPgmT-cls):

ΓC `cls cls : ΓC ′1 (C.907)

ΓC `cls cls : ΓC ′2 (C.908)

P ; ΓC ,ΓC ′1 `pgm pgm′ : τ ;P 1; ΓC ′′1 e1

P ; ΓC ,ΓC ′2 `pgm pgm′ : τ ;P 2; ΓC ′′2 e2

ΓC1 = ΓC ′1,ΓC ′′1

ΓC2 = ΓC ′2,ΓC ′′2

Since class typing is entirely deterministic, we know that ΓC ′1 = ΓC ′2. From
Theorem 23, in combination with Equations C.907 and C.908, we know that:

`ctx P ; ΓC ,ΓC ′1; • •

`ctx P ; ΓC ,ΓC ′2; • •

The goal follows from the induction hypothesis.
pgm = inst; pgm′

COHERENCE THEOREMS 431

By case analysis on the program typing derivations (rule sPgmT-inst):

P ; ΓC `inst inst : P 11 (C.909)

P ; ΓC `inst inst : P 21 (C.910)

P , P 11; ΓC `pgm pgm′ : τ ;P 12; ΓC1 e1 (C.911)

P , P 21; ΓC `pgm pgm′ : τ ;P 22; ΓC2 e2 (C.912)

P 1 = P 11, P 12

P 2 = P 21, P 22

The goal to be proven is the following:

ΓC1 = ΓC2 (C.913)

P 11, P 12 = P 21, P 22 (C.914)

P , P 11, P 12; ΓC ,ΓC1; • ` e1 'ctx e2 : τ (C.915)

By case analysis on Equations C.909 and C.910 (rule sInstT-inst), we know
that:

inst = instance Cp ⇒ TC τ where {m = e}

(m : C ′i ⇒ TC a : ∀aj .C
′
y ⇒ τ1) ∈ ΓC (C.916)

bk = fv(τ ′)

closure(ΓC ;Cp) = Cq 1

closure(ΓC ;Cp) = Cq 2

unambig(∀bk .Cq 1 ⇒ TC τ ′) (C.917)

unambig(∀bk .Cq 2 ⇒ TC τ ′)

P ; ΓC ; •, bk , δq 1 : Cq 1 � [[τ ′/a]C ′i] e1 i
i

P ; ΓC ; •, bk , δq 2 : Cq 2 � [[τ ′/a]C ′i] e2 i
i

D, δq 1, δq 2, δ
′
y fresh (C.918)

432 COHERENCE PROOFS

P ; ΓC ; •, bk , δq 1 : Cq 1, aj , δ
′
y : [τ ′/a]C ′y `tm e⇐ [τ ′/a]τ1 e′1 (C.919)

P ; ΓC ; •, bk , δq 2 : Cq 2, aj , δ
′
y : [τ ′/a]C ′y `tm e⇐ [τ ′/a]τ1 e′2 (C.920)

P 11 = (D : ∀bk .Cq 1 ⇒ TC τ ′).m 7→ •, bk , δq 1 : Cq 1, aj , δ
′
y : [τ ′/a]C ′y : e1

(C.921)

P 21 = (D : ∀bk .Cq 2 ⇒ TC τ ′).m 7→ •, bk , δq 2 : Cq 2, aj , δ
′
y : [τ ′/a]C ′y : e2

(C.922)

ΓC ; •, bk `ty τ ′ σ′ (C.923)

ΓC ; •, bk `C Cq 1 σq 1
q

(C.924)

ΓC ; •, bk `C Cq 2 σq 2
q

(C.925)

(D′ : ∀b′w.C
′
n ⇒ TC τ2).m′ 7→ Γ′ : e′ /∈ P where [τ ′w/b

′
w]τ2 = [τ ′k/bk]τ ′

(C.926)

Note that since instance typing is entirely deterministic, P 11 = P 21. Similarly,
since the closure over the superclass relation is deterministic, we know that
Cq 1 = Cq 2. Note that we assume that the fresh variables are identical in both
program typing derivations.

We can derive from rule sCtxT-pgmInst that

`ctx P , P 11; ΓC ; • • (C.927)

`ctx P , P 21; ΓC ; • • (C.928)

COHERENCE THEOREMS 433

assuming we can show that:

unambig(∀bk .Cq 1 ⇒ TC τ ′) (C.929)

ΓC ; • `C ∀bk .Cq 1 ⇒ TC τ ′ ∀bk .σq 1 → [σ′/a]{m : ∀aj .σ
′
y → σ1} (C.930)

(m : C ′i ⇒ TC a : ∀aj .C
′
y ⇒ τ1) ∈ ΓC (C.931)

ΓC ; •, a `ty ∀aj .C
′
y ⇒ τ1 ∀aj .σ

′
y → σ1 (C.932)

ΓC ; •, bk `ty τ ′ σ′ (C.933)

P ; ΓC ; •, bk , δq 1 : Cq 1, aj , δ
′
y : [τ ′/a]C ′y `tm e⇐ [τ ′/a]τ1 e′1 (C.934)

P ; ΓC ; •, bk , δq 2 : Cq 2, aj , δ
′
y : [τ ′/a]C ′y `tm e⇐ [τ ′/a]τ1 e′2 (C.935)

D /∈ dom(P) (C.936)

(D′ : ∀b′k .C
′′
y ⇒ TC τ ′′).m′ 7→ Γ′ : e′ /∈ P where [τk/bk]τ ′ = [τ ′k/b

′
k]τ ′′
(C.937)

`ctx P ; ΓC ; • • (C.938)

Goals C.929, C.931, C.933, C.934, C.935, C.936 and C.937 follow directly from
Equations C.917, C.916, C.923, C.919, C.920, C.918 and C.926 respectively.

Goal C.938 follows directly from the 3rd hypothesis. Goal C.932 follows by
applying case analysis on Equation C.938 (rule sCtxT-clsEnv), in combination
with Equation C.931. Goal C.930 follows from rule sCT-abs and rule sQT-TC,
in combination with Equations C.931, C.932, C.923 and C.924.

Finally, Goals C.913, C.914 and C.915 follow by applying the induction
hypothesis on Equations C.911 and C.912, in combination with Equations C.927
and C.928.
pgm = e

The goal follows directly from coherence Theorem 62.

434 COHERENCE PROOFS

C.8 FD-to-F{} Theorems

C.8.1 Lemmas

Determinism / Uniqueness

Lemma 132 (Dictionary Elaboration Uniqueness).
If ΓC ; Γ `C C σ1 and ΓC ; Γ `C C σ2, then σ1 = σ2.

Proof. By straightforward induction on the well-formedness derivation.

Lemma 133 (Type Elaboration Uniqueness).
If ΓC ; Γ `ty σ σ1 and ΓC ; Γ `ty σ σ2, then σ1 = σ2.

Proof. By straightforward induction on the well-formedness derivation.

Lemma 134 (Context Elaboration Uniqueness).
If ΓC ; Γ Γ1 and ΓC ; Γ Γ2 then Γ1 = Γ2.

Proof. By straightforward induction on the well-formedness derivation.

Lemma 135 (Determinism of Evaluation).
If e −→ e1 and e −→ e2 then e1 = e2.

Proof. By straightforward induction on both evaluation derivations.

Soundness

Lemma 136 (Constraint Elaboration Soundness).
If ΓC ; Γ `C C σ and ΓC ; Γ Γ then Γ `ty σ.

FD-TO-F{} THEOREMS 435

Proof. By straightforward induction on the dictionary typing derivation.

Lemma 137 (Type Elaboration Soundness).
If ΓC ; Γ `ty σ σ and ΓC ; Γ Γ then Γ `ty σ.

Proof. By straightforward induction on the type well-formedness derivation.

Lemma 138 (Term Variable Elaboration Soundness).
If `ctx Σ; ΓC ; Γ and (x : σ) ∈ Γ, then there are unique Γ and σ
such that ΓC ; Γ Γ and ΓC ; Γ `ty σ σ and (x : σ) ∈ Γ.

Proof. By straightforward induction on the environment well-formedness
derivation.

Lemma 139 (Dictionary Variable in Environment Elaboration Soundness).

If `ctx Σ; ΓC ; Γ and (δ : C) ∈ Γ, then there are unique Γ and σ
such that ΓC ; Γ Γ and `ctx Γ and ΓC ; Γ `C C σ and (δ : σ) ∈ Γ.

Proof. By straightforward induction on the environment well-formedness
derivation.

Lemma 140 (Environment Elaboration Soundness).
If `ctx Σ; ΓC ; Γ, then there is a unique Γ such that ΓC ; Γ Γ and `ctx Γ.

Proof. By straightforward induction on the environment well-formedness
derivation.

Canonical Forms Lemmas

436 COHERENCE PROOFS

Lemma 141 (Canonical Forms for Functions).
If Γ `tm v : σ1 → σ2 for some value v, then v is of the form λx : σ1.e, for
some x and e.

Proof. By straightforward induction on the typing derivation.

Lemma 142 (Canonical Forms for Type Abstractions).
If Γ `tm v : ∀a.σ for some value v, then v is of the form Λa.e, for some e.

Proof. By straightforward induction on the typing derivation.

Lemma 143 (Canonical Forms for Records).
If Γ `tm v : {m : σ} for some value v, then v is of the form {m = e}, for
some e.

Proof. By straightforward induction on the typing derivation.

Evaluation Lemmas

Lemma 144 (Distribution of tEval-App).
If • `tm e : σ1 → σ2 and • `tm e′ : σ1 → σ2 and • `tm e1 : σ1 and e −→∗ e′,
then e e1 −→∗ e′ e1.

Proof. The goal follows from Canonical Forms Lemma 141, together with the
well-known strong normalization of System F with records.

Lemma 145 (Distribution of tEval-Tapp).
If • `tm e : ∀a.σ′ and • `tm e′ : ∀a.σ′ and • `ty σ and e −→∗ e′, then
e σ −→∗ e′ σ.

Proof. The goal follows from Canonical Forms Lemma 142, together with the
well-known strong normalization of System F with records.

FD-TO-F{} THEOREMS 437

Lemma 146 (Distribution of tEval-Rec).
If • `tm e : {m : σ} and • `tm e′ : {m : σ} and e −→∗ e′, then e.m −→∗
e′.m.

Proof. The goal follows from Canonical Forms Lemma 143, together with the
well-known strong normalization of System F with records.

C.8.2 Soundness

Theorem 64 (Term Elaboration Soundness).
If Σ; ΓC ; Γ `tm e : σ e (C.939)

then, there are unique Γ and σ such that

ΓC ; Γ Γ (C.940)

and ΓC ; Γ `ty σ σ (C.941)

and Γ `tm e : σ (C.942)

Proof. This theorem is proved mutually with Theorem 65. The proof follows
structural induction on Hypothesis C.939 of the theorem.

Case rule iTm-true

iTm-true
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `tm True : Bool True
We need to show that there are unique Γ and σ such that ΓC ; Γ Γ and
ΓC ; Γ `ty Bool σ and Γ `tm True : σ.

Obviously, σ can only be equal to Bool. By Lemma 140 applied on the premise
of rule rule iTm-true, there is a unique Γ such that ΓC ; Γ Γ and `ctx Γ. We
use the latter result to instantiate rule rule tTm-True, which concludes with
Γ `tm True : Bool.

Case rule iTm-false

iTm-false
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `tm False : Bool False
Similar to case rule iTm-true.

438 COHERENCE PROOFS

Case rule iTm-var

iTm-var
(x : σ) ∈ Γ
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `tm x : σ x
By Lemma 140, there is a unique Γ such that

ΓC ; Γ Γ

and `ctx Γ (C.943)

With Lemma 138 applied on the two premises of rule rule iTm-var, we also
find a unique σ such that ΓC ; Γ `ty σ σ and (x : σ) ∈ Γ. Then, by rule
rule tTm-Var applied on the latter result and on Equation C.943, we reach
the goal.
Case rule iTm-let

iTm-let
Σ; ΓC ; Γ `tm e1 : σ1 e1

Σ; ΓC ; Γ, x : σ1 `tm e2 : σ2 e2
ΓC ; Γ `ty σ1 σ1

Σ; ΓC ; Γ `tm let x : σ1 = e1 in e2 : σ2 let x : σ1 = e1 in e2

The induction hypothesis for the first premise of rule rule iTm-let is

There are unique Γ, σ1, such

that ΓC ; Γ Γ (C.944)

and ΓC ; Γ `ty σ1 σ1 (C.945)

and Γ `tm e1 : σ1 (C.946)

The induction hypothesis for the second premise of rule rule iTm-let is

There are unique Γ′, σ2, such

that ΓC ; Γ, x : σ1 Γ′ (C.947)

and ΓC ; Γ, x : σ1 `ty σ2 σ2 (C.948)

and Γ′ `tm e2 : σ2 (C.949)

By inversion on Equation C.947, there are Γ0 and σ′1 such that

ΓC ; Γ Γ0 (C.950)

and ΓC ; Γ `ty σ1 σ′1 (C.951)

and Γ′ = Γ0, x : σ′1

FD-TO-F{} THEOREMS 439

By uniqueness (Lemma 134 on Equations C.944 and C.950 and Lemma 133 on
Equations C.945 and C.951), we get Γ0 = Γ and σ′1 = σ1. This refines Equation
C.949 into

Γ, x : σ1 `tm e2 : σ2 (C.952)

By applying Lemma 137 on Equations C.945 and C.944, we get

Γ `ty σ1 (C.953)

By applying rule rule tTm-Let on Equations C.946, C.952 and C.953, we get

Γ `tm let x : σ1 = e1 in e2 : σ2 (C.954)

It remains to show that ΓC ; Γ `ty σ2 σ2. This is easily derived from Equation
C.948, since the existence of variable x in the context does not affect the well-
formedness nor the translation of σ2.

Case rule iTm-method

iTm-method
Σ; ΓC ; Γ `d d : TC σ e

(m : TC a : σ′) ∈ ΓC
Σ; ΓC ; Γ `tm d.m : [σ/a]σ′ e.m

Applying Theorem 65 to the first premise of rule rule iTm-method results in

There are unique Γ and σ1 such

that ΓC ; Γ Γ (C.955)

and ΓC ; Γ `Q TC σ σ1 (C.956)

and Γ `tm e : σ1 (C.957)

By inversion on Equation C.956, we get

ΓC = ΓC1,m
′ : TC a′ : σm,ΓC2 (C.958)

ΓC ; Γ `ty σ σ (C.959)

ΓC1; •, a′ `ty σm σm (C.960)

for some m′, a′, σm , σ and σm . However, each dictionary TC corresponds to a
unique entry in the class environment ΓC . By this uniqueness, we get m′ = m,
a = a′, σm = σ′. Then, σ1 = [σ/a]{m : σm}, and Equations C.956 and C.957
become

ΓC ; Γ `Q TC σ [σ/a]{m : σm}

and Γ `tm e : [σ/a]{m : σm} (C.961)

440 COHERENCE PROOFS

Lemma 82 applied on Equations C.959 and C.960, results in

ΓC ; Γ `ty [σ/a]σ′ [σ/a]σm

and rule rule tTm-Proj instantiated with Equation C.961 gives Γ `tm e.m :
[σ/a]σm.

Case rule iTm-arrI

iTm-arrI
Σ; ΓC ; Γ, x : σ1 `tm e : σ2 e

ΓC ; Γ `ty σ1 σ1

Σ; ΓC ; Γ `tm λx : σ1.e : σ1 → σ2 λx : σ1.e
The induction hypothesis from the first premise of rule rule iTm-arrI is

There are unique Γ′ and σ1 such

that ΓC ; Γ, x : σ1 Γ′

and ΓC ; Γ, x : σ1 `ty σ2 σ2 (C.962)

and Γ′ `tm e : σ2 (C.963)

Similarly to the rule iTm-Let case, Γ′ is of the form Γ, x : σ1, where

ΓC ; Γ Γ (C.964)

and ΓC ; Γ `ty σ1 σ1 (C.965)

In addition, from Lemma 137 applied on Equation C.964 and the second premise
of rule rule iTm-arrI, we obtain Γ `ty σ1.

By instantiating the premises of rule rule tTm-Abs with the above result and
with Equation C.963, we get Γ `tm λx : σ1.e : σ1 → σ2, where ΓC ; Γ `ty σ2
σ2. The latter holds from Equation C.962, where x has been removed from the
context (it does not affect the well-formedness of type σ2). This, in combination
with Equation C.965 in rule rule iTy-Arr, gives ΓC ; Γ `ty σ1 → σ2 σ2 → σ2.

Case rule iTm-arrE

iTm-arrE
Σ; ΓC ; Γ `tm e1 : σ1 → σ2 e1

Σ; ΓC ; Γ `tm e2 : σ1 e2

Σ; ΓC ; Γ `tm e1 e2 : σ2 e1 e2
The induction hypothesis from the first premise of rule rule iTm-arrE is

There are unique Γ and σ such

that ΓC ; Γ Γ (C.966)

and ΓC ; Γ `ty σ1 → σ2 σ (C.967)

and Γ `tm e1 : σ (C.968)

FD-TO-F{} THEOREMS 441

By inversion on Equation C.967, σ can only be of the form σ1 → σ2 for the σ1
and σ2, uniquely determined by equations

ΓC ; Γ `ty σ1 σ1 (C.969)

and ΓC ; Γ `ty σ2 σ2

. The induction hypothesis from the second premise of rule rule iTm-arrE is

There are unique Γ′ and σ′1 such

that ΓC ; Γ Γ′ (C.970)

and ΓC ; Γ `ty σ1 σ′1 (C.971)

and Γ `tm e2 : σ′1 (C.972)

By uniqueness (Lemma 134) on Equations C.966 and C.970, it must hold that
Γ′ = Γ. Also, uniqueness (Lemma 133) on Equations C.969 and C.971, gives
σ′1 = σ1.

Combining Equations C.968 and C.972, (rewritten with the equalities holding
so far) in rule rule tTm-App, we get Γ `tm e1 e2 : σ2.

Case rule iTm-constrI

iTm-constrI
Σ; ΓC ; Γ, δ : C `tm e : σ e

ΓC ; Γ `C C σ

Σ; ΓC ; Γ `tm λδ : C.e : C ⇒ σ λδ : σ.e
The induction hypothesis from the first premise of rule rule iTm-constrI is

There are unique Γ′ and σ such

that ΓC ; Γ, δ : C Γ′

and ΓC ; Γ, δ : C `ty σ σ (C.973)

and Γ′ `tm e : σ (C.974)

Similarly to the rule iTm-Let case, Γ′ is of the form Γ, δ : σq, where

ΓC ; Γ Γ (C.975)

and ΓC ; Γ `C C σq (C.976)

In addition, from Lemma 136 applied on Equation C.975 and the second premise
of rule rule iTm-constrI, we obtain Γ `ty σ1.

By instantiating the premises of rule rule tTm-Abs with the above result and
with Equation C.974, we get Γ `tm λx : σq.e : σq → σ, where ΓC ; Γ `ty σ σ.

442 COHERENCE PROOFS

The latter holds from Equation C.973, where x has been removed from the
context (it does not affect the well-formedness of type σ2). This, in combination
with Equation C.976 in rule rule iTy-Qual, gives ΓC ; Γ `ty C ⇒ σ σq → σ.

Case rule iTm-constrE

iTm-constrE
Σ; ΓC ; Γ `tm e : C ⇒ σ e1

Σ; ΓC ; Γ `d d : C e2

Σ; ΓC ; Γ `tm e d : σ e1 e2
The induction hypothesis from the first premise of rule rule iTm-constrE is

There are unique Γ and σ′ such

that ΓC ; Γ Γ (C.977)

and ΓC ; Γ `ty C ⇒ σ σ′ (C.978)

and Γ `tm e1 : σ (C.979)

By inversion on Equation C.978, σ′ can only be of the form σq → σ for the σq
and σ, uniquely determined by equations

ΓC ; Γ `C C σq (C.980)

and ΓC ; Γ `ty σ σ

Theorem 65, applied to the second premise of rule rule iTm-constrE, is

There are unique Γ′ and σ0 such

that ΓC ; Γ Γ′ (C.981)

and ΓC ; Γ `C C σ0 (C.982)

and Γ′ `tm e2 : σ0 (C.983)

By uniqueness (Lemma 134) on Equations C.977 and C.981, it must hold that
Γ′ = Γ. Also, uniqueness (Lemma 132) on Equations C.980 and C.982, gives
σ0 = σq.

Combining Equations C.979 and C.983, (rewritten with the above-mentioned
equalities) in rule rule tTm-App, we get Γ `tm e1 e2 : σ.

Case rule iTm-forallI

iTm-forallI
Σ; ΓC ; Γ, a `tm e : σ e

Σ; ΓC ; Γ `tm Λa.e : ∀a.σ Λa.e
The induction hypothesis for the premise of rule rule iTm-forallI is the

FD-TO-F{} THEOREMS 443

following.

There are unique Γ′ and σ such

that ΓC ; Γ, a Γ′ (C.984)

and ΓC ; Γ, a `ty σ σ (C.985)

and Γ′ `tm e : σ (C.986)

By inversion on Equation C.984, Γ′ can only be of the form Γ, a, where Γ
uniquely determined by

ΓC ; Γ Γ

Then, Equation C.986 becomes

Γ, a `tm e : σ

Using this to instantiate rule rule tTm-Tabs, we get

Γ `tm Λa.e : ∀a.σ

where, by rule rule iTy-scheme on Equation C.985, it follows that ΓC ; Γ `ty
∀a.σ ∀a.σ.

Case rule iTm-forallE

iTm-forallE
Σ; ΓC ; Γ `tm e : ∀a.σ′ e

ΓC ; Γ `ty σ σ

Σ; ΓC ; Γ `tm e σ : [σ/a]σ′ e σ
The induction hypothesis from the first premise of rule rule iTm-forallE is as
follows.

There are unique Γ and σ0 such

that ΓC ; Γ Γ (C.987)

and ΓC ; Γ `ty ∀a.σ′ σ0 (C.988)

and Γ `tm e : σ0 (C.989)

By inversion on Equation C.988, σ0 can only be of the form ∀a.σ′, where σ′ is
uniquely determined by equation

ΓC ; Γ, a `ty σ′ σ′ (C.990)

Lemma 82, applied on the second premise of rule rule iTm-forallE and on
Equation C.990, results in ΓC ; Γ `ty [σ/a]σ′ [σ/a]σ′.

444 COHERENCE PROOFS

Also, Lemma 137 applied on the second premise of rule rule iTm-forallE and
on Equation C.987 results in Γ `ty σ. We use the latter, together with Equation
C.989, to instantiate rule rule tTm-Tapp, which concludes Γ `tm e : [σ/a]σ′.

Theorem 65 (Dictionary Elaboration Soundness).
If Σ; ΓC ; Γ `d d : C e (C.991)

then, there are unique Γ and σ such that

ΓC ; Γ Γ (C.992)

and ΓC ; Γ `C C σ (C.993)

and Γ `tm e : σ (C.994)

Proof. This theorem is proved mutually with Theorem 64. The proof follows
structural induction on the first hypothesis.

Case rule D-var

D-var
(δ : C) ∈ Γ
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `d δ : C δ
By Lemma 139, there exist Γ and σ such that ΓC ; Γ Γ and ΓC ; Γ `C C σ
and (δ : σ) ∈ Γ. This satisfies Equations C.992 and C.993 of the theorem.

By instantiating rule rule tTm-Var on (δ : σ) ∈ Γ, we get Γ `tm δ : σ, which
satisfies Equation C.994 of the theorem.

Case rule D-con

D-con
Σ = Σ1, (D : ∀aj .Ci ⇒ TC σq).m 7→ Λaj .λδi : Ci .e,Σ2

(m : TC a : σm) ∈ ΓC
`ctx Σ; ΓC ; Γ

ΓC ; •, aj `C Ci σ′i
i

Σ1; ΓC ; •, aj , δi : Ci `tm e : [σq/a]σm e

Σ; ΓC ; Γ `d D : ∀aj .Ci ⇒ TC σq Λaj .λ δi : σ′i
i
.{m = e}

We need to show that an Γ and σ exists such that

ΓC ; Γ Γ (C.995)

ΓC ; Γ `C ∀aj .Ci ⇒ TC σq σ (C.996)

Γ `tm Λaj .λ δi : σ′i
i
.{m = e} : σ (C.997)

FD-TO-F{} THEOREMS 445

Goal C.995 follows by applying Lemma 140 to the 2nd rule premise. Goal C.996
follows from the 1st rule premise, along with the well-formedness of the typing
context (rule iCtx-MEnv). By case analysis on this result (rule iC-forall,
rule iC-arrow and rule iC-classconstr) we know that

σ = ∀aj .σ
′
i → σ′

where ΓC ; Γ `Q TC σq σ′. Again applying case analysis on this last result
(rule iQ-TC) gives us

ΓC ; Γ `ty σq σq (C.998)

ΓC = ΓC1,m : TC a : σm,ΓC2 (C.999)

ΓC1; •, a `ty σm σm (C.1000)

σ′ = [σq/a]{m : σm} (C.1001)

From these results, Goal C.997 reduces to

Γ `tm Λaj .λ δi : σ′i
i
.{m = e} : ∀aj .σ

′
i → [σq/a]{m : σm}

By rule tTm-Tabs, rule tTm-Abs and rule tTm-Rec, this goal reduces to

Γ, aj , δi : σ′i
i
`tm e : [σq/a]σm (C.1002)

Theorem 64, applied to the 5th premise of rule rule D-con, is:

There are Γ′ and σ′′ such that

ΓC ; •, aj , δi : Ci Γ′

and ΓC ; •, aj , δi : Ci `ty [σq/a]σm σ′′ (C.1003)

and Γ′ `tm e : σ′′. (C.1004)

It is easy to verify that Γ′ = •, aj , δi : σ′i
i . From Lemma 97 on Equation C.1000,

we get the weakened equation

ΓC ; •, a `ty σm σm

where ΓC is specified in Equation C.999. Using this result together with
Equation C.998 in Lemma 82, we get ΓC ; •, aj `ty [σq/a]σm [σq/a]σm , which
we weaken as

ΓC ; •, aj , δi : Ci `ty [σq/a]σm [σq/a]σm

446 COHERENCE PROOFS

Then, by uniqueness on the latter and on Equation C.1003, we have σ′′ =
[σq/a]σm, and Equation C.1004 becomes

•, aj , δi : σ′i
i
`tm e : [σq/a]σm

Prefixing the typing environment of the above with Γ, Goal C.1002 is satisfied.

Case rule D-dabs

D-dabs
Σ; ΓC ; Γ, δ : C1 `d d : C2 e

ΓC ; Γ `C C1 σ1

Σ; ΓC ; Γ `d λδ : C1.d : C1 ⇒ C2 λδ : σ1.e
We need to show that an Γ and σ exists such that

ΓC ; Γ Γ (C.1005)

ΓC ; Γ `C C1 ⇒ C2 σ (C.1006)

Γ `tm λδ : σ1.e : σ (C.1007)

Applying the induction hypothesis to the 1st rule premise gives us

ΓC ; Γ, δ : C1 Γ′ (C.1008)

ΓC ; Γ, δ : C1 `C C2 σ2 (C.1009)

Γ′ `tm e : σ2 (C.1010)

Goal C.1005 follows by inversion on Equation C.1008 (rule Ctx-DVar) with
Γ′ = Γ′′, δ : σ′1. Furthermore, by the uniqueness of typing context and constraint
translation, we know that Γ′′ = Γ and σ′1 = σ1. Goal C.1006 follows by rule iC-
arrow, using Equation C.1009 (in combination with Lemma 106) and the 2nd

rule premise, where σ = σ1 → σ2. Finally, Goal C.1007 follows by rule tTm-
Abs using Equation C.1010.

Case rule D-dapp

D-dapp
Σ; ΓC ; Γ `d d1 : C1 ⇒ C2 e1

Σ; ΓC ; Γ `d d2 : C1 e2

Σ; ΓC ; Γ `d d1 d2 : C2 e1 e2
We need to show that an Γ and σ2 exists such that

ΓC ; Γ Γ (C.1011)

ΓC ; Γ `C C2 σ2 (C.1012)

Γ `tm e1 e2 : σ2 (C.1013)

FD-TO-F{} THEOREMS 447

Applying the induction hypothesis on both rule premises gives us

ΓC ; Γ Γ (C.1014)

ΓC ; Γ `C C1 ⇒ C2 σ′ (C.1015)

Γ `tm e1 : σ′ (C.1016)

ΓC ; Γ `C C1 σ1 (C.1017)

Γ `tm e2 : σ1 (C.1018)

Goal C.1011 thus follows directly by Equation C.1014. Goal C.1012 follows
by inversion on Equation C.1015 (rule iC-arrow). Furthermore, using the
uniqueness of constraint translation, we know that σ′ = σ1 → σ2. Finally,
Goal C.1013 follows using rule tTm-App, in combination with Equations C.1016
and C.1018.

Case rule D-tyabs

D-tyabs
Σ; ΓC ; Γ, a `d d : C e

Σ; ΓC ; Γ `d Λa.d : ∀a.C Λa.e
We need to show that an Γ and σ exists such that

ΓC ; Γ Γ (C.1019)

ΓC ; Γ `C ∀a.C σ (C.1020)

Γ `tm Λa.e : σ (C.1021)

Applying the induction hypothesis to the rule premise gives us

ΓC ; Γ, a Γ′ (C.1022)

ΓC ; Γ, a `C C σ′ (C.1023)

Γ′ `tm e : σ′ (C.1024)

Goal C.1019 follows by inversion on Equation C.1022 (rule Ctx-TVar) with
Γ′ = Γ′′, a. Furthermore, by the uniqueness of typing context translation,
we know that Γ′′ = Γ. Goal C.1020 follows by rule iC-forall, using
Equation C.1023, where σ = ∀a.σ′. Finally, Goal C.1021 follows by rule tTm-
Tabs using Equation C.1024.

Case rule D-tyapp

D-tyapp
Σ; ΓC ; Γ `d d : ∀a.C e

ΓC ; Γ `ty σ σ

Σ; ΓC ; Γ `d d σ : [σ/a]C e σ

448 COHERENCE PROOFS

We need to show that an Γ and σ1 exists such that

ΓC ; Γ Γ (C.1025)

ΓC ; Γ `C [σ/a]C σ1 (C.1026)

Γ `tm e σ : σ1 (C.1027)

Applying the induction hypothesis on the 1st rule premise.

ΓC ; Γ Γ (C.1028)

ΓC ; Γ `C ∀a.C σ2 (C.1029)

Γ `tm e : σ2 (C.1030)

Goal C.1025 thus follows directly by Equation C.1028. By inversion on
Equation C.1029 (rule iC-forall) we know that ΓC ; Γ, a `C C σ3 where
σ2 = ∀a.σ3. Goal C.1026 follows by applying Lemma 84 to this result, along
with the 2nd rule premise, where σ1 = [σ/a]σ3. Applying Lemma 137 to the
2nd rule premise gives us

Γ `ty σ
Finally, Goal C.1027 follows using rule tTm-TApp, in combination with this
result and Equation C.1030.

C.8.3 Determinism

Theorem 66 (Deterministic Dictionary Elaboration).
If Σ; ΓC ; Γ `d d : Q e1 and Σ; ΓC ; Γ `d d : Q e2, then e1 = e2.

Proof. This theorem is proved mutually with Theorem 67. The proof follows
structural induction on both hypotheses.

Case rule D-var

D-var
(δ : C) ∈ Γ
`ctx Σ; ΓC ; Γ

Σ; ΓC ; Γ `d δ : C δ
The first and second hypotheses of the theorem are:

Σ; ΓC ; Γ `d δ : Q δ1

and Σ; ΓC ; Γ `d δ : Q δ2

FD-TO-F{} THEOREMS 449

From the convention regarding namespace translations, explained in Sec-
tion A.7.2, it follows directly that δ1 = δ2 = δ.

Case rule D-con

D-con
Σ = Σ1, (D : ∀aj .Ci ⇒ TC σq).m 7→ Λaj .λδi : Ci .e,Σ2

(m : TC a : σm) ∈ ΓC
`ctx Σ; ΓC ; Γ

ΓC ; •, aj `C Ci σ′i
i

Σ1; ΓC ; •, aj , δi : Ci `tm e : [σq/a]σm e

Σ; ΓC ; Γ `d D : ∀aj .Ci ⇒ TC σq Λaj .λ δi : σ′i
i
.{m = e}

The hypotheses of the theorem are

Σ; ΓC ; Γ `d D : ∀aj .Ci ⇒ TC σq Λaj .λ δi : σ′i
i
.{m = e} (C.1031)

Σ; ΓC ; Γ `d D : ∀aj .Ci ⇒ TC σq Λaj .λ δ
′
i : σ′′i

i
.{m′ = e′} (C.1032)

The 5th premise of the two instantiations of rule rule D-con, are

Σ1; ΓC ; •, aj , δi : Ci `tm e : [σq/a]σm e (C.1033)

and Σ1; ΓC ; •, aj , δ
′
i : C ′i `tm e : [σq/a]σm e′ (C.1034)

and the 1st premise of the two rule D-con rules are

(D : ∀aj .Ci ⇒ TC σq).m 7→ Λaj .λδi : Ci .e ∈ Σ

(D : ∀aj .C
′
i ⇒ TC σq).m′ 7→ Λaj .λδ

′
i : C ′i .e ∈ Σ

However, a valid type class instance environment, like Σ in this case, contains a
unique entry for each constructor D. From the two above premises and this
uniqueness property, we have that

C
′
i = Ci and δ

′
i = δi , for all i

and m′ = m
(C.1035)

By applying these equations to Equations C.1033 and C.1034, their typing
environment becomes identical. We can, now, use Theorem 67 on these two
equations, from which we get e = e′. Also, from the namespace-translation
convention, we get m′ = m and δ′i = δi . From Equations C.1035 and the 4th

set of premises, we get

ΓC ; •, aj `C Ci σ′i
i

and ΓC ; •, aj `C Ci σ′′i
i

450 COHERENCE PROOFS

By passing the two above in Lemma 132, we get σ′′i = σ′i , for all i.

If we rewrite Equations C.1031 and C.1032 with the equations obtained so far,
we have

Σ; ΓC ; Γ `d D : ∀aj .Ci ⇒ TC σq Λaj .λ δi : σ′i
i
.{m = e}

and Σ; ΓC ; Γ `d D : ∀aj .Ci ⇒ TC σq Λaj .λ δi : σ′i
i
.{m = e}

The goal thus follows directly from this result.

Case rule D-dabs

D-dabs
Σ; ΓC ; Γ, δ : C1 `d d : C2 e

ΓC ; Γ `C C1 σ1

Σ; ΓC ; Γ `d λδ : C1.d : C1 ⇒ C2 λδ : σ1.e
The hypotheses of the theorem are

Σ; ΓC ; Γ `d λδ : C1.d : C1 ⇒ C2 λδ : σ1.e (C.1036)

Σ; ΓC ; Γ `d λδ : C1.d : C1 ⇒ C2 λδ : σ′1.e′ (C.1037)

The 1st premise of the two instantiations of rule rule D-dabs, are

Σ; ΓC ; Γ, δ : C1 `d d : C2 e (C.1038)

and Σ; ΓC ; Γ, δ : C1 `d d : C2 e′ (C.1039)

Applying the induction hypothesis to Equations C.1038 and C.1039 teaches us
that

e = e′

By passing the 2nd set of premises in Lemma 132, we get σ1 = σ′1. The goal
follows from the equations obtained so far.

Case rule D-dapp

D-dapp
Σ; ΓC ; Γ `d d1 : C1 ⇒ C2 e1

Σ; ΓC ; Γ `d d2 : C1 e2

Σ; ΓC ; Γ `d d1 d2 : C2 e1 e2
The hypotheses of the theorem are

Σ; ΓC ; Γ `d d1 d2 : C2 e1 e2 (C.1040)

Σ; ΓC ; Γ `d d1 d2 : C2 e′1 e
′
2 (C.1041)

FD-TO-F{} THEOREMS 451

By case analysis on these equations (rule D-dapp) we get

Σ; ΓC ; Γ `d d1 : C1 ⇒ C2 e1 (C.1042)

Σ; ΓC ; Γ `d d1 : C1 ⇒ C2 e′1 (C.1043)

Σ; ΓC ; Γ `d d2 : C1 e2 (C.1044)

Σ; ΓC ; Γ `d d2 : C1 e′2 (C.1045)

Applying the induction hypothesis to both sets of equations teaches us that

e1 = e′1 and e2 = e′2

The goal follows directly from this result.

Case rule D-tyabs

D-tyabs
Σ; ΓC ; Γ, a `d d : C e

Σ; ΓC ; Γ `d Λa.d : ∀a.C Λa.e
The hypotheses of the theorem are

Σ; ΓC ; Γ `d Λa.d : ∀a.C Λa.e (C.1046)

Σ; ΓC ; Γ `d Λa.d : ∀a.C Λa.e′ (C.1047)

By case analysis on these equations (rule D-tabs) we get

Σ; ΓC ; Γ, a `d d : C e (C.1048)

Σ; ΓC ; Γ, a `d d : C e′ (C.1049)

Applying the induction hypothesis on these equations teaches us that

e = e′

The goal follows directly from this result.

Case rule D-tyapp

D-tyapp
Σ; ΓC ; Γ `d d : ∀a.C e

ΓC ; Γ `ty σ σ

Σ; ΓC ; Γ `d d σ : [σ/a]C e σ
The hypotheses of the theorem are

Σ; ΓC ; Γ `d d σ : [σ/a]C e σ (C.1050)

Σ; ΓC ; Γ `d d σ : [σ/a]C e′ σ′ (C.1051)

The 1st premise of the two instantiations of rule rule D-dabs, are

Σ; ΓC ; Γ `d d : ∀a.C e (C.1052)

and Σ; ΓC ; Γ `d d : ∀a.C e′ (C.1053)

452 COHERENCE PROOFS

Applying the induction hypothesis to Equations C.1052 and C.1053 teaches us
that

e = e′

By passing the 2nd set of premises in Lemma 133, we get σ = σ′. The goal
follows from the equations obtained so far.

Theorem 67 (Deterministic Term Elaboration).
If Σ; ΓC ; Γ `tm e : σ e1 and Σ; ΓC ; Γ `tm e : σ e2, then e1 = e2.

Proof. This theorem is proved mutually with Theorem 66. The proof follows
structural induction on both hypotheses.

Case rule iTm-true
The two hypotheses of the theorem are:

Σ; ΓC ; Γ `tm True : Bool e1

and Σ; ΓC ; Γ `tm True : Bool e2

From rule rule iTm-true, it must hold that e1 = e2 = True.
Case rule iTm-false
The two hypotheses of the theorem are:

Σ; ΓC ; Γ `tm False : Bool e1

and Σ; ΓC ; Γ `tm False : Bool e2

From rule rule iTm-false, it must hold that e1 = e2 = False.
Case rule iTm-var
The two hypotheses of the theorem are:

Σ; ΓC ; Γ `tm x : σ x1

and Σ; ΓC ; Γ `tm x : σ x2

From rule rule iTm-var, it must hold that x1 = x2 = x, where x is a target-
term-variable with the same identifier as x.
Case rule iTm-let
The two hypotheses of the theorem are:

Σ; ΓC ; Γ `tm let x : σ1 = e1 in e2 : σ2 let x0 : σ1 = e1 in e2
(C.1054)

and Σ; ΓC ; Γ `tm let x : σ1 = e1 in e2 : σ2 let x′0 : σ′1 = e′1 in e′2
(C.1055)

FD-TO-F{} THEOREMS 453

From our convention regarding translation of identifiers, we have

x0 = x′0 = x (C.1056)

where x is a target-term variable with the same identifier as x.

The first premise of the two rule iTm-let instantiations above, are

Σ; ΓC ; Γ `tm e1 : σ1 e1

and Σ; ΓC ; Γ `tm e1 : σ1 e′1

By induction hypothesis, we get

e1 = e′1 (C.1057)

The 3rd premise of the two instantiations in Equations C.1054 and C.1055 of
rule iTm-let are:

ΓC ; Γ `ty σ1 σ1

and ΓC ; Γ `ty σ1 σ′1

By uniqueness (Lemma 133), we get

σ1 = σ′1 (C.1058)

The 2nd premise of the two instantiations in Equations C.1054 and C.1055 of
rule iTm-let are:

Σ; ΓC ; Γ, x : σ1 `tm e2 : σ2 e2

and Σ; ΓC ; Γ, x : σ1 `tm e2 : σ2 e′2

By induction hypothesis, we get

e2 = e′2 (C.1059)

From Equations C.1056, C.1057, C.1058 and C.1059, we obtain

let x0 : σ1 = e1 in e2 = let x′0 : σ′1 = e′1 in e′2

Case rule iTm-method
The two hypotheses of the theorem are:

Σ; ΓC ; Γ `tm d.m : [σq/a]σm e.m0 (C.1060)

and Σ; ΓC ; Γ `tm d.m : [σq/a]σm e′.m′0 (C.1061)

454 COHERENCE PROOFS

By our convention for dictionary labels, we have

m0 = m′0 = m

where m is a record field with the same identifier as class method m.

The first premise of the two rule iTm-method instantiations in Equations
C.1060 and C.1061 are:

Σ; ΓC ; Γ `d d : TC σq e

and Σ; ΓC ; Γ `d d : TC σq e′

By Theorem 66, we have
e = e′

Then, e.m0 = e′.m′0.
Case rule iTm-arrI
The two hypotheses of the theorem are:

Σ; ΓC ; Γ `tm λx : σ1.e : σ1 → σ2 λx0 : σ1.e (C.1062)

and Σ; ΓC ; Γ `tm λx : σ1.e : σ1 → σ2 λx′0 : σ′1.e′ (C.1063)

From our identifiers’ translation, it is implied that

x0 = x′0 = x (C.1064)

where x is the target-term variable with the same identifier as x.

The 2nd premise of the two rule iTm-arrI instantiations above are:

ΓC ; Γ `ty σ1 σ1

and ΓC ; Γ `ty σ1 σ′1

By uniqueness (Lemma 133), we have

σ1 = σ′1 (C.1065)

The first premise of the two rule iTm-arrI instantiations in Equations C.1062
and C.1063 are:

Σ; ΓC ; Γ, x : σ1 `tm e : σ2 e

and Σ; ΓC ; Γ, x : σ1 `tm e : σ2 e′

FD-TO-F{} THEOREMS 455

By the induction hypothesis, we get

e = e′ (C.1066)

From Equations C.1064, C.1065 and C.1066, we obtain

λx0 : σ1.e = λx′0 : σ′1.e′

Case rule iTm-arrE
The two hypotheses of the theorem are:

Σ; ΓC ; Γ `tm e1 e2 : σ2 e1 e2 (C.1067)

and Σ; ΓC ; Γ `tm e1 e2 : σ2 e′1 e
′
2 (C.1068)

The first premise of the above two instantiated rule iTm-arrE rules are:

Σ; ΓC ; Γ `tm e1 : σ1 → σ2 e1

and Σ; ΓC ; Γ `tm e1 : σ1 → σ2 e′1

By induction hypothesis, we have

e1 = e′1 (C.1069)

Similarly, from the second premise of the two rule iTm-arrE rules, and the
induction hypothesis, we get

e2 = e′2 (C.1070)

Then, we obtain
e1 e2 = e′1 e

′
2

by Equations C.1069 and C.1070.
Case rule iTm-constrI
The two hypotheses of the theorem are:

Σ; ΓC ; Γ `tm λδ : C.e : C ⇒ σ λδ0 : σ.e (C.1071)

and Σ; ΓC ; Γ `tm λδ : C.e : C ⇒ σ λδ′0 : σ′.e′ (C.1072)

From our identifiers’ translation, it is implied that

δ0 = δ′0 = δ (C.1073)

where δ is the target-term variable with the same identifier as the dictionary
variable δ.

456 COHERENCE PROOFS

The 2nd premise of the two rule iTm-constrI instantiations above are:

ΓC ; Γ `C C σ

and ΓC ; Γ `C C σ′

By uniqueness (Lemma 132), we have

σ = σ′ (C.1074)

The first premise of the two rule iTm-constrI instantiations in Equations
C.1071 and C.1072 are:

Σ; ΓC ; Γ, δ : C `tm e : σ e

and Σ; ΓC ; Γ, δ : C `tm e : σ e′

By the induction hypothesis, we get

e = e′ (C.1075)

From Equations C.1073, C.1074 and C.1075, we obtain

λδ0 : σ.e = λδ′0 : σ′.e′

Case rule iTm-constrE
The two hypotheses of the theorem are:

Σ; ΓC ; Γ `tm e d : σ e1 e2 (C.1076)

and Σ; ΓC ; Γ `tm e d : σ e′1 e
′
2 (C.1077)

The first premise of the above two instantiated rule iTm-constrE rules are:

Σ; ΓC ; Γ `tm e : C ⇒ σ e1

and Σ; ΓC ; Γ `tm e : C ⇒ σ e′1

By induction hypothesis, we have

e1 = e′1 (C.1078)

Similarly, from the second premise of the two rule iTm-constrE rules, and the
induction hypothesis, we get

e2 = e′2 (C.1079)
Then, we obtain

e1 e2 = e′1 e
′
2

FD-TO-F{} THEOREMS 457

by Equations C.1078 and C.1079.
Case rule iTm-forallI
The two hypotheses of the theorem are:

Σ; ΓC ; Γ `tm Λa.e : ∀a.σ Λa0.e

and Σ; ΓC ; Γ `tm Λa.e : ∀a.σ Λa′0.e′

It is implied by our identifiers’ translation convention, that

a0 = a′0 = a (C.1080)

where a is the target-type variable with the same identifier as the a.

The premise of the two rule iTm-forallI instantiations above are:

Σ; ΓC ; Γ, a `tm e : σ e

and Σ; ΓC ; Γ, a `tm e : σ e′

By the induction hypothesis, we have

e = e′ (C.1081)

Equations C.1080 and C.1081 result in

Λa0.e = Λa′0.e′

Case rule iTm-forallE
The two hypotheses of the theorem are:

Σ; ΓC ; Γ `tm e σ : [σ/a]σ′ e σ (C.1082)

and Σ; ΓC ; Γ `tm e σ : [σ/a]σ′ e′ σ′ (C.1083)

The first premise of the above two instantiations of rule rule iTm-forallE are:

Σ; ΓC ; Γ `tm e : ∀a.σ′ e

and Σ; ΓC ; Γ `tm e : ∀a.σ′ e′

From the induction hypothesis, we get

e = e′ (C.1084)

The second premise of the two instantiations of rule rule iTm-forallE in
Equations C.1082 and C.1083 are:

ΓC ; Γ `ty σ σ and ΓC ; Γ `ty σ σ′

458 COHERENCE PROOFS

Applying Lemma 133 on these equations gives

σ = σ′ (C.1085)

From Equations C.1084 and C.1085 we have

e σ = e′ σ′

Theorem 68 (Deterministic Context Elaboration).
If M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ′) M1
and M : (Σ; ΓC ; Γ⇒ σ) 7→ (Σ; ΓC ; Γ′ ⇒ σ′) M2, then M1 = M2.

Proof. This proof proceeds by straightforward structural induction on both
hypotheses, in combination with Lemmas 132 and 133 and Theorems 66 and 67.

C.8.4 Semantic Preservation

Theorem 69 (Dictionary Semantic Preservation).
If d −→ d′

and Σ; ΓC ; • `d d : C e (C.1086)

and Σ; ΓC ; • `d d′ : C e′ (C.1087)

for some C, e and e′,

then, there is an ey such that

e −→∗ ey and e′ −→∗ ey.

Proof. This proof proceeds by induction on the first hypothesis.

FD-TO-F{} THEOREMS 459

Case rule iDictEval-app

iDictEval-app
d1 −→ d′1

d1 d2 −→ d′1 d2
By inversion on Hypotheses C.1086 and C.1087 (rule D-dapp), we get

Σ; ΓC ; • `d d1 d2 : C2 e1 e2

Σ; ΓC ; • `d d′1 d2 : C2 e′1 e2

Σ; ΓC ; • `d d1 : C1 ⇒ C2 e1 (C.1088)

Σ; ΓC ; • `d d′1 : C1 ⇒ C2 e′1 (C.1089)

Σ; ΓC ; • `d d2 : C1 e2

for some C1, C2, e1, e′1 and e2. Applying the induction hypothesis to
Equations C.1088 and C.1089, together with the premise of rule iDictEval-app,
gives us

e1 −→∗ ek

e′1 −→∗ ek

for some ek . By Lemma 144, in combination with Theorem 65, we have that

e1 e2 −→∗ ek e2

e′1 e2 −→∗ ek e2

The goal thus follows from this result, by taking ey = ek e2.

Case rule iDictEval-appAbs

iDictEval-appAbs

(λδ : C.d1) d2 −→ [d2/δ]d1
By repeated inversion on Hypotheses C.1086 and C.1087 (rule D-dapp and
rule D-dabs), we get

Σ; ΓC ; • `d (λδ : C1.d1) d2 : C2 (λδ : σ1.e1) e2

Σ; ΓC ; • `d [d2/δ]d1 : C2 e′ (C.1090)

Σ; ΓC ; • `d λδ : C1.d1 : C1 ⇒ C2 λδ : σ1.e1

Σ; ΓC ; • `d d2 : C1 e2 (C.1091)

Σ; ΓC ; •, δ : C1 `d d1 : C2 e1 (C.1092)

ΓC ; • `C C1 σ1

460 COHERENCE PROOFS

for some C2, σ1, e1 and e2. We thus need to show that there exists and ey such
that

(λδ : σ1.e1) e2 −→∗ ey (C.1093)

e′ −→∗ ey (C.1094)

Applying Lemma 91 to Equations C.1091 and C.1092 gives us

Σ; ΓC ; • `d [d2/δ]d1 : C2 [e2/δ]e1

By applying Theorem 66 to this result, in combination with Equation C.1090,
we know that e′ = [e2/δ]e1.

We thus take ey = [e2/δ]e1. Goal C.1093 follows by rule tEval-AppAbs, and
Goal C.1094 follows directly by rule tReduce-stop.

Case rule iDictEval-tyApp

iDictEval-tyApp
d −→ d′

d σ −→ d′ σ
By inversion on Hypotheses C.1086 and C.1087 (rule D-tyapp), we get

Σ; ΓC ; • `d d σ : [σ/a]C e σ

Σ; ΓC ; • `d d′ σ : [σ/a]C e′ σ

Σ; ΓC ; • `d d : ∀a.C e (C.1095)

Σ; ΓC ; • `d d′ : ∀a.C e′ (C.1096)

ΓC ; • `ty σ σ

for some C, e, and σ. Applying the induction hypothesis to Equations C.1095
and C.1096, together with the premise of rule iDictEval-tyapp, gives us

e −→∗ ek

e′ −→∗ ek

for some ek . By Lemma 145, in combination with Theorem 65, we have that

e σ −→∗ ek σ

e′ σ −→∗ ek σ

The goal thus follows from this result, by taking ey = ek σ.

FD-TO-F{} THEOREMS 461

Case rule iDictEval-tyAppAbs

iDictEval-tyAppAbs

(Λa.d)σ −→ [σ/a]d
By repeated inversion on Hypotheses C.1086 and C.1087 (rule D-tyapp and
rule D-tyabs), we get

Σ; ΓC ; • `d (Λa.d)σ : [σ/a]C (Λa.e)σ

Σ; ΓC ; • `d [σ/a]d : [σ/a]C e′ (C.1097)

Σ; ΓC ; • `d Λa.d : ∀a.C Λa.e

ΓC ; • `ty σ σ

Σ; ΓC ; •, a `d d : C e (C.1098)

ΓC ; • `ty σ σ (C.1099)

for some C, e and σ. We thus need to show that there exists and ey such that

(Λa.e)σ −→∗ ey (C.1100)

e′ −→∗ ey (C.1101)

Applying Lemma 93 to Equations C.1098 and C.1099 gives us

Σ; ΓC ; • `d [σ/a]d : [σ/a]C [σ/a]e

By applying Theorem 66 to this result, in combination with Equation C.1097,
we know that e′ = [σ/a]e.

We thus take ey = [σ/a]e. Goal C.1100 follows by rule tEval-TappTabs , and
Goal C.1101 follows directly by rule tReduce-stop.

Theorem 70 (Semantic Preservation).
If Σ ` e −→ e′

and Σ; ΓC ; • `tm e : σ e (C.1102)

and Σ; ΓC ; • `tm e′ : σ e′ (C.1103)

for some σ, e and e′,

then, there is an ey such that

e −→∗ ey and e′ −→∗ ey.

462 COHERENCE PROOFS

Proof. This proof proceeds by induction on the first hypothesis.

Case rule iEval-app

iEval-app
Σ ` e1 −→ e′1

Σ ` e1 e2 −→ e′1 e2
Hypotheses C.1102 and C.1103 of the theorem, adapted to this case, are:

Σ; ΓC ; • `tm e1 e2 : σ2 e1 e2

and Σ; ΓC ; • `tm e′1 e2 : σ2 e′1 e2

for some σ2, e1, e′1 and e2.

The last rule of these derivations must be instances of rule iTm-arrE. For
Hypothesis C.1102, we have:

rule iTm-arrE
Σ; ΓC ; • `tm e1 : σ1 → σ2 e1

Σ; ΓC ; • `tm e2 : σ1 e2

Σ; ΓC ; • `tm e1 e2 : σ2 e1 e2 (C.1104)

and for Hypothesis C.1103, we have:

rule iTm-arrE
Σ; ΓC ; • `tm e′1 : σ′1 → σ2 e′1

Σ; ΓC ; • `tm e2 : σ′1 e2

Σ; ΓC ; • `tm e′1 e2 : σ2 e′1 e2 (C.1105)

From the second premise of the two above rules and by uniqueness (Lemma 133),
we get σ1 = σ′1.

The induction hypothesis is:

If Σ; ΓC ; • `tm e1 : σy ep

and Σ; ΓC ; • `tm e′1 : σy eq

for some σy, ep and eq,

then, there is an e′ such that

ep −→∗ e′ and eq −→ e′

Then, an appropriate choice for ey is e′ e2, since from Lemma 144 (in
combination with Theorem 64), we have e1 e2 −→∗ e′ e2 and e′1 e2 −→∗ e′ e2.

Case rule iEval-appAbs

iEval-appAbs

Σ ` (λx : σ.e1) e2 −→ [e2/x]e1

FD-TO-F{} THEOREMS 463

Hypotheses C.1102 and C.1103 of the theorem, adapted to this case, are:

Σ; ΓC ; • `tm (λx : σ.e1) e2 : σ′ e0 (C.1106)

and Σ; ΓC ; • `tm [e2/x]e1 : σ′ e′0 (C.1107)

for some σ′, e0 and e′0. We need to show that there exists an ey such that
e0 −→∗ ey and e′0 −→∗ ey. We do this by showing that e0 −→∗ e′0.

By inversion, the last part of Derivation C.1106 must be an instance of rule iTm-
arrI directly followed by rule iTm-arrE, as shown below.

rule iTm-arrE
rule iTm-arrI

Σ; ΓC ; •, x : σ `tm e1 : σ′ e1
ΓC ; • `ty σ σ

Σ; ΓC ; • `tm λx : σ.e1 : σ → σ′ λx : σ.e1
Σ; ΓC ; • `tm e2 : σ e2

Σ; ΓC ; • `tm (λx : σ.e1) e2 : σ′ (λx : σ.e1) e2

where e0 = (λx : σ.e1) e2. From the above equation, we can use premises

Σ; ΓC ; •, x : σ `tm e1 : σ′ e1

and Σ; ΓC ; • `tm e2 : σ e2

in Lemma 85, to obtain

Σ; ΓC ; • `tm [e2/x]e1 : σ′ [e1/x]e2

Then, by uniqueness (Theorem 67 on the latter and on Equation C.1107), we
have e′0 = [e1/x]e2.

We set ey = [e1/x]e2, since (λx : σ.e1) e2 −→∗ [e1/x]e2, by evaluation rule
rule tEval-AppAbs, and [e1/x]e2 −→∗ [e1/x]e2, by reflexivity of −→∗.

Case rule iEval-tyApp

iEval-tyApp
Σ ` e −→ e′

Σ ` e σ −→ e′ σ
Hypotheses C.1102 and C.1103 of the theorem, adapted to this case, are:

Σ; ΓC ; • `tm e σ : [σ/a]σp e σ

and Σ; ΓC ; • `tm e′ σ : [σ/a′]σq e′ σ

for some a, a′, σp, σq, e, e′ and σ.

464 COHERENCE PROOFS

The last rule of both derivations above must be instances of rule iTm-forallE.
For the first, we have:

rule iTm-forallE
Σ; ΓC ; • `tm e : ∀a.σp e

ΓC ; • `ty σ σ

Σ; ΓC ; • `tm e σ : [σ/a]σp e σ (C.1108)

and for the second:
rule iTm-forallE

Σ; ΓC ; • `tm e′ : ∀a′.σq e′

ΓC ; • `ty σ σ

Σ; ΓC ; • `tm e σ : [σ/a′]σq e′ σ (C.1109)

By applying Theorem 30 on the first premise of Equation C.1108 and on the
premise of rule rule iEval-tyApp, we have that ∀a.σp = ∀a′.σq.

The induction hypothesis is:

If Σ; ΓC ; • `tm e1 : σy ep

and Σ; ΓC ; • `tm e′1 : σy eq

for some σy, ep and eq,

then, there is an e′y such that

ep −→∗ e′y and eq −→ e′y

For σy = ∀a.σp, ep = e and eq = e′, the two conditions are fulfilled by the first
premise of Equations C.1108 and C.1109.

We choose ey = e′y σ, because from Lemma 145, we have e σ −→∗ e′y σ and
e′ σ −→∗ e′y σ.

Case rule iEval-tyAppAbs

iEval-tyAppAbs

Σ ` (Λa.e)σ −→ [σ/a]e
Hypotheses C.1102 and C.1103 of the theorem, adapted to this case, are:

Σ; ΓC ; • `tm (Λa.e)σ : σ0 e0 (C.1110)

and Σ; ΓC ; • `tm [σ/a]e : σ0 e′0 (C.1111)

for some σ0, e0 and e′0. We need to show that there exists an ey such that
e0 −→∗ ey and e′0 −→∗ ey. We do this by showing that e0 −→∗ e′0.

FD-TO-F{} THEOREMS 465

By inversion, the last part of Derivation C.1110 must be an instance of rule iTm-
forallI directly followed by rule iTm-forallE, as shown below.

rule iTm-forallE
rule iTm-forallI

Σ; ΓC ; •, a `tm e : σ′ e

Σ; ΓC ; • `tm Λa.e : ∀a.σ′ Λa.e
ΓC ; • `ty σ σ

Σ; ΓC ; • `tm (Λa.e)σ : [σ/a]σ′ (Λa.e)σ

where σ0 = [σ/a]σ′ and e0 = (Λa.e)σ. From the above equation, we can use
premises

Σ; ΓC ; •, a `tm e : σ′ e

and ΓC ; • `ty σ σ

in Lemma 89, to obtain

Σ; ΓC ; • `tm [σ/a]e : [σ/a]σ′ [σ/a]e

Then, by uniqueness (Theorem 67 on the latter and on Equation C.1111), we
have e′0 = [σ/a]e.

We set ey = [σ/a]e, since (Λa.e)σ −→∗ [σ/a]e, by evaluation rule rule tEval-
TAppAbs, and [σ/a]e −→∗ [σ/a]e, by reflexivity of −→∗.

Case rule iEval-DApp

iEval-DApp
Σ ` e −→ e′

Σ ` e d −→ e′ d
Hypotheses C.1102 and C.1103 of the theorem, adapted to this case, are:

Σ; ΓC ; • `tm e d : σ e1 e2

and Σ; ΓC ; • `tm e′ d : σ e′1 e2

for some e1, e′1 and e2.

The last rule of these derivations must be instances of rule iTm-constrE. For
Hypothesis C.1102, we have:

rule iTm-constrE
Σ; ΓC ; • `tm e : C ⇒ σ e1

Σ; ΓC ; • `d d : C e2

Σ; ΓC ; • `tm e d : σ e1 e2 (C.1112)

466 COHERENCE PROOFS

and for Hypothesis C.1103, we have:
rule iTm-constrE
Σ; ΓC ; • `tm e′ : C ′ ⇒ σ e′1

Σ; ΓC ; • `d d : C ′ e2

Σ; ΓC ; • `tm e′1 d : σ e′1 e2 (C.1113)

From the second premise of the two above rules and by uniqueness, we get
C = C ′.

The induction hypothesis is:

If Σ; ΓC ; • `tm e : σy ep

and Σ; ΓC ; • `tm e′ : σy eq

for some σy, ep and eq,

then, there is an e′y such that

ep −→∗ e′y and eq −→ e′y

Then, the conditions of the above hold from the first premise of Derivations
C.1112 and C.1113, where σy = C ⇒ σ, ep = e1 and eq = e′1.

Then, an appropriate choice for ey is e′y e2, since from Lemma 144, we have
e1 e2 −→∗ e′y e2 and e′1 e2 −→∗ e′y e2.

Case rule iEval-DAppAbs

iEval-DAppAbs

Σ ` (λδ : C.e) d −→ [d/δ]e
Hypotheses C.1102 and C.1103 of the theorem, adapted to this case, are:

Σ; ΓC ; • `tm (λδ : C.e) d : σ e0 (C.1114)

and Σ; ΓC ; • `tm [d/δ]e : σ e′0 (C.1115)

for some σ′, e0 and e′0. We need to show that there exists an ey such that
e0 −→∗ ey and e′0 −→∗ ey. We do this by showing that e0 −→∗ e′0.

By inversion, the last part of Derivation C.1114 must be an instance of rule iTm-
constrI directly followed by rule iTm-constrE, as shown below.

rule iTm-constrE
rule iTm-constrI

Σ; ΓC ; •, δ : C `tm e : σ e1
ΓC ; • `ty σ σ

Σ; ΓC ; • `tm λδ : C.e : C ⇒ σ λδ : σ.e1
Σ; ΓC ; • `d d : C e2

Σ; ΓC ; • `tm (λδ : C.e) d : σ (λδ : σ.e1) e2

FD-TO-F{} THEOREMS 467

where e0 = (λδ : σ.e1) e2. From the above equation, we can use premises

Σ; ΓC ; •, δ : C `tm e : σ e1

and Σ; ΓC ; • `d d : C e2

in Lemma 87, to obtain

Σ; ΓC ; • `tm [d/δ]e : σ [e1/δ]e2

Then, by uniqueness (Theorem 66 on the latter and on Equation C.1115), we
have e′0 = [e1/δ]e2.

We set ey = [e1/δ]e2, since (λδ : σ.e1) e2 −→∗ [e1/δ]e2, by evaluation rule
rule tEval-AppAbs, and [e1/δ]e2 −→∗ [e1/δ]e2, by reflexivity of −→∗.

Case rule iEval-method

iEval-method
d −→ d′

Σ ` d.m −→ d′.m
Hypotheses C.1102 and C.1103 of the theorem, adapted to this case, are:

Σ; ΓC ; • `tm d.m : σ e (C.1116)

Σ; ΓC ; • `tm d′.m : σ e′ (C.1117)

BY inversion on these equations (rule iTm-method) we get

Σ; ΓC ; • `d d : TC σq e1 (C.1118)

Σ; ΓC ; • `d d′ : TC σq e′1 (C.1119)

(m : TC a : σm) ∈ ΓC

σ = [σq/a]σm

e = e1.m

e′ = e′1.m

Applying Theorem 65 to Equations C.1118 and C.1119 gives us

ΓC ; Γ `C TC σq σ (C.1120)

Γ `tm e1 : σ (C.1121)

Γ `tm e′1 : σ (C.1122)

Inversion on Equation C.1120 teaches us that σ = {m : σ′} for some σ′.

468 COHERENCE PROOFS

Applying Theorem 69 to Equations C.1118 and C.1119, in combination with
the premise of rule iEval-method, gives us

e1 −→∗ ek

e′1 −→∗ ek

for some ek .

By applying Lemma 146 to these results, we get that

e1.m −→∗ ek .m

e′1.m −→∗ ek .m

The goal thus follows from this result by taking ey = ek .m.

Case rule iEval-methodVal

iEval-methodVal
(D : C).m 7→ e ∈ Σ

Σ ` (Dσm dn).m −→ e σm dn
Hypotheses C.1102 and C.1103 of the theorem, adapted to this case, are:

Σ; ΓC ; • `tm (Dσj di).m : σ0 e0 (C.1123)

and Σ; ΓC ; • `tm e σj di : σ0 e′0 (C.1124)

for some σ0, e0 and e′0. We need to show that there is a ey such that e0 −→∗ ey
and e′0 −→∗ ey.

By inversion on Equation C.1123, we have e0 = ((Λaj .λ δi : σ′i
i
.{m = em})σj ei).m

and σ0 = [[σj/aj]σq/a]σm, for some σm, em, a, σ′i , em, σj and ei , such that

(m : TC a : σm) ∈ ΓC

ΓC ; •, a `ty σm σm

(D : ∀aj .Ci ⇒ TC σq).m 7→ Λaj .λδi : Ci .em ∈ Σ

Σ1; ΓC ; •, aj , δi : Ci `tm em : [σq/a]σm em

ΓC ; •, aj `C Ci σ′i
i

ΓC ; • `ty σj σj
j

Σ; ΓC ; • `d di : [σj/aj]Ci ei
i

FD-TO-F{} THEOREMS 469

Because Σ contains a unique method implementation per class instance, we also
have

e = Λaj .λδi : Ci .em (C.1125)

Then, term e σj di , equal to (Λaj .λδi : Ci .em)σj di , is deterministcally elabo-
rated to (Λaj .λ δi : σ′i

i
.em)σj ei .

Indeed, ey = [ei/xi
i][σj/aj

j]em is an appropriate choice, since

e0 = ((Λaj .λ δi : σ′i
i
.{m = em})σj ei).m

→ (λ δi : [σj/aj
j]σ′i

i
.{m = [σj/aj

j]em}).m

→ {m = [ei/δi
i][σj/aj

j]em}.m

→ [ei/δi
i][σj/aj

j]em

and
e′0 = (Λaj .λ δi : σ′i

i
.em)σj ei

→ λ δi : [σj/aj
j]σ′i

i
.[σj/aj

j]em

→ [ei/δi
i][σj/aj

j]em

Case rule iEval-let

iEval-let

Σ ` let x : σ = e1 in e2 −→ [e1/x]e2
Hypotheses C.1102 and C.1103 of the theorem, adapted to this case, are:

Σ; ΓC ; • `tm let x : σ = e1 in e : σ′ e0 (C.1126)

and Σ; ΓC ; • `tm [e1/x]e2 : σ′ e′0 (C.1127)

for some σ′, e0 and e′0. We need to show that there exists an ey such that
e0 −→∗ ey and e′0 −→∗ ey. We do this by showing that e0 −→∗ e′0.

By inversion, the last rule used for Derivation C.1126 must be an instance of
rule iTm-let.

rule iTm-constrI
Σ; ΓC ; • `tm e1 : σ e1

Σ; ΓC ; •, x : σ `tm e2 : σ′ e2
ΓC ; • `ty σ σ

Σ; ΓC ; • `tm let x : σ = e1 in e : σ′ let x : σ = e1 in e2

470 COHERENCE PROOFS

where e0 = let x : σ = e1 in e2. From the above equation, we can use the first
two premises in Lemma 85, to obtain

Σ; ΓC ; • `tm [e1/x]e2 : σ′ [e1/x]e2

Then, by uniqueness (Theorem 67 on the latter and on Equation C.1127), we
have e′0 = [e1/x]e2.

We set ey = [e1/x]e2, since (λx : σ.e1) e2 −→∗ [e1/x]e2, by evaluation rule
rule tEval-AppAbs, and [e1/x]e2 −→∗ [e1/x]e2, by reflexivity of −→∗.

Lemma 147 (F{} Preservation of Values).
If Σ; ΓC ; • `tm v : σ e then e is a value.

Proof. By straightforward case analysis on the typing derivation.

Theorem 71 (Value Semantic Preservation).
If Σ; ΓC ; • `tm e : σ e and Σ ` e −→∗ v then Σ; ΓC ; • `tm v : σ v and
e ' v.

Proof. From the Preservation Theorem 30 and Progress Theorem 32, in
combination with the hypothesis, we know that:

Σ; ΓC ; • `tm v : σ e′

Lemma 147 teaches us that e′ is some value v.

The goal follows by repeatedly applying Theorem 70, in combination with the
fact that evaluation in both FD and F{} is deterministic (Lemmas 110 and 135).

Bibliography

[1] M. Abadi. Protection in Programming-Language Translations, pages 19–34.
Springer, 1999. ISBN 978-3-540-48749-4.

[2] J. Abella and F. Cazorla. Chapter 9 - harsh computing in the space
domain. In A. Vega, P. Bose, and A. Buyuktosunoglu, editors, Rugged
Embedded Systems, pages 267–293. Morgan Kaufmann, Boston, 2017.
ISBN 978-0-12-802459-1. doi: https://doi.org/10.1016/B978-0-12-802459-
1.00009-9. URL https://www.sciencedirect.com/science/article/
pii/B9780128024591000099.

[3] A. Ahmed. Step-indexed syntactic logical relations for recursive and
quantified types. In European Symposium on Programming (ESOP), 2006.

[4] A. Ahmed. Logical relations, 2015. https://www.cs.uoregon.edu/
research/summerschool/summer15/curriculum.html.

[5] J.-m. Andreoli. Logic programming with focusing proofs in linear logic.
Journal of Logic and Computation, 2:297–347, 1992.

[6] J.-P. Bernardy, P. Jansson, and R. Paterson. Proofs for free: Parametricity
for dependent types. Journal of Functional Programming, 22(2):107–152,
2012.

[7] X. Bi, B. C. d. S. Oliveira, and T. Schrijvers. The essence of nested
composition. In ECOOP, 2018.

[8] X. Bi, N. Xie, B. C. d. S. Oliveira, and T. Schrijvers. Distributive disjoint
polymorphism for compositional programming. 2019.

[9] D. Biernacki and P. Polesiuk. Logical relations for coherence of effect
subtyping. In LIPIcs, 2015.

[10] R. S. Bird and L. G. L. T. Meertens. Nested datatypes. In MPC ’98, pages
52–67. Springer, 1998. ISBN 3-540-64591-8.

471

https://www.sciencedirect.com/science/article/pii/B9780128024591000099
https://www.sciencedirect.com/science/article/pii/B9780128024591000099
https://www.cs.uoregon.edu/research/summerschool/summer15/curriculum.html
https://www.cs.uoregon.edu/research/summerschool/summer15/curriculum.html

472 BIBLIOGRAPHY

[11] G.-J. Bottu, G. Karachalias, T. Schrijvers, B. C. d. S. Oliveira, and
P. Wadler. Quantified class constraints. In Haskell 2017, pages 148–161.
ACM, 2017. ISBN 978-1-4503-5182-9.

[12] E. Brady. Idris, a general-purpose dependently typed programming
language: Design and implementation. Journal of Functional Programming,
23(5):552–593, 2013.

[13] J. Breitner, R. A. Eisenberg, S. Peyton Jones, and S. Weirich. Safe zero-cost
coercions for haskell. Journal of Functional Programming, 26:e15, 2016.
doi: 10.1017/S0956796816000150.

[14] I. Cervesato and F. Pfenning. A linear spine calculus. Technical report,
Journal of Logic and Computation, 2003.

[15] M. M. T. Chakravarty, G. Keller, and S. Peyton Jones. Associated type
synonyms. SIGPLAN Not., 40(9):241–253, 2005. ISSN 0362-1340.

[16] S. Chauhan, P. P. Kurur, and B. A. Yorgey. How to twist pointers without
breaking them. In Haskell 2016, pages 51–61. ACM, 2016. ISBN 978-1-
4503-4434-0.

[17] L. Damas and R. Milner. Principal type-schemes for functional programs.
In POPL ’82, pages 207–212. ACM, 1982. ISBN 0-89791-065-6.

[18] L. de Moura, S. Kong, J. Avigad, F. Van Doorn, and J. von Raumer. The
lean theorem prover. 2015.

[19] D. Devriese and F. Piessens. On the bright side of type classes: Instance
arguments in agda. In ICFP ’11, pages 143–155. ACM, 2011. ISBN
978-1-4503-0865-6.

[20] D. Dreyer, R. Harper, M. M. T. Chakravarty, and G. Keller. Modular type
classes. In POPL ’07, pages 63–70. ACM, 2007. ISBN 1-59593-575-4.

[21] J. Dunfield and N. R. Krishnaswami. Complete and easy bidirectional
typechecking for higher-rank polymorphism. In International Conference
on Functional Programming, ICFP ’13. ACM, 2013.

[22] R. A. Eisenberg. Binding type variables in lambda-expressions. GHC
Proposal #155, 2018. URL https://github.com/ghc-proposals/ghc-
proposals/blob/master/proposals/0155-type-lambda.rst.

[23] R. A. Eisenberg, D. Vytiniotis, S. Peyton Jones, and S. Weirich. Closed
type families with overlapping equations. In Principles of Programming
Languages, POPL ’14. ACM, 2014.

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0155-type-lambda.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0155-type-lambda.rst

BIBLIOGRAPHY 473

[24] R. A. Eisenberg, S. Weirich, and H. G. Ahmed. Visible type application. In
P. Thiemann, editor, Programming Languages and Systems, pages 229–254,
Berlin, Heidelberg, 2016. Springer Berlin Heidelberg. ISBN 978-3-662-
49498-1.

[25] R. A. Eisenberg, J. Breitner, and S. Peyton Jones. Type variables
in patterns. In Proceedings of the 11th ACM SIGPLAN International
Symposium on Haskell, Haskell 2018, page 94–105, New York, NY,
USA, 2018. Association for Computing Machinery. ISBN 9781450358354.
doi: 10.1145/3242744.3242753. URL https://doi.org/10.1145/3242744.
3242753.

[26] P. Freeman. PureScript by Example. Leanpub, 2017. https://leanpub.
com/purescript.

[27] P. Fu, E. Komendantskaya, T. Schrijvers, and A. Pond. Proof relevant
corecursive resolution. In FLOPS 2016, pages 126–143. Springer, 2016.

[28] G. Gilbert, J. Cockx, M. Sozeau, and N. Tabareau. Definitional Proof-
Irrelevance without K. Proceedings of the ACM on Programming Languages,
pages 1–28, Jan. 2019. doi: 10.1145/329031610.1145/3290316. URL https:
//hal.inria.fr/hal-01859964.

[29] J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur (Ph.D. thesis). Université Paris 7, 1972.

[30] J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge
University Press, 1989.

[31] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. Dos Reis, and A. Lumsdaine.
Concepts: Linguistic support for generic programming in c++. SIGPLAN
Not., 41(10):291–310, 2006. ISSN 0362-1340.

[32] C. V. Hall, K. Hammond, S. L. Peyton Jones, and P. L. Wadler. Type
Classes in Haskell. ACM Trans. Program. Lang. Syst., 18(2):109–138, 1996.
ISSN 0164-0925.

[33] R. Harper. Practical Foundations for Programming Languages. Cambridge
University Press, 2nd edition, 2016.

[34] R. Harrop. On disjunctions and existential statements in intuitionistic
systems of logic. Mathematische Annalen, 132(4):347–361, 1956.

[35] F. Henderson, T. Conway, Z. Somogyi, D. Jeffery, P. Schachte, S. Taylor,
and C. Speirs. The mercury language reference manual. Technical report,
1996.

https://doi.org/10.1145/3242744.3242753
https://doi.org/10.1145/3242744.3242753
https://leanpub.com/purescript
https://leanpub.com/purescript
https://hal.inria.fr/hal-01859964
https://hal.inria.fr/hal-01859964

474 BIBLIOGRAPHY

[36] R. Hinze. Perfect trees and bit-reversal permutations. JFP, 10(3):305–317,
2000.

[37] R. Hinze. Adjoint folds and unfolds: Or: Scything through the thicket of
morphisms. In MPC’10, pages 195–228. Springer, 2010. ISBN 3-642-13320-
7, 978-3-642-13320-6.

[38] R. Hinze and S. Peyton Jones. Derivable type classes. In Proceedings of
the Fourth Haskell Workshop, pages 227–236. Elsevier Science, 2000.

[39] M. Jaskelioff. Monatron: an extensible monad transformer library. In
IFL’08, pages 233–248, Berlin, Heidelberg, 2011. Springer. ISBN 978-3-
642-24451-3.

[40] M. Jones. Coherence for qualified types. Research Report
YALEU/DCS/RR-989, Yale University, Dept. of Computer Science, 1993.

[41] M. P. Jones. A theory of qualified types. In B. Krieg-Brückner, editor,
ESOP ’92, volume 582 of LNCS, pages 287–306. Springer Berlin Heidelberg,
1992.

[42] M. P. Jones. Qualified Types: Theory and Practice. Cambridge University
Press, 1994.

[43] M. P. Jones. Simplifying and improving qualified types. In FPCA ’95,
pages 160–169. ACM, 1995.

[44] M. P. Jones. Qualified Types: Theory and Practice. Cambridge University
Press, 1995. ISBN 0-521-47253-9.

[45] M. P. Jones. Functional programming with overloading and higher-order
polymorphism. In Advanced Functional Programming, pages 97–136.
Springer, 1995. ISBN 3-540-59451-5.

[46] M. P. Jones. Type classes with functional dependencies. In Programming
Languages and Systems, volume 1782 of LNCS, pages 230–244. Springer,
2000.

[47] S. P. Jones, M. Jones, and E. Meijer. Type classes: an exploration of the
design space. In Proceedings of the 1997 Haskell Workshop. ACM, 1997.

[48] W. Kahl and J. Scheffczyk. Named instances for haskell type classes. In
R. Hinze, editor, Proc. Haskell Workshop 2001, volume 59, 2001.

[49] E. A. Kmett. The constraint package, 2017. https://hackage.haskell.
org/package/constraints-0.9.1.

https://hackage.haskell.org/package/constraints-0.9.1
https://hackage.haskell.org/package/constraints-0.9.1

BIBLIOGRAPHY 475

[50] R. Lämmel and S. Peyton Jones. Scrap your boilerplate: A practical design
pattern for generic programming. SIGPLAN Not., 38(3):26–37, 2003. ISSN
0362-1340.

[51] R. Lämmel and S. Peyton Jones. Scrap your boilerplate with class:
Extensible generic functions. SIGPLAN Not., 40(9):204–215, 2005. ISSN
0362-1340.

[52] L. Lampropoulos and B. C. Pierce. QuickChick: Property-Based Testing
in Coq, volume 4 of Software Foundations. 1st edition, 2018.

[53] D. Le Botlan and D. Rémy. Recasting mlf. Information and Computation,
207(6):726–785, 2009. ISSN 0890-5401. doi: https://doi.org/10.1016/j.ic.
2008.12.006. URL https://www.sciencedirect.com/science/article/
pii/S0890540109000145.

[54] C. Liang and D. Miller. Focusing and polarization in linear, intuitionistic,
and classical logics. Theor. Comput. Sci., 410(46):4747–4768, 2009. ISSN
0304-3975.

[55] S. Marlow (editor). Haskell 2010 language report, 2010.

[56] L. S. Martin Odersky and B. Venners. Implicit conversions and parameters.
In Programming in Scala, chapter 21. 2008.

[57] T. Mens. On the complexity of software systems. Computer, 45(8):79–81,
2012. doi: 10.1109/MC.2012.273. URL https://doi.org/10.1109/MC.
2012.273.

[58] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a
foundation for logic programming. Technical report, 1989.

[59] R. Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17(3):348–375, 1978. ISSN 0022-0000.
doi: https://doi.org/10.1016/0022-0000(78)90014-4. URL https://www.
sciencedirect.com/science/article/pii/0022000078900144.

[60] J. G. Morris. A simple semantics for haskell overloading. In W. Swierstra,
editor, Haskell 2014, pages 107–118. ACM, 2014. ISBN 978-1-4503-3041-1.

[61] J. H. Morris Jr. Lambda-calculus models of programming languages. PhD
thesis, Massachusetts Institute of Technology, 1969.

[62] T. Mozilla Research. The Rust Programming Language. 2017. https:
//www.rust-lang.org/en-US/.

[63] D. Musser and A. Stepanov. Generic programming. 358, 11 1994. doi:
10.1007/3-540-51084-2_2.

https://www.sciencedirect.com/science/article/pii/S0890540109000145
https://www.sciencedirect.com/science/article/pii/S0890540109000145
https://doi.org/10.1109/MC.2012.273
https://doi.org/10.1109/MC.2012.273
https://www.sciencedirect.com/science/article/pii/0022000078900144
https://www.sciencedirect.com/science/article/pii/0022000078900144
https://www.rust-lang.org/en-US/
https://www.rust-lang.org/en-US/

476 BIBLIOGRAPHY

[64] M. Odersky and K. Läufer. Putting type annotations to work. In
Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’96, page 54–67, New York, NY, USA,
1996. Association for Computing Machinery. ISBN 0897917693. doi: 10.
1145/237721.237729. URL https://doi.org/10.1145/237721.237729.

[65] M. Odersky, O. Blanvillain, F. Liu, A. Biboudis, H. Miller, and S. Stucki.
Simplicitly: Foundations and Applications of Implicit Function Types. In
POPL ’18, 2017.

[66] B. C. Oliveira, A. Moors, and M. Odersky. Type classes as objects and
implicits. SIGPLAN Not., 45(10):341–360, 2010. ISSN 0362-1340.

[67] B. C. Oliveira, T. Schrijvers, W. Choi, W. Lee, and K. Yi. The implicit
calculus: A new foundation for generic programming. SIGPLAN Not., 47
(6):35–44, 2012. ISSN 0362-1340.

[68] D. Orchard and T. Schrijvers. Haskell type constraints unleashed. In
M. Blume, N. Kobayashi, and G. Vidal, editors, Functional and Logic
Programming, pages 56–71, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg. ISBN 978-3-642-12251-4.

[69] S. Peyton Jones. Haskell 98 Language and Libraries: The Revised Report.
Journal of functional programming. Cambridge University Press, 2003.

[70] S. Peyton Jones. Simplify subsumption. GHC Proposal #287,
2019. URL https://github.com/ghc-proposals/ghc-proposals/blob/
master/proposals/0287-simplify-subsumption.rst.

[71] S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for gadts. SIGPLAN Not., 41(9):50–61,
2006. ISSN 0362-1340.

[72] S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for gadts. In Proceedings of the Eleventh
ACM SIGPLAN International Conference on Functional Programming,
ICFP ’06, pages 50–61, New York, NY, USA, 2006. ACM. ISBN 1-59593-
309-3. doi: 10.1145/1159803.1159811. URL http://doi.acm.org/10.
1145/1159803.1159811.

[73] S. Peyton Jones, D. Vytiniotis, S. Weirich, and M. Shields. Practical type
inference for arbitrary-rank types. JFP, 17(1), 2007.

[74] F. Pfenning. Lecture notes on focusing, 2010. https://www.cs.cmu.edu/
~fp/courses/oregon-m10/04-focusing.pdf.

https://doi.org/10.1145/237721.237729
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0287-simplify-subsumption.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0287-simplify-subsumption.rst
http://doi.acm.org/10.1145/1159803.1159811
http://doi.acm.org/10.1145/1159803.1159811
https://www.cs.cmu.edu/~fp/courses/oregon-m10/04-focusing.pdf
https://www.cs.cmu.edu/~fp/courses/oregon-m10/04-focusing.pdf

BIBLIOGRAPHY 477

[75] B. C. Pierce. Types and Programming Languages. The MIT Press, 1st
edition, 2002. ISBN 0262162091, 9780262162098.

[76] B. C. Pierce and D. N. Turner. Local type inference. ACM Trans. Program.
Lang. Syst., 22(1):1–44, 2000. ISSN 0164-0925.

[77] G. Plotkin. Lambda-definability and logical relations. Edinburgh University,
1973.

[78] B. Ray, D. Posnett, P. Devanbu, and V. Filkov. A large-scale study of
programming languages and code quality in github. Commun. ACM, 60
(10):91–100, Sept. 2017. ISSN 0001-0782. doi: 10.1145/3126905. URL
http://doi.acm.org/10.1145/3126905.

[79] J. C. Reynolds. Towards a theory of type structure. In Programming
Symposium, Proceedings Colloque Sur La Programmation, page 408–423,
Berlin, Heidelberg, 1974. Springer-Verlag. ISBN 3540068597.

[80] J. C. Reynolds. The coherence of languages with intersection types. In
TACS ’91, pages 675–700. Springer-Verlag, 1991. ISBN 3-540-54415-1.

[81] Y.-J. Ringard. Mustard watches: An integrated approach to time and
food.

[82] T. Schrijvers and B. C. Oliveira. Monads, zippers and views: Virtualizing
the monad stack. SIGPLAN Not., 46(9):32–44, 2011. ISSN 0362-1340.

[83] T. Schrijvers, B. C. Oliveira, P. Wadler, and K. Marntirosian. Cochis:
Stable and coherent implicits. Journal of Functional Programming, 29:e3,
2019. doi: 10.1017/S0956796818000242.

[84] A. Serrano, J. Hage, D. Vytiniotis, and S. Peyton Jones. Guarded
impredicative polymorphism. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
2018, page 783–796, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450356985. doi: 10.1145/3192366.3192389. URL
https://doi.org/10.1145/3192366.3192389.

[85] A. Serrano, J. Hage, S. Peyton Jones, and D. Vytiniotis. A quick look at
impredicativity. In International Conference on Functional Programming
(ICFP’20). ACM, ACM, August 2020. URL https://www.microsoft.com/
en-us/research/publication/a-quick-look-at-impredicativity/.

[86] M. Sozeau and N. Oury. First-class type classes. In TPHOLs 2008, volume
5170 of LNCS, pages 278–293. Springer, 2008. ISBN 978-3-540-71065-3.

http://doi.acm.org/10.1145/3126905
https://doi.org/10.1145/3192366.3192389
https://www.microsoft.com/en-us/research/publication/a-quick-look-at-impredicativity/
https://www.microsoft.com/en-us/research/publication/a-quick-look-at-impredicativity/

478 BIBLIOGRAPHY

[87] M. Sozeau and N. Oury. First-class type classes. In TPHOLs ’08, pages
278–293. Springer-Verlag, 2008. ISBN 978-3-540-71065-3.

[88] M. Spivey. Faster coroutine pipelines. In ICFP 2017, 2017. accepted.

[89] R. Statman. Logical relations and the typed λ-calculus. Information and
Control, 65(2-3):85–97, 1985.

[90] C. Strachey. Fundamental concepts in programming languages. Higher-
Order and Symbolic Computation, 13:11–49, 1967.

[91] M. Sulzmann, G. J. Duck, S. Peyton-Jones, and P. J. Stuckey.
Understanding functional dependencies via constraint handling rules. JFP,
17(1):83–129, 2007.

[92] W. W. Tait. Intensional interpretations of functionals of finite type i. The
journal of symbolic logic, 32(2):198–212, 1967.

[93] V. Trifonov. Simulating quantified class constraints. In Haskell ’03, pages
98–102. ACM, 2003. ISBN 1-58113-758-3.

[94] D. Vytiniotis, S. Peyton Jones, and T. Schrijvers. Let should not be
generalized. In TLDI ’10, pages 39–50. ACM, 2010. ISBN 978-1-60558-
891-9.

[95] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc.
In POPL ’89. ACM, 1989.

[96] S. Weirich, J. Hsu, and R. A. Eisenberg. System FC with explicit kind
equality. In International Conference on Functional Programming, ICFP
’13. ACM, 2013.

[97] L. White, F. Bour, and J. Yallop. Modular implicits. In ML/OCaml 2014.,
2014.

[98] T. Winant and D. Devriese. Coherent explicit dictionary application
for haskell. In Proceedings of the 11th ACM SIGPLAN International
Symposium on Haskell, Haskell 2018, pages 81–93, New York, NY, USA,
2018. ACM. ISBN 978-1-4503-5835-4.

List of publications

Gert-Jan Bottu, Georgios Karachalias, Tom Schrijvers, Bruno
C. d. S. Oliveira, and Philip Wadler. 2017. Quantified
class constraints. In Proceedings of the 10th ACM SIGPLAN
International Symposium on Haskell (Haskell 2017). Associa-
tion for Computing Machinery, New York, NY, USA, 148–161.
DOI:https://doi.org/10.1145/3122955.3122967

Gert-Jan Bottu, Ningning Xie, Koar Marntirosian, and Tom
Schrijvers. 2019. Coherence of type class resolution. Proc. ACM
Program. Lang. 3, ICFP, Article 91 (August 2019), 28 pages.
DOI:https://doi.org/10.1145/3341695

Gert-Jan Bottu and Richard A. Eisenberg. 2021. Seeking
stability by being lazy and shallow: lazy and shallow instantiation
is user friendly. In Proceedings of the 14th ACM SIGPLAN
International Symposium on Haskell (Haskell 2021). Associa-
tion for Computing Machinery, New York, NY, USA, 85–97.
DOI:https://doi.org/10.1145/3471874.3472985

479

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

DTAI
Celestijnenlaan 200A box 2402

B-3001 Leuven
gertjan@bottu.dev

http://www.bottu.dev

	Abstract
	Beknopte samenvatting
	List of Symbols
	Contents
	List of Figures
	Introduction
	Haskell
	Aim of the Thesis
	Thesis Overview
	Part I: Parametric Polymorphism
	Part II: Ad-Hoc Polymorphism

	Laying the Foundations
	Programming Languages
	Dynamic Semantics
	Static Semantics
	Meta-Theory

	I Parametric Polymorphism
	Polymorphic Types
	System F
	Hindley Milner

	Type Instantiation
	Introduction
	Instantiation in GHC
	Deep vs. Shallow Instantiation
	Eager vs. Lazy Instantiation

	Meta Theory: Stability
	Stability
	Stability

	The Mixed Polymorphic -Calculus
	Syntax
	Type system overview
	Instantiation and Skolemisation

	Evaluation
	Contextual Equivalence
	Properties
	Conclusion

	Instantiation in GHC
	Eagerness
	Depth
	The situation today: Quick Look impredicativity has arrived

	Instabilities around instantiation beyond Haskell
	Explicit Instantiation
	Idris
	Agda
	Explicit Abstraction
	Implicit Generalisation

	Example of Implicit Generalisation in Idris
	Related Work
	Scientific Output

	II Ad-hoc Polymorphism
	Type Classes
	Introduction
	Overview
	Dictionary-Passing Elaboration
	Alternatives

	Source Language TC
	Target Language F{}
	Elaboration from TC to F{}

	Meta Theory: Coherence
	Introduction
	Overview
	Dictionary-Passing Elaboration
	Nondeterminism and Coherence
	Contextual Difference
	Our Approach to Proving Coherence

	Coherence
	Contextual Equivalence
	Coherence

	Intermediate Language FD
	Elaboration from TC to FD
	Elaboration from FD to F{}
	Elaboration Decomposition

	Coherence Revisited
	Coherent Elaboration from TC to FD
	Deterministic Elaboration from FD to F{}

	Discussion of Possible Extensions
	Related Work
	Scientific Output

	Extension: Quantified Constraints
	Introduction
	Motivation
	Precise and Succinct Specifications
	Terminating Corecursive Resolution
	Summary

	Declarative Type System
	Syntax
	The Type System
	Constraint Entailment
	Remaining Nondeterminism

	Type Inference
	Preliminaries
	Constraint Generation For Terms
	Constraint Solving
	Checking Declarations
	Program Typing

	Translation to System F
	Target Language: System F
	Elaboration of Types & Constraints
	Elaboration of Terms
	Dictionary Construction
	Declaration Elaboration

	Termination of Resolution
	Related Work
	Quantified Constraints in GHC
	Scientific Output

	Meta Theory: Coherence for Quantified Constraints
	Introduction
	Calculus Updates
	TC Updates
	Example Derivation
	FD Updates
	Example Translation

	Meta-Theory
	FD Type Safety
	Strong Normalisation for FD
	Elaboration from TC to FD
	Elaboration from FD to F{}

	Coherence
	Logical Relations
	Coherence Theorem Updates

	Conclusion

	Conclusion
	Parametric Polymorphism
	Ad-Hoc Polymorphism

	Additional Relations
	MPLC Additional Definitions
	MPLC Core Language Definitions
	Translation from the Mixed Polymorphic -calculus

	TC Additional Definitions
	Syntax
	TC Judgments and Elaboration
	TC Judgments and Elaboration through FD

	TC Declarative Type System Additional Judgments
	Well-formedness of Types & Constraints
	Program Typing
	Elaboration of Programs

	TC Additional Definitions
	Syntax
	TC Judgments and Elaboration
	TC Judgments and Elaboration through FD
	Unification Algorithm

	FD Additional Definitions
	Syntax
	FD Judgments and Elaboration

	FD Additional Definitions
	Syntax
	FD Judgments and Elaboration

	F{} Additional Definitions
	Syntax
	F{} Judgments

	System F with Data Types Definitions
	Term Typing
	Well-formedness of Types
	Program Typing
	Value Binding Typing
	Datatype Declaration Typing
	Call-by-name Operational Semantics

	Stability Proofs
	Let-Inlining and Extraction
	Contextual Equivalence
	Let-Inlining and Extraction, Continued
	Type Signatures
	Pattern Inlining and Extraction
	Single vs. Multiple Equations
	-expansion

	Coherence Proofs
	Logical Relations
	Dictionary Relation
	Expression Relation
	Environment Relation

	Strong Normalization Relations
	Dictionary Relation
	Expression Relation

	Equivalence Relations
	Kleene Equivalence Relations
	Contextual Equivalence Relations

	TC Theorems
	Conjectures
	Lemmas
	Typing Preservation

	FD Theorems
	Conjectures
	Lemmas
	Type Safety
	Strong Normalization

	Elaboration Equivalence Theorems
	Coherence Theorems
	Compatibility Lemmas
	Helper Theorems
	Partial Coherence Theorems
	Main Coherence Theorems

	FD-to-F{} Theorems
	Lemmas
	Soundness
	Determinism
	Semantic Preservation

	Bibliography

